

Den Boden nicht verlieren – So beurteile ich die Grünland-Bodenqualität im Gelände

Andreas Bohner Abt. Umweltökologie

Abgestufte Grünlandbewirtschaftung

- Innerhalb eines landwirtschaftlichen Betriebes sollen Grünlandflächen mit hohem Ertragspotenzial intensiv bewirtschaftet werden.
- Grünlandflächen, die aufgrund ihrer Topografie und/oder Parzellenform schwer zu bewirtschaften sind und deren Standortbedingungen keine hohen Erträge zulassen, sollen extensiv bewirtschaftet werden.
- Was sind Grünlandflächen mit hohem Ertragspotenzial?

Ertragspotenzial

- nachhaltige, durchschnittliche Ertragsvermögen eines Standortes bei optimaler Grünlandbewirtschaftung
- ein unmittelbarer Rückschluss vom Ertrag einer Grünlandfläche auf das Ertragspotenzial ist nicht möglich

Ertragspotenzial

Klima und Boden sind entscheidend!

- um das Ertragspotenzial und somit auch die optimale Bewirtschaftungsintensität für einen Standort abschätzen zu können → gute Kenntnisse über den Boden und seine wachstumsfördernden und -hemmenden Eigenschaften
- Bodentyp → liefert isoliert betrachtet wenig Informationen über die Bodenfruchtbarkeit und das Ertragspotenzial einer Grünlandfläche
- Routine-Bodenuntersuchung → das Ertragspotenzial einer Grünlandfläche, ertragsbegrenzende Standortfaktoren, die Bodenfruchtbarkeit und Bodenqualität sowie der aktuelle Bodenzustand können nicht festgestellt werden

- mit einer geringen Anzahl von Bodenmerkmalen und -eigenschaften möglich
- Bodenmerkmale, die durch Bewirtschaftungsmaßahmen nicht verändert werden können (z.B. Bodengründigkeit, Bodenart) → müssen berücksichtigt werden
- ganzheitliche Betrachtung des Bodens
- schlechte physikalische Eigenschaften (z.B. mangelhafte Wasserversickerung, schlechte Bodendurchlüftung) können nicht durch gute chemische Eigenschaften (z.B. optimaler Boden-pH-Wert, hohe Kationenaustauschkapazität) kompensiert werden
- die meisten Bodenmerkmale und -eigenschaften verändern sich mit der Bodentiefe → das ganze Bodenprofil muss beurteilt werden
- Zeigerpflanzen mitberücksichtigen

Profilgrube

- an einer repräsentativen Stelle innerhalb der Grünlandfläche
- bei tiefgründigen Böden ca. 1 m tief und mindestens 80 cm lang

- auf jeder Grünlandfläche innerhalb des landwirtschaftlichen Betriebes
- während der gesamten Vegetationszeit möglich (ideal: vor der ersten Nutzung)
- für die Feststellung der Bodenfruchtbarkeit und für die Ermittlung von ertragsbegrenzenden Bodenfaktoren → einmalige Beurteilung
- Wiederholung → nur im Falle einer deutlichen negativen Standortveränderung

erforderliche Materialien

Foto: Reiter, R.

weder Mess- und Analysegeräte noch bodenkundliche Spezialkenntnisse sind

erforderlich

Hände, Augen, Ohren, Nase, (Mund)

- natürliche Standortfaktoren (Klima, Relief, Gesteinsuntergrund)
- kulturtechnische Maßnahmen (z.B. Entwässerung, Planierung)
- Bewirtschaftungsgeschichte der Grünlandfläche

Klima

Günstig für eine intensive Grünlandbewirtschaftung

- Jahresniederschlag von ca. 1000 mm in guter jahreszeitlicher Verteilung
- Jahresmitteltemperatur (langjähriger Durchschnitt) 8-10 °C
- Geringe Niederschläge kann der Boden durch einen hohen Grundwasserstand kompensieren.

Klima

Grundwasserferne Böden

Der Grundwasserstand liegt tiefer als 150 cm unter der Bodenoberfläche → das Grundwasser hat keinen Einfluss auf die Vegetation; das Bodenwasser stammt ausschließlich aus dem Niederschlag

Grundwasserbeeinflusste Böden

Gley, Augley, Anmoor, Niedermoor → die Grünlandvegetation wird entscheidend vom Grundwasser beeinflusst

https://data.hub.zamg.ac.at

https://bodenkarte.at

Relief

- Rasch fließendes Hangwasser ist sauerstoffreicher als langsam fließendes oder stagnierendes Grundwasser.
- Stark grundwasserbeeinflusste Böden (z.B. Gley) sind in Hanglagen günstigere Pflanzenstandorte als in ebenen Lagen oder Geländevertiefungen.
- Durch Oberflächenabfluss und ständigen Hangwassereinfluss findet ein Wasserund Stofftransport von Oberhangböden in Unterhangböden statt. Unterhangböden sind daher natürliche Anreicherungsstandorte für Wasser und Pflanzennährelemente.

Gesteinsuntergrund

- Flusssedimente (mächtige Aulehmdecke) → nährstoffreiche Böden (Auböden, Augley)
- dunkle Gesteinsarten (z.B. Basalt, Amphibolit) → nährstoffreiche Böden
- glimmer- und/oder kalifeldspatreiche Gesteine (Granit, Gneis, Glimmerschiefer) → kaliumreiche Böden
- Kalkstein, Mergel → calciumreiche Böden, hoher Boden-pH-Wert
- quarzreiches Ausgangsmaterial (Quarzsand, Quarzsandstein, Quarzit) → nährstoffarme, sandige Böden

http://www.geologie.ac.at/onlineshop/karten

Muskovit

Glimmerschiefer

Amphibolit

Sandstein

Bodengründigkeit

Mächtigkeit des durchwurzelbaren Bodenraumes

- seichtgründig (bis 30 cm mächtig)
- mittelgründig (bis 70 cm mächtig)
- tiefgründig (mehr als 70 cm mächtig)

seichtgründig

tiefgründig

Horizontübergänge

- undeutlich
- scharfe Horizontgrenze

scharfe Horizontgrenze

undeutliche Horizontgrenze

Foto: BFW

Regenwurmbesatz

- Regenwürmer → größte Aktivität im Frühling und Herbst
- hohe Anzahl im Oberboden (mehr als 4 Regenwürmer in einem 20 x 20 x 20 cm großen Bodenziegel)
- zahlreiche vertikale Regenwurmgänge bis 1 m Bodentiefe

Carbonatgehalt und Boden-pH-Wert

carbonathaltiger Boden: hör- und sichtbares
Aufbrausen; Boden-pH-Wert > 6.2

- carbonatfreier Boden: kein hör- und sichtbares Aufbrausen
- optimaler pH-Wert (CaCl₂) im Hauptwurzelraum: 6.2-5.0

Humusgehalt, Humusmenge und Humusform

- je dunkler das angefeuchtete Bodenmaterial ist, umso höher ist der Humusgehalt
- günstig: A-Horizont dunkelbraun bis schwarz gefärbt, mehr als 10 cm mächtig
- optimale Humusform: Mull (Erdgeruch, keine Nässemerkmale)

stark humos, Mull

Feucht-Mull

Durchwurzelung

günstig

 gleichmäßige, intensive und tiefreichende Durchwurzelung des Bodens (bis etwa 100 cm)

ungünstig

ungleichmäßige Durchwurzelung (wurzelfreie Zonen) oder eine besonders starke
Konzentration der Wurzelmasse auf die oberste Bodenschicht (Wurzelfilz in 0-5

cm Bodentiefe)

Struktur im Oberboden

günstig: Krümelstruktur

ungünstig: dichte, grobe Plattenstruktur

Krümelstruktur

Plattenstruktur

Bodenart

günstig: lehmiger Boden mit geringem Steingehalt

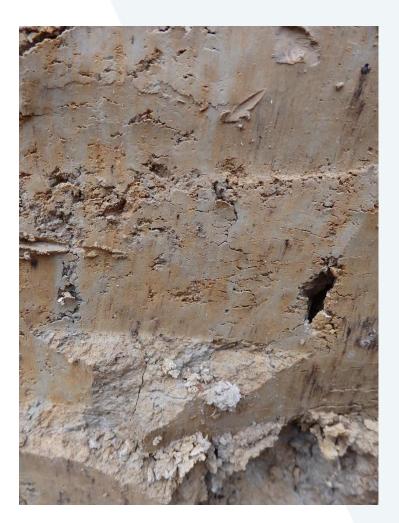
- in warmen, niederschlagsarmen Gebieten (Jahresniederschlag < 700 mm, Jahresmitteltemperatur > 10 °C) sind tonreiche und in kühlen, niederschlagsreichen Gebieten (Jahresniederschlag > 1500 mm, Jahresmitteltemperatur < 6 °C) sind sandreiche Böden vorteilhaft
- auf feuchten und nassen Standorten sind sandige, skelettreiche Böden günstiger als tonreiche Böden

Nässemerkmale im Boden

- gleichmäßig graue Farbe im Unterboden oder Untergrund → ständige Vernässung durch Grund- oder Hangwasser
- Roströhren, Konkretionen, Rost- und Bleichflecken → Hinweise für eine zeitweilige Vernässung durch Stau-, Hang- oder Grundwasser
- Je deutlicher und häufiger diese Nässemerkmale im Boden auftreten, umso länger und intensiver ist die Bodenvernässung und der daraus resultierende Sauerstoffmangel im Boden.

Roströhren

Konkretionen


Rostflecken

Konkretionen

Pseudogley

Bodenwasserhaushalt

Optimal

- in warmen, niederschlagsarmen Regionen → mäßig feuchte Standorte
- in kühlen, niederschlagsreichen Regionen → frische Standorte

Frische Standorte

- einheitliche Bodenfarben (keine Nässemerkmale im Bodenprofil)
- keine Graufärbung im Unterboden oder Untergrund
- Tiefgründigkeit des Bodens
- z.B. tiefgründige Braunerde

Bodenwasserhaushalt

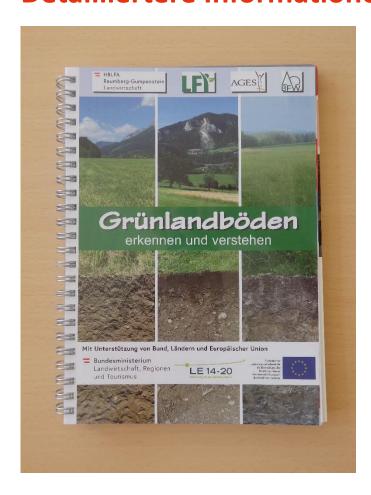
Mäßig feuchte Standorte

- einzelne deutliche Rost- und Bleichflecken im Boden ab ca. 50 cm Bodentiefe
- z.B. vergleyte Braunerde

Braunerde

vegleyter, grauer Auboden

Geruch des Bodens


Erdgeruch

Hinweis für einen gut durchlüfteten Boden

Fäulnisgeruch

Hinweis für mangelnde Bodendurchlüftung

Detailliertere Informationen

http://www.bfw.ac.at/webshop