Weide- und grünlandbasierte Rinderproduktionssysteme

Weidestrategien

PD Dr. Andreas Steinwidder Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere, ind Forschungszentrum für Landwirtschaft, LFZ Raumberg-Gumpenstein, A-8952 Ird

Weidestrategien

Strategien in der Milchproduktion

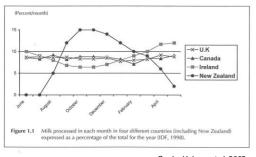
	<u> </u>					
	Weide-Konzept	Stall-Systeme				
Futterkosten	gering	hoch				
Energieeinsatz	gering	hoch				
externer Input	gering	hoch				
Investitionsbedarf	gering	hoch				
Arbeitszeitbedarf/Kuh	geringer	hoch				
Arbeitszeitverteilung	saisonal(er)	konstant				
Milchanlieferung	saisonal(er)	konstant				
Futterqualität	variabel	hoch				
Besatzstärke	bedeutend	unbedeutend				
Einzeltierleistung	geringer	hoch				

"Low Cost ": "Low Input" "High Input": "High Output"

PD Dr. Andreas Stei

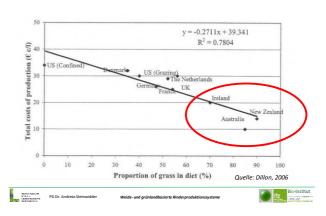
England

Neuseeland


Gegenüberstellung - Produktionsdaten

	USA	Neuseeland	Irland
Fläche, ha	168	103	24
Kühe, Stück	115	271	45
Milch, kg/Kuh	10.243	3.678	4.588
Bestandesergänzung, %	33	18	19
Kraftfutter/Nebenpr., kg/Kuh u. J.	4.500	150	750
Kühe/Arbeitskraft	40	97	44

Quelle: Horan, 2010, typische Betriebsstrukturen IFCN Milcherlös/Getreidekosten Milcherlös : KF-Kosten → 1.8 bedeutend für Ausrichtung


Quelle: Holmes et al. 2002

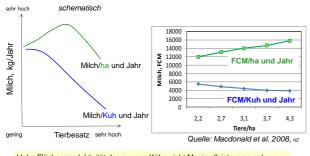
Saisonalität in der Milchproduktion

Quele: Holmes et al. 2002

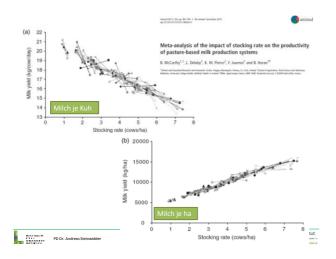
Weidegrasanteil und Vollkosten

Was ist Vollweide nicht?

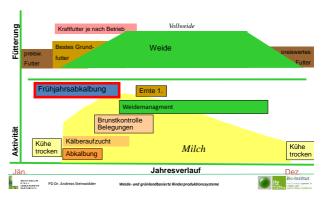
- Nur ein **bestimmtes Weidesystem** (Kurzrasenweide, Koppelweide etc.)
- Fütterung mit hohe Mengen an Ergänzungsfutter zur Weide
- Eine Möglichkeit zur Verwertung teurer Maschinen und Stallplatzkosten
- Ein System für flächenungebundene Produktion
- Ein System für "Chaoten"


Weide - Leistung pro Tier bzw. pro ha

MINSTRALIN ETF. DISSENTED REPRESENT	PD Dr. Andreas Steinwidder	Weide- und grünlandbasierte Rinderproduktionssysteme	Bio-Institut
	PD Dr. Andreas Steinwidder	Weide- und grünlandbasierte Rinderproduktionssysteme	

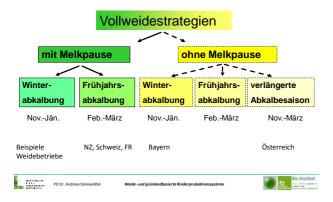

Pio Dr. Andreas Steinwidder Weide- und grünfondbezierte Rinderproduktionssysteme

Weide - Leistung pro Tier bzw. pro ha



Besatz, Kühe/ha	2,2	2,7	3,1	3,7	4,3			
Laktationstage	291	274	258	234	221			
je Kuh								
Milch, kg/Kuh	5032	4351	4128	3616	3448			
ECM 3,2, kg/Kuh	5396	4757	4471	3916	3566			
ECM je Kuh, relativ in %	100	88	83	73	66			
je ha								
Milch, kg/ha	11071	11747	12796	13380	14828			
ECM 3,2, kg/ha	11871	12842	13859	14488	15337			
ECM je ha, relativ in %	100	108	117	122	129			
Energieaufwand, MJ NEL/kg ECM	5,4	5,6	5,7	6,0	6,3			
Energieaufwand, realtiv in %	100	104	106	112	117			
je ha								
Energieaufnahme je ha, MJ	63766	71616	79230	87486	96123			
Energieaufnahme, relativ in %	100	112	124	137	151			
eigene Berechnungen auf Basis der								

Low-Input Vollweidestrategie - Gunstlagen(Irland)

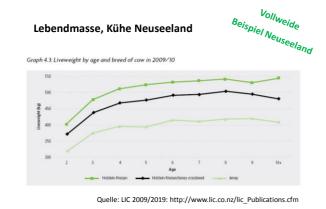

Low-Input Vollweidestrategie - Berggebiet

Low-Input Vollweidestrategie - Berggebiet

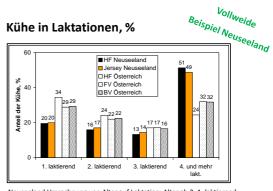
Low-Input Vollweidestrategien

Vollweide und Saisonalität?

- keine trockenstehenden Kühe in Vegetationszeit ightarrow höchste Effizienz
- ✓ alle Kühe trächtig wenn Milchharnstoffgehalt über 35 mg ansteigt
 ✓ Trockenstehzeit fällt in den Winter (brauche weniger teures Grundfutter und auch weniger hochwertiges Grundfutter)


 ✓ Einheitlichere Herde lässt sich leichter führen (füttern, kontrollieren...)

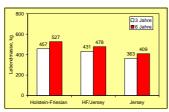
- ✓ Konzentrierte Arbeitsabläufe erhöhen Effizienz
 ✓ Verlassen der "Eintönigkeit": 365 Tage "alles gleich"; 365 Tage "Winter"
- ✓ Keine Kälber am Betrieb für zumindest 6 Monate
- Kühe die aus "Belegefenster" hinaus fallen gehen ab oder müssen durchgemolken
- Brunstbeobachtung und fruchtbare Tiere sehr wichtig
- Weniger Wintermilch (insbesondere bei Frühjahrsabkalbungen)
- Milchinhaltsstoffe in der Herde sind einheitlicher → Laktationsverlaufseffekte schlagen stärker durch (z.B. Zellzahl, Fehlen von männlichen Kälbern im Herbst)
- Vermarktung, Verarbeitung und Direktvermarktung womöglich schwieriger Milchtankfüllung und Anlieferung variabler (Menge, Geld, Technik, Vermarktung)
- Platzbedarf für Kälber und Abkalbungen saisonal erhöht
- Kalbinnenaufzucht muss angepasst werden
- Saisonal unterschiedlicher Zeitbedarf


HINGTONION HEAD INDEXENDED OCCUPANCIO

Weidegunstlage

HINODEUM EEFE DANKERKEE BETHEETH

Neuseeland Umrechnung von Alter auf Laktation: Alter ab 2=1. laktierend; New Zealand Dairy statistics 2003/2004, Quelle: http://www.lic.co.nz; Österreich Herdebuchkühe, Quelle: ZAR 2005


HINODEUM PERS DANKWARE

Weidekühe in Neuseeland

Beispiel Neuseeland Laktationsdauer Laktationsdauer Milchleistung Milchfett Milcheiweiß (Leistungskontrolle) (tats. Produktion) kg 265 3.871 4,75

Vollweide

Vollweide

Beispiel Neuseeland

- · Über 90 % der Milch werden exportiert
- Lange Vegetationsperiode, günstige Grünlandwachstumsbedingungen
- Englisch Raygras und Weißklee reiche Bestände
- Relativ hohe Getreidepreise
- · Keine Ausgleichszahlungen u. Förderungen
- · Wenig bzw. keine Stallungen
- Spezialisierte Betriebe (Milchvieh, teilweise Aufzucht, teilweise Futterkonservenproduzenten)
- Weltmarkt abhängige Milcherlöse
- · Milchverarbeiter arbeiten zum Großteil saisonal
- · Sharemilking (Jungbauern bekommen Teil der Herde → kaufen mit Gewinn später Gesamtbetrieb

Vergleich von 3 Holstein-Kuhtypen bei Vollweidehaltung und

4.5 5,5 5.5

Koppelweide (8 bis 14 Koppeln) – tägliche Neuflächenzuteilung

rschiedlichem Futterangeb

Macdonald et al. 2008. J.D. Sci. 91, 1693-1707.

HF Neuseeland 1970er Genotyp

HF Neuseeland 1990er Genotyp

Futterangebot angestrebt:

HF "Nordamerika" 1990er Genotyp

Maissilage+Mais

Maissilage+Mais

Maissilage+Mais

Vollweide

Beispiel Neuseeland

Zuchtwert 1999

Mkg 495 EWkg 9 LM 47

t/Kuh

t/Kuh

1362 44

Vollweide

Beispiel Neuseeland

Jän Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez

Konsequenzen

- → Low Cost Milchproduktion welche Weidepflanzenwachstum folgt
- → Saisonale Abkalbung (6-8 Wochen) im Vorfrühling damit sich Laktationsspitze mit maximalem Weidefutterangebot gut decken
- → Erstabkalbealter 23-25 Monate
- → Hohe Flächenproduktivität (Milchinhaltsstoffe je ha) wird angestrebt → Einzeltierleistung von untergeordneter Bedeutung, leichte Kühe mit hohen Inhaltsstoffen und guter Fitness
- → Weidemanagement "an Stelle von Fütterungsmanagement" (Tag für Tag bzw. über die Saison)
- ightarrow Im tiergesundheitlichen Bereich sind Weidetetanie, Blähungen und Parasiten wichtige Themen
- → Fruchtbarkeit (strenge Selektion, Synchronisierung weit verbreitet)
- → Einfache rationelle Melktechnik

HIX DRUM
HIX

- ightarrow Spezialisierung Futterkonservierung, Zaunarbeiten oft ausgelagert
- → Wenige Herdebuchzüchter aber hoher Leistungskontrollanteil
- → Im Schnitt 2,8 Kühe pro ha (2,4 GVE₅₅₀/ha)

Vollweide Beispiel Neuseeland

IfZ Bio-Institut

NZ70

NZ90

NA90

Kühe welche innerhalb der ersten 35 Tage in Belegesaison keinen Eisprung zeigten (Progesterontest) 🗲 hormonell behandelt

NZ70

NA90

5,5 5,5

5,5

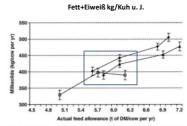
45 Kühe

60 Kühe

0,5

0,5 1,0

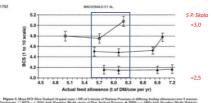
0,5 1,0 1,5


Beispielsversuch Neuseeland

Vergleich von 3 Holstein-Kuhtypen bei Vollweidehaltung und em Futteran

McDonald et al. 2008. J.D. Sci. 91, 1693-1707.

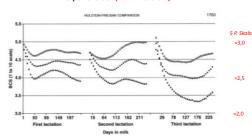
Weide (Ergänzung	4,5	NZ:) 5,0		Z90 5,5(0,5) 5,5(1,0)	5,5	NA9 5,5(0,5		.,0) 5,5(1,5)
Lak-Dauer, Tage	255	285	289	264	282	289	295	247	260	273	287
kg F+P/kg LM ^{0,75}	3,5	4,1	4,2	4,3	4,4	4,6	5,0	3,6	3,9	4,3	K<0,001 F<0,001 4,7
kg F+P/Kuh	336	425	427	436	473	500	535	409	446	487	K<0,001 F<0,001 532
kg Milch/Kuh	4192	547	3 5274	538	5 564	0 5901	6169	5323	5864	6416	K<0,001 F<0,001 6 6978 K<0.001 F<0.001
LM/Kuh	481	488	480	487	498	504	527	524	529	534	541
BCS (10 P.)	4,8	4,8	5,1	4,5	4,5	4,5	4,8	4,2	4,2	4,2	K<0,001 F<0,001 4,2 K<0,001 F<0,001


Macdonald et al. 2008. J.D. Sci. 91, 1693-1707.

Beispielsversuch Neuseeland

Macdonald et al. 2008. J.D. Sci. 91, 1693-1707.

Körperkondition (10 Punkte Skala)


Vollweide

Beispiel Neuseeland

elsversuch Neuseel

Macdonald et al. 2008, J.D. Sci. 91, 1693-1707.

Körperkondition (10 Punkte Skala)

Beispielsversuch Neuseeland

Vergleich von 3 Holstein-Kuhtypen bei Vollweidehaltung und unterschiedlichem Futterangebot

Macdonald et al. 2008, J.D. Sci. 91, 1693-1707.

	NZ70	NZ90	NA90	
Trächtig, %	93	93	87	K<0,05
Trächtig nach 8 Wo.*, %	90	75	62	K<0,05 (*nach 8 Wo. in Belegesaison)
Brunsterkennungsrate, %	91	89	87	K NS
1. aktiver Gelbkörper, Tag a.p	. 39	32	28	K <0,001

Schlussfolgerungen der Autoren: Keine Genotyp x Umweltinteraktion bei Milchinhaltsstoffleistung (N290 überall höher als N NA90 brauchen viel Futter – bewahrt sie aber trotzdem nicht vor niedriger BCS NA90 schlechtere Fruchtbarkeitsergebnisse \Rightarrow weniger geeignet für NZ-Vollweide

Vollweide

Beispielsversuch Schweiz

Beispiel Schweiz Systemvergleich Milchproduktion – Stallhaltung versus Weidehaltung

Hofstetter, P., Frey, H., Petermann, R., Gut, W., Herzog, L., Kunz, P., 2011

- → gleiche Futterfläche zur Verfügung
- → 3 Jahre

Stallherde: 12 Brown Swiss und 12 Holstein Friesian Kühen - ganzjährig Abkalbung aufgewerteten Grundfutterration (Grassilage, Maissilage, etwas Heu bzw. Stundenweide im Sommer), leistungsbezogener Kraftfutterergänzung, Proteinkraftfutter wurde vollständig zugekauft

Vollweidekuherde: 14 Brown Swiss und 14 Schweizer Fleckviehkühen – saisonale Abkalbung von Februar bis April. Kraftfutter nur sehr restriktiv zu Laktationsbeginn, Kurzrasenweide. Heu wurde im Winter gefüttert, keine Silagen

Systemvergleich Milchproduktion – Stallhaltung versus Weidehaltung Hofstetter, P., Frey, H., Petermann, R., Gut, W., Herzog, L., Kunz, P., 2011

wersuch Schweiz				
tter, P., Frey, H., Petermann, R., Gut, W.,	Stallhaltung	Vollweide		
Tierhaltung + Fütterung	Stailliaitung	voliweiue		
Gesamtfläche, ha	15.8	15.7		
Fläche als Grundfutter genutzt, ha	11,5	14,6		
Kraftfutter/Kuh u. Lak., kg FM	1.094	285		
Kraftfutter je kg Milch, dag je kg ECM	13,1	5,4		
Milchleistung				
Standardlaktationsdauer, Tage	301	294		
Milch, kg/Kuh	8.900	6.074		
Fett, %	4,1	3,8		
Eiweiß, %	3,5	3,4		
Brutto-Milchproduktion (marktfähig), kg/Jahr	194.000	165.000		
Zellzahl > 200.000, %	15,7	13,5		
Lebendgewicht und BCS				
LG vor Abkalbung, kg	759	699		
LG Tiefpunkt, kg	657	575		
Lak.tage bis LG-Tiefpunkt, Tage	74	112		
BCS vor Abkalbung, Punkte	3,23	3,27		
BCS-Tiefpunkt, Punkte	2,51	2,61		
Tiefnunkt BCS, Tage nach Ahk	90	176		

Systemvergleich Milchproduktion – Stallhaltung versus Weidehaltung Hofstetter, P., Frey, H., Petermann, R., Gut, W., Herzog, L., Kunz, P., 2011

HING DALLOH FOR PD Dr. Andreas Stein

Vollweide

Vollweide

Systemvergleich Milchproduktion – Stallhaltung versus Weidehaltung

Hofstetter, P., Frey, H., Petermann, R., Gut, W., Herzog, L., Kunz, P., 2011

	Stallhaltung	Vollweide
Fruchtbarkeit u. Gesundheit	_	
Bestandesergänzung, %	26	21
Besamungsindex	2,1	1,6
Erstbesamungserfolg, %	45	53
Kühe mit mehr als 3 Besamungen, %	29	14
Zwischenkalbezeit, Tage	405	373
Kosten Tierarzt + Arzneim., CH-Fr/Kuh	457	272
Energieaufnahme und Flächenleistung		
Energieaufnahme aus Weide, %	5	63
Energieaufnahme aus Kraftfutter, %	20	7
Herdengrundfutterleistung, kg marktf. Milch	155.200	153.450
Milch je ha Gesamtfläche, kg ECM/ha	12.717	10.307
Milch je ha Grundfutterfläche, kg ECM	17.513	11.080
Energieverwertung für Milch, %	64	57
Betriebswirtschaft		
Arbeitszeitbedarf, Stunden/Jahr	2.553	2.268
Landwirtschaftliches Einkommen, CH-Fr.	23.963	35.978
Arbeitsverdienst pro Stunde CH-Fr./h	8	13

PD Dr. Andreas Steinwidder

v_{ollweide} Beispiel Schweiz

- Beispiel Schweiz
- Schlussfolgerungen, Empfehlungen

 Die intensive Fütterung der Stallherde wirkte sich positiv auf die Milchleistung und die Fett-/Eiweissgehalte aus.
 Die Hältung, die Füterung und die bierer Produktionsintensität der Weideherde führten zu besseren Fruchterkeitskennzahlen im Vergleich zur Stallherde.
 Bei der Okollanzierung pro ha Fläche schnitt die WH besser ab. Pro kg produzierter Milch hatte die SH in Bezug auf Treibhauspotenzial. Ozonibidung und Flächenbedarf Vorteile, die WH in Bezug auf Ammoniak. Ressourcenbedarf Pund K, Okotoxizität und Biodeverslätspotenzial.
 Der saisonale Milchanfall bei der Weideherde mit Blockabhablung im Frühling widerspricht den Anforderungen des Martisch anch einer ganglahing ausgeglichenen Milcheinlieferung.
 seher und mit weniger Risiko umsetzen.
 Erfolgreiche Milchproduktion im Stall zeichnet sich durch tiefe Direktkosten und die Verteilung der systembedingt hohen Fixkosten auf möglichst viel Milch aus.
 Die meisten Landwirte entscheiden sich nicht alleine aus ökonomischen Gründen für ein bestimmtes Milchproduktionssystem.

Kontakt

Hansjörg Frey BBZ Natur und Ernährung Sennweidstrasse

Martin Lobsiger Profit-Lait – Agroscope Liebefeld-Posieux ALP Postfach 64 1725 Posieux Tel: 026 407 73 47 martin.lobsiger@alp.admin.ch

v_{ollweide}

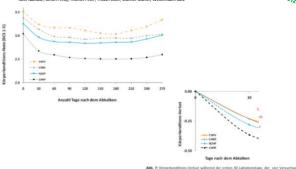
Vollweide Projekt Weidekuhgenetik in der Schweiz 2007-2010
Redaktion Abschlussbericht: Roth N, und Kunz P, 2010
Autoren Abschlussbericht: 2010. Burren Nezenster, Gazzarin Christian, Keckeis Karin, Kunz Peter, Piccand Valerie, Pilt-Kach: Roch Mathlais, Schoff reky, Thomer Peter, Troide Jonef, Wanner Marcel, Weilemann Sara Beispiel Sehweiz

Projekt Weidekuhgenetik

Vollweide Projekt Weidekuhgenetik in der Schweiz 2007-2010
Redaktion Abschlussbericht: Roth N, und Kunz P, 2010
Autoren Abschlussbericht: 2010 Burren Neannder, Gazarin Christian, Keckeis Karin, Kunz Peter, Piccand Valerie, Pitt-Kach St
Roch Nathalia, Scholler Feet, Timmer Peter, Troket Josel, Vammer Marcel, Weilemannen Stra Beispiel Selfweiz

Tabelle 1: Ausgewählte Ergebnisse der Schweizer Untersuchungen – Mittelwerte der ersten des Laktationen (zu beachten: Mitchleistungen über 770 Lak. Tage: Kunz u. Mit. 2010).

drei Laktationen (zu beachten: Milci				
	HF-	HF-	FV-	BV-
	Neuseeland	Schweiz	Schweiz	Schweiz
Lebendgewicht, kg	513	590	611	523
Milch über 270 Laktationstage, kg	5332	6047	5225	4984
ECM ¹⁾ über 270 Laktationstage, kg	5482	5918	5276	4833
Fett, %	4,24	3,97	4,17	3,87
Eiweiß, %	3,47	3,20	3,31	3,25
Milcheffizienz:				
Milch-ECM kg /kg Lebendgewicht	10,7	10,1	8,6	9,3
Fruchtbarkeitsergebnisse				
Trächtige Kühe - 12 Wochen nach	87	69	88	90
Belegesaisonbeginn ²⁾ , %				

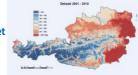

Vollweide Beispiel Sehweiz Projekt Weidekuhgenetik in der Schweiz 2007-2010
Redaktion Abschlussbericht: Roth N, und Kunz P, 2010
Autoren Abschlussbericht 2010. Burren Neuander, Gazarin Christian, Keckels Karin, Kunz Peter, Piccard Valerie, PRI-Kach Su

Abgänge	NZ HF	CH HF	CH FV	CH BS	Total
	n _{ssr} =67	n _{ssr} =32	n _{tot} =37	n _{ssc} =28	
2007	2	1	6	3	12
2008	2	4	4	6	16
2009	11	8	6		25
Total (Anzahl)	15	13	16	9	53
Total (%)	22%	41%	43%	32%	32%
Gründe für Abgang					
Fruchtbarkeit	8	4	6	6	24
Abort				1	1
Leistung			6		6
Notschlachtung ²		4	1		5
Gesundheit ²	2	1		2	5
Eutergesundheit	3	1			4
anderer Grund ³	2	3	3		8

² Bühung, Linfell: ² generelle gesundheiliche Problems, die nicht des Euter oder die Fruchtburkeit betreffen, ³Vertrad aus gescheichem Grand, fills gesieht gefestet.

Projekt Weidekungenetik in der Schweiz 2007-2010

Vollweide Beispiej ... Reder SelyWeiz



Ifz Bio-Institut

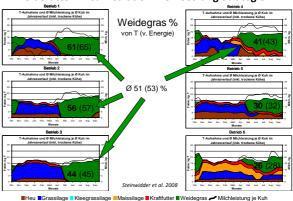
Projekt Weidekuhgenetik in der Schweiz 2007-2010 Redaktion Abschlussbericht: Roth N, und Klunz P, 2010 Autoren Abschlussbericht 2010: Buren Alexander, Gazzen Christen, Keckleik Karin, Kurz Peter, Piccand Valerie, Pitt-Kach Susame, Rieder Schlussberich 2010: Buren er Alexander, Gazzen Christen, Keckleik Karin, Kurz Peter, Piccand Valerie, Pitt-Kach Susame, Rieder Schlussberich 2010 Roth Valentie, Schori Freis, Thomas Peter, Troubr Josef, Wasner Marcel, Weilermann Sars

Besonderheiten im Berggebiet Österreichs

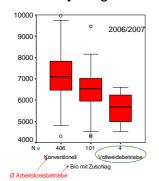
- Kürzere Vegetationsdauer
- · Teure Stallungen
- · Kleinere Betriebe mit Bewirtschaftungsnachteilen
- · Höhere Produktionskosten
- · Regional teilweise bedeutende Wintermilchzuschläge
- Bedeutung der Weidehaltung (war) rückläufig
- · Bio-Betriebsanteil hoch

Low-Input Vollweidehaltung von Milchkühen im Berggebiet Österreichs – Ergebnisse von Pilotbetrieben bei der

Betriebsumstellung

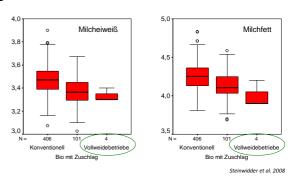

HIXODRUM ELES DANKOMERO PD Dr. Andreas St

Steinwidder A., W. Starz, L. Podstatzky, L. Kirner, E.M. Pötsch, R. Pfister und M. Gallnböck, **Züchtungskunde**, 82, (3) S. 241–252, 2010

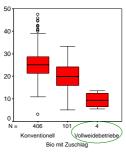

Changing towards a seasonal low-input pastoral dairy production system in mountainous regions of Austria – results from pilot farms during reorganisation

Steinwidder A., Starz, W., Podstatzky, L., Kirner, L., Pötsch, E.M., Pfister, R. and M. Gallnböck, **EGF 2010**, Proc. 23th General Meeting of the European Grassland Federation Kiel, Germany , 1012-1014, 2010

Weidefutter in Jahresration – Umsetzung Strategie

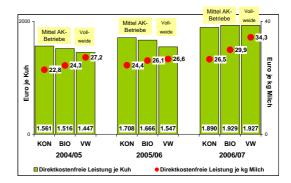


Produzierte Milch - Projektergebnisse



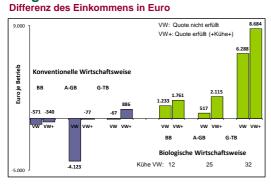
Steinwidder et al. 2008

Ergebnisse - Milcheiweiß und -fett (2006/2007)


Kraftfuttereinsatz - Projektergebnisse (2006/2007)

Steinwidder et al. 2001

Direktkostenfreie Leistung


Quelle: Kirner et al. 2008

Modellrechnungen - Vollkosten

Quelle: Kirner, 2009

Vergleich Vollweide zu ohne Vollweide

Arbeitszeitbedarf - Erfahrungen Vollweidebetriebe

Arbeitsqualität – Erfahrungen Vollweidebetriebe

Betrieb	1	2	3	4	5	6
Belastungen durch staubige Arbeiten	Deutlich zurück	Leicht zurück	Gleich	Leicht zurück	Leicht zurück	Deutlich zurück
Anteil gefährlicher Arbeiten	Deutlich zurück	Gleich	Gleich	Nahm zu (Springende Weidestier)	Gleich	
Anteil maschineller Arbeiten	Deutlich zurück	Deutlich zurück	Leicht zurück	Deutlich zurück	Deutlich zurück	Deutlich zurück
Anteil von unvermeidbaren Arbeiten bei ungünstiger Witterung	Nahm zu	Gleich	Nahm zu		Gleich	Nahm zu
Anteil von Arbeiten in freier Natur	Nahm deutlich zu	Nahm zu	Gleich	Nahm zu	Gleich	Nahm deutlich zu

Haben Sie durch die Umstellung auf Vollweidehaltung aus ihrer Sicht an Lebensqualität und Arbeitszufriedenheit gewonnen?										
<u> </u>	Nahm deutlich zu	Nahm zu	Gleich	Nahm deutlich zu	Nahm zu	Nahm zu				

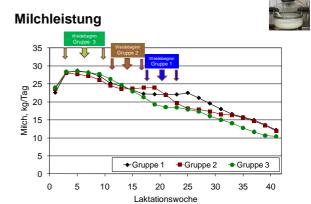
Vollweidehaltung von Milchkühen im Berggebiet

Einfluss des Abkalbezeitpunktes auf Rationszusammensetzung, Leistungs- und Gesundheitsparameter

Andreas Steinwidder, Walter Starz, Leopold Podstatzky, Johann Gasteiner, Rupert Pfister, Markus Gallnböck und Hannes Rohrer

Bio-Institut des Lehr und Forschungszentrum für Landwirtschaft, LFZ Raumberg-Gumpenstein, A-8952 Irdning Österreich

Weide- und grünlandbasierte Rinderproduktionssysteme



Versuchsaufbau

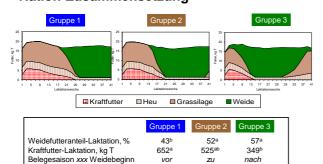
G	ruppen	1	2	3
Ø Abkalbetag		17.Nov	25.Dez	20.Feb
Abkalbezeitraum		Anfang November	Mitte Dezember	Mitte Jänner
		- Mitte Dezember	- Mitte Jänner	– Ende März
Tieranzahl		11	12	10
G	ruppen	1	2	3
Weidebeginn - Lak.V	Voche	$21.(\pm 3)$	15. (± 3)	7. (± 5)

- 13 auf die Rasse Brown Swiss (BS) und 20 auf die Rasse Holstein Friesian (HF)
 HF: 14 Versuchstiere der Lebensleistungslinienzucht
 Ø 2,7 Laktationen

2 Versuchsjahre:
• 2007-2008; 2008-2009 (bis Frühling 2010)

Milchfett 5,00 4,75 4,50 4.25 × 4,00 3,75 ± 3,75 3,50 3,25 3,00 2,75 Gruppe 3 ◆Gruppe 1 ■ Gruppe 2 2,50 0 10 35 5 15 20 25 30 40 Laktationswoche

Milchleistung



			Gruppe			
		1	2	3	S,	P-Wert
Tiere	Anzahl	11	12	10		
Milchleistung-Laktation						
Laktationsdauer	Tage	299 ^a	297 ^a	284 ^b	9	0,019
Milch	kg	6.360	6.135	5.727	703	0,258
Milch pro Tag	kg	21,3	20,7	20,1	2,2	0,568
ECM	kg	6.300	5.974	5.449	305	0,068
Fett	kg	261 ^a	245 ^{ab}	217 ^b	28	0,026
Eiweiß	kg	200	189	178	0,0	0,149
Fett	%	4,10	4,00	3,79	0,3	0,091
Eiweiß	%	3,15	3,08	3,11	0,2	0,612
Laktose	%	4,64	4,64	4,65	0,2	0,994
Zellzahl	x 1000	119	94	66	11	0,219
Harnstoff	mg/100 ml	$\bigcirc 25^{\mathrm{b}}$	29 ^a	31 ^a	2,1	<0,001
Lebendmasse-Laktation	kg	594	550	571	39	0,071
Tageszunahmen -Laktation	g/Tag	-57 ^b	12 ^{ab}	131 ^a	109	0,015

Ration-Zusammensetzung

Tockenstellen xxx Weideende

Weidebedarf, ha/Kuh (z.B. 8000 kg T/ha Ertr.) 0,33

vor

vor

zu

711

nach

Tierbehand	lungen	und	Fruci	htbar	keit
IIATAAAAAA	IIINAAN	IIIna	-riici	ntnar	ναιτ
Herbenand	ıunuen	unu	FIUG	ILDAI	ren
		•			
	_				

			(Gruppe	n
		Mittel			3
Tiere	Anzahl		11	12	10
Tierärztliche Behandlungen	Anzahl/Kuh	0,4	0,6	0,5	0,1
Stoffwechsel-/Milchfieberbehandlung	Anzahl/Kuh	0,1	0,2	0,0	0,0
Euterbehandlungen	Anzahl/Kuh	0,2	0,2	0,3	0,0
Anteil trächtige Kühe	% aller Kühe	85	91	83	80
Rastzeit (alle Kühe)	Tage	69	75	77	52
Güstzeit (trächtige Kühe)	Tage	77	68	91	72
Trächtig ab Laktationstag	Lak. Tag	74	68	82	72
Trächtig bis 77. Laktationstag	% aller Kühe	61	73	58	50
Trächtig bis 98. Laktationstag	% aller Kühe	64	82	58	50
Besamungsindex - trächtige Kühe	Besamungen	1,2	1,0	1,1	1,5
Besamungsindex - alle Kühe	Besamungen	1,3	1,1	1,4	1,5
Zwischenkalbezeit	Tage	365	352	381	361

Fruchtbarkeit - große Herausforderung Keine signifikanten Gruppenunterschiede (Gruppe 3 numerisch schlechter)

Ökonomische Bewertung

			Gruppe	
		- 1	2	3
Milch pro Jahr (305 Lak. Tage)	kg/Kuh u. Jahr	6.505	6.301	6.117
Wintermilchanteil (1.Okt31.Mai)	% der Liefermilch	52	43	30
Milchfett	%	4,10	4,00	3,79
Milcheiweiß	%	3,15	3,08	3,12
Milcherlös je kg	Cent/kg	35,4	34,1	33,6
Milcherlös je Kuh (Liefermilch)	Euro/Kuh u. Jahr	2.257	2.121	2.026
Berücksichtigung variable Grundfutterkosten:				
Kraftfutter + variable Grundfutterkosten (ohne Verluste)	Euro/Kuh u. Jahr	415	363	296
Differenzbetrag (Milcherlös – KF- u. var. GF-Kosten)	Euro/Kuh u. Jahr	1.842	1.758	1.730
Berücksichtigung fixe Grundfutterkosten:				
Kraftfutter + fixe Grundfutterkosten (ohne Verluste)	Euro/Kuh u. Jahr	969	911	842
Differenzbetrag (Milcherlös – KF- u. var. GF-Kosten)	Euro/Kuh u. Jahr	1.288	1.210	1.184
Berücksichtigung Stallplatzkosten u. 6000 kg Fettquote				
notwendige Kuhanzahl für Fettquote	Kühe/Quote	23,0	24,6	27,1
Stallplatzkosten (300 Euro/Kuh und Jahr)	Euro/Quote u. Jahr	6.892	7.382	8.131
Differenzbetrag: (Milcherlös - fixe Futter- und Stallplatzkosten)	Euro/Quote u. Jahr	22.702	22.386	23.96

Zusammenfassung

Bei optimaler Weideführung kann auch im Berggebiet über 5-7 Monate eine hohe Grundfutterqualität über Weide erreicht werden

Der Abkalbezeitpunkt beeinflusst Rationszusammensetzung, Nährstoffversorgung, Milchleistung und Betriebsmanagement wesentlich

Melkpause - große Herausforderung (nur im Einzelfall realisierbar)

Die Abkalbe- und Belegezeit müssen auf die Betriebsbedingungen bestmöglich abgestimmt werden → kein für alle gültiger Bereich

→ Weidefläche, Leistungsziele, Rasse, Stallplatzkosten, Wintermilchzuschlag, Kälberhaltung, Direktvermarktung etc.

Teilweise fehlendes Wissen → Weidepflanzen → Weideführung → Betriebsmanagement → Weideproblemen

→ Weidepotential oft schlecht genutzt → System wird damit schlecht gemacht

Umstellung auf Vollweide Milchleistung eingeschränkt Was ist zu beachten

	Vollweide	Halbtagsweide	Stundenweide
Milch, kg	4500 - 7500	auch über 7500	auch über 7500
Fett, % Weidezeit	< 4,0	< 4,2	auch über 4,2 %
Eiweiß, % Weideze	eit < 3,2	< 3,4 auch ül	per 3,4 %

- Zuchtvieherlöse
- Milchgeld
- persönlicher Erfolg "Leistungsbilanz"

Vollweide zusätzlich:

- ullet Wintermilchzuschläge bei Frühlingsabkalbung geringer ullet Wintera
- Im Herbst spätlaktierende Kühe (Zellzahl, Milchtankgröße, Milchkühlung, Kälber, DV)
- Milchgeld ungleich im Jahresablauf verteilt
- Quotenmanagement schwerer (?)

PD Dr. Andreas Steinwidder

Umstellung auf Vollweide

Umstellung auf Vollweide

Was ist zu beachter

Was ist zu beachten

Flächengebundenheit Benötige um den Betrieb liegende Weideflächen

VollweideHalbtagsweide Stundenweide ha/Kuh 0.3-0.5 0.2-0.4 0.1-0.2 ha/30 Kühe 9-15 6-12 3-6

Geringere Nährstoffimporte möglich \leftarrow flächenknappe Betriebe

Kraftfutter zur Weide:

Ganztagsweide ("Vollweide") max. 2 (-4) kg KF/Tag Halbtagsweide max. 6 kg KF/Tag Stundenweide max. 7 kg KF/Tag

Umstellung auf Vollweide /as ist zu beachten

Arbeitszeitverteilung im Jahresverlauf

Milchviehhaltung, inkl. Kälberaufzucht)									
Betrieb	1	2	5	6	3	4	Mittel		
-	-55%	-10%	-15%	-30%	-20%	-20%	-25%		

Abnahme: August bis Beginn Abkalbesaison

Mehr Kühe (mit geringerer Einzeltierleistung) sind zu melken, Weideeintrieb kostet Zeit

Umstellung auf Vollweide

Gebäude und Maschinen

Was ist zu beachten

Fixkostenabbau braucht Zeit und muss gewollt werden

Teure Stallplätze und Maschinen können mit Vollweide üblicherweise nicht gut "verwertet" werden

Eigenmechanisierung bzw. teure Maschinen sind teilweise den Landwirten wichtig

Umstellung auf Vollweide

Was ist zu beachten

Witterungsabhängigkeit

Weide bedeutet Produktion mit und in der Natur

Trockenheit und Trockenstandorte Starkregenperioden

Weidetiere

Umstellung auf Vollweide

Was ist zu beachten

Hochleistungen auf Weide nicht ausfütterbar (← Winterabkalbung!) Kleinrahmige Kühe günstiger (höhere Futteraufnahme je kg LG) Harnstoffgehalt im Sommer/Herbst hoch (← keine Belegungen) Enge Blockabkalbung braucht grundsätzlich fruchtbare Kühe

"Neue" Erkrankungen:

Hitzestress

Blähungen Parasitenbelastungen trockene Euter

PD Dr. Andreas Stei

Versuchsergebnisse

Vergleich von großrahmigen HF-Hochleistungskühen mit neuseeländischen HF Kühen bei Vollweide bzw. TMR (Kolver et al. 2002)

		Weide (W)		TN	/IR	P-Wert
		NS	HL	NS	HL	WxTMR
Lebendmasse	kg	495	565	556	634	0,438
Milchleistung	kg	5300	5882	7304	10097	0,003
Fett + Eiweiß	kg/kg LM	0,94	0,81	1,08	1,14	0,011
Kühe nicht trächtig	%	7	62	14	29	0,023
Futteraufnahme	kg T					
Laktationsbeginn		16,6	17,3	20,4	24,0	0,034
Laktationsmitte		16,1	17,9	18,2	21,7	0,091
Laktationsende		14,4	15,9	18,1	22,0	0,004

Versuchsergebnisse

Vergleich von HF-Hochleistungskühen, irischen HF, franz. Montebeliard u. franz. Normandie-Kühen bei saisonaler Vollweidehaltung (Dillon et al. 2003)

Rasse						
	HF	CL	MB	NR		
Milchleistung kg	5994	5321	5119	4561		
ECM kg	5560	4826	4769	4406		
LM vor Abkalbung kg	605	593	624	644		
LM Laktationsende kg	562	589	604	618		
BCS-Abnahme bis erste Belegung Punkte	0,41	0,28	0,27	0,25		
Verbleiberate %	73,7	83,9	91,2	91,9		
Anteil der Kühe die 2500 %	20,6	39,7	49,2	55,8		
Lebenstage erreichen						

Vergleiche österreichischer Kuhtypen in einem LI-Weidesystem

- Marco Horn¹, Andreas Steinwidder², Rupert Pfister² und Werner Zollitsch1
- ¹BOKU-Universität für Bodenkultur Wien, Institut für Nutztierwissenschaften
- ²LFZ Raumberg-Gumpenstein, Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere

Low-Input in den Alpen?

· Weidebasiertes "low-input"-System auch in alpinen Regionen eine Alternative für die Zukunft

(CH: Thomet et al. 2004, Ö: Steinwidder et al. 2008, D: Steinberger et al. 2012)

High Input	Low Input			
Maximierung der Erlöse	Minimierung der Kosten			
Einzeltierleistung	Flächenleistung			
ganzjährige Stallhaltung	saisonale Weidehaltung			
"Ausfüttern"	min. Ergänzungsfütterung			
GF-Konserven + KF	Weide + GF-Konserven			
ganzjährige Abkalbung	saisonale Abkalbung			
Milchleistung Fitness				

Kuhtypen

Braunvieh (BV)

Gewichtung des GZW:

- 48 % Milch
- 47 % Fitness
- 5 % Fleisch

HF Lebensleistungslinien (HFL)

Linienzucht nach Bakels: Familien mit hohen LL

- Fitness
- Fett-Eiweiß-Menge

HIXOTOXION FEEK BERKELSKED BERKELSKED

Management

- Lehr- und Forschungsbetrieb Moarhof, Trautenfels
- 80 % der Abkalbungen in Winterfütterungsperiode
- Ration Winter: 4,4 kg Heu, ad lib. Grassilage & Kraftfutter
- Weidesaison April Oktober (Ø 207 d)
- Ration Sommer: Kurzrasenweide, zus. 1,5 kg Heu & ev. KF
 - Zielaufwuchshöhe 3,7 5,2 cm RPM (5,0 7,0 cm PDM)
 - Besatzdichte Hauptweidezeit 3,3 Kühe/ha
 - Wiesenrispe 21 %, Engl. Raygras 20 %, Weißklee 17 %

Welchen Einfluss hat das

727

6.450

-0,31

ΒV

467

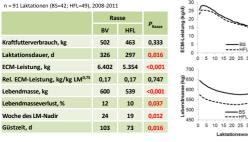
5.865

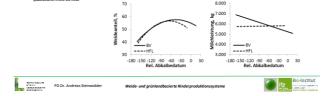
-0,13

Abkalbedatum?

Weideanteil, % KF-Verbrauch, kg

ECM-Leistung, kg




- 1. Existieren Rassenunterschiede hinsichtlich der Eignung für ein alpines LI-Weidesystem?
- 2. Welchen Einfluss hat das Abkalbedatum auf Rationszusammensetzung und Leistung?
- 3. Wie reagieren die beiden Kuhtypen auf die Reduktion der Kraftfutterergänzung zu Laktationsbeginn?

Existieren Rassenunterschiede?

208

5.281

0,05

532

5.383

-0,04

438

5.334

0,02

5.284

0,08

Wie reagieren die beiden Kuhtypen auf eine KF-Reduktion?

BV		HFL		P Wert			
Kon	Low	Kon	Low	Rasse	FR	Rasse×FR	
642	281	593	278	0,535	<0,001	0,556	
309	300	295	286	0,281	0,363	0,995	
6.363	5.643	6.021	5.570	0,585	0,014	0,505	
0.17	0.15	0.17	0.17	0,106	0,044	0,667	
585	593	533	537	0,006	0,650	0,843	
3.1	3.3	3.0	3.2	0,179	0,055	0,596	
2.4	2.3	2.3	2.4	0,850	0,773	0,679	
79	68	81	78	0,853	0,055	0,716	
	Kon 642 309 6.363 0.17 585 3.1 2.4	Kon Low 642 281 309 300 6.363 5.643 0.17 0.15 585 593 3.1 3.3 2.4 2.3	Kon Low Kon 642 281 593 309 300 295 6.363 5.643 6.021 0.17 0.15 0.17 585 593 533 3.1 3.3 3.0 2.4 2.3 2.3	Kon Low Kon Low 642 281 593 278 309 300 295 286 6.363 5.643 6.021 5.570 0.17 0.15 0.17 0.17 585 593 533 537 3.1 3.3 3.0 3.2 2.4 2.3 2.3 2.4	Kon Low Kon Low Rasse 642 281 593 278 0,535 309 300 295 286 0,281 6.363 5.643 6.021 5.570 0,585 0.17 0.15 0.17 0.17 0,106 585 593 533 537 0,006 3.1 3.3 3.0 3.2 0,179 2.4 2.3 2.3 2.4 0,850	Kon Low Kon Low Rasse FR 642 281 593 278 0,535 <0,001	

HING DATES HELD. INDEXABLED BOTHLOOM	PD Dr. Andreas Steinwidder	Weide- und grünlandbasierte Rinderproduktionssysteme	Bio-Institut

Schlussfolgerungen

- BV brachte in allen drei Studien höhere Milchleistungen, allerdings keine Rassenunterschiede hinsichtlich Effizienz
- Rassenunterschiede in Milchleistung und Fruchtbarkeit nahmen von Studie 1 zu Studie 3 ab
- BV reagierte stärker auf Änderungen der Ergänzungsfütterung
- Eine eindeutige Rassenempfehlung ist nicht möglich
- Keine negativen Auswirkungen des LI-Weidesystems auf Fruchtbarkeit oder Gesundheit erkennbar

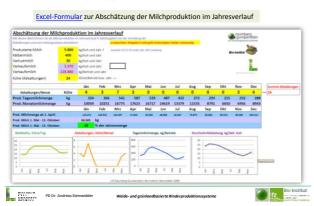
Umstellung auf Vollweide

Was ist zu beachten

Tipp

Weidestrategien - Vollweide

		"Weidegenetik"	Hochleistungskühe	
Abkalbezeit	Monate ca.	März, April	Jänner, Februar	
Melkpause	Monat ca.	Jänner, Februar	November, Dezember	
Weidegrasanteil1)	% v. Jahresration	45-65	35-50	
Kuhgewicht	kg	450-600	600-700	
Kraftfutter ¹⁾	kg/Kuh u. Jahr	200-500	500-1000	
Milchleistung ¹⁾	kg/Kuh	4000-6500	6000-7500	
1) Realisierbare Werte in Österreich (Bereich je nach Region und Vollweidestrategie)				


Vollkosten - wirtschaftlich wenn

- > Betriebsbedingungen eine gezielte Weidehaltung zulassen
- > Low Input Konzept wirklich konsequent umgesetzt wird
- > Stallplätze vorhanden sind/günstig errichtet werden können
- ➤ Grundfutter nicht limitierend war/ist
- Milchquote trotzdem möglichst erfüllt werden kann
- > Zuchtvieh von untergeordneter Bedeutung war
- > Das System von gesamter Familie mitgetragen wird
- > Interessant zur Zeit insbesondere für Bio-Betriebe

Planung einer Vollweideumstellung

Hilfsmittel: Excel-Dateien: www.raumberg-gumpenstein.at/weideinfos

