

Proteinqualität im Grundfutter und Effizienz in der Fütterung

Martin Gierus

Institut für Tierernährung, Tierische Lebensmittel und Ernährungsphysiologie

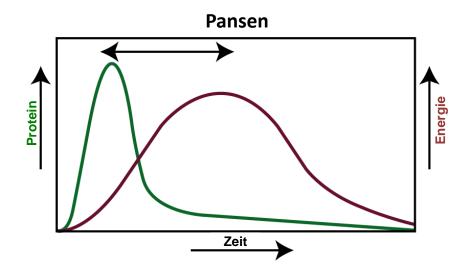
Universität für Bodenkultur Wien

Fütterung der Hochleistungskuh

- Hochleistungstiere stellen hohe Ansprüche an die Qualität des Grundfutters
- Effiziente N\u00e4hrstoffausnutzung zur Steigerung der Umweltvertr\u00e4glichkeit von Milchvieh/Futterbau-Systemen erforderlich
- Steuerung der Futterqualität
 - → futtermittelkundliche Charakterisierung mit geeigneter Methoden

Proteinbedarf stärker aus Grundfutter decken

Grundfutter



Bei Grundfutter-betonte Rationen:

 Unbalancierte Verfügbarkeit von Proteinen und Kohlenhydraten im Pansen bedingt geringe N-Nutzungseffizienz der Wiederkäuer

(Beha et al. 2002)

→ Lediglich 20-30% des aufgenommenen N werden in die Milch überführt (Dewhurst et al., 1996)

- Rascher Proteinabbau
 - Pflanzeneigene
 Proteasen: >50%
 Proteinabbau im Silo

Ferner:

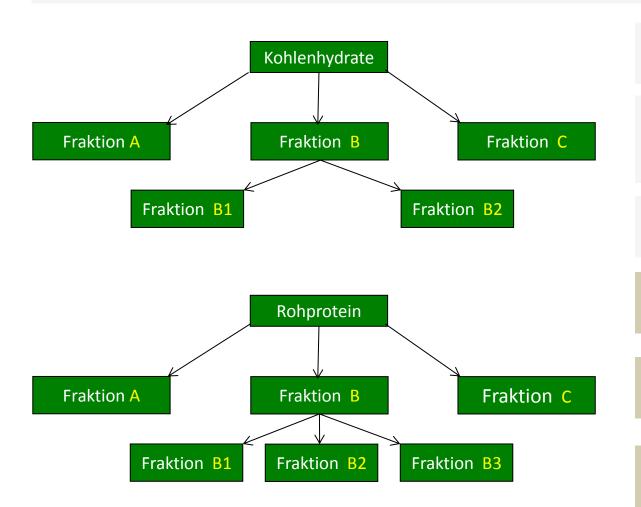
Pansenmikroben:
 Abbau von 50 – 75%
 des Proteins

 Ineffiziente Nutzung erfordert die Zugabe von UDP-reichem Futter zur Optimierung der Leistung

→ Steigerung der N-Nutzungseffizienz beim Tier

<u>Anteil des langsam abbaubaren Proteins</u> <u>im Grundfutter erhöhen</u>

Anteil des langsam abbaubaren Proteins erhöhen


 Erhöhung des Anteils wahren, langsam abbaubaren Proteins auf Kosten rasch abbaubaren Proteins und Nicht-Protein Stickstoffs (NPN)

 Anwendung der Fraktionierung von Rohprotein und Kohlenhydrate zur Identifizierung sorten-bedingter Variation (Gräser und Futterleguminosen)

Fraktionierung Protein und Kohlenhydrate

Simulation dynamischer Abbauprozesse im Pansen (Licitra et al. 1996, Van Soest et al. 1991)

Fraktion A

Rasch abbaubare Zucker

Fraktion B

Stärke und verfügbare 7ellwand

Fraktion C

Unverfügbare Zellwand

Fraktion A

Nicht-Protein-Stickstoff (NPN)

Fraktion B

Wahres, abbaubares Protein

Fraktion C

Unverfügbares Protein

Schwerpunkt Gräser

Versuchsaufbau

2006 - 2007

Hohenschulen (Kiel)

(54° 18' N, 9° 58' E, alt. 24 m)

2006: 10.0 °C, 707 mm 2007: 9.9 °C, 926 mm

Malchow (Poel)

(53° 59' N, 11° 28' E, alt. 5 m)

2006: 10.4 °C, 524 mm 2007: 10.7 °C, 911 mm

Asendorf (Bremen)

(52° 46′ N, 9° 01′ E, alt. 38 m)

2006: 10.4 °C, 633 mm 2007: 10.5 °C, 962 mm

Sorten: 20 diploid *Lolium perenne* Sorten des **mittelfrühen Sortiments**

Simulation dynamischer Abbauprozesse im Pansen

Das Cornell Net Carbohydrate and Protein System für die Bewertung von Futtermitteln (CNCPS)

(Sniffen et al. 1992)

RDC Ruminally digested carbohydrates (g/kg KH)

RD Frak.A + RD Frak.B1 + RD Frak.B2

UDC Ruminally undigested carbohydrates (g/kg KH)

UD Frak.A + UD Frak.B1 + UD Frak.B2 + Frak.C.

RDP Ruminally degraded protein (g/kg N)
Frak.A + RD Frak.B1 + RD Frak.B2 + RD Frak.B3

UDP Ruminally undegraded protein (g/kg N)

UD Frak.B1 + UD Frak.B2 + UD Frak.B3 + Frak.C

Daten:

- ***** 2006-2007
- 3 Standorte
- 20 Sorten
- 1. Aufwuchs
- SAS mixed model, Student's t-Test Tukey-Krammer

Ergebnisse

Simulation dynamischer Abbauprozesse im Pansen

	in g/kg TS	Sorte 1	Sorte 14
Abgebaut	Kohlenhydrate (RDC)	538,1 b	562,4 a
	Protein (RDP)	11,4 a	12,2 a
Nicht- abgebaut	Kohlenhydrate (UDC)	269,1 ª	234,0 b
	Protein (UDP)	4,4 a	5,0 a
	nXP, g/kg TS	134	145

Milchleistung aus nXP, kg/Tag

15,4

17,0

- ❖ Sorte 14 hat höheren RDCund geringeren UDC-Gehalt als Sorte 1
- Beide Sorten weisen vergleichbare UDP-Gehalte auf

Abbaurate, %/h	Kohlenhydrate			Protein		
	Α	B1	B2	B1	B2	В3
79,11	250	30	3	135	11	9
Passagerate, %/h	2,5					

Sorte 14 unterstützt eine effizientere N-Nutzung im Pansen

ca. 8% mehr nXP-Gehalt

Zwischenfazit

Gräser

Eine sortenbedingte Variation ist auch unter Berücksichtigung dynamischer Abbauprozesse nachweisbar

Der errechnete nXP-Gehalt ist maßgeblich von der Kohlenhydratzusammensetzung beeinflusst: ↓ NDF, ↑ Zucker

Anteil des langsam abbaubaren Proteins erhöhen

Bewertung der Wechselwirkungen zwischen sekundäre Pflanzenstoffe und Proteinfraktionierung

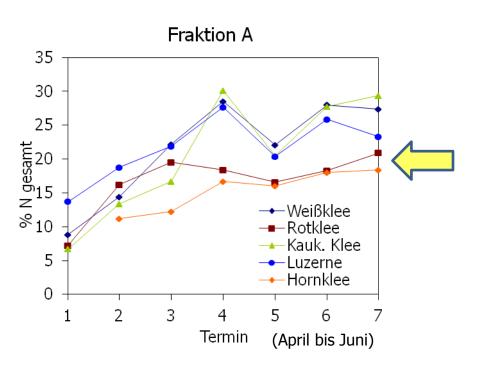
Was sind sekundäre Pflanzenstoffe?

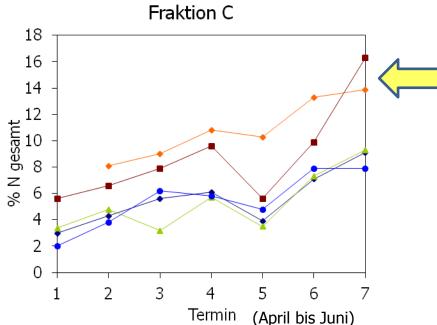
- ❖ Die Biosynthese ist aus dem Stoffwechsel der Kohlenhydrate, Fette oder Aminosäuren abgeleitet → sekundär
- Abwehrmechanismus gegen Tierfraß (z.B. Weidetiere, Insekte)
 - ❖ Quantitativ: geringe physiologische Wirkung → Warnungseffekt
 z.B. Tannine/Chinone: Adstringenz (Proteinkomplexierung)
 - Qualitativ: geringe Mengen mit toxischer Wirkung

Sekundäre Pflanzenstoffe

Drei große Gruppen:

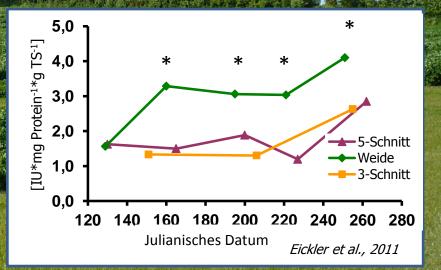
- Terpenoide
 - → ätherische Öle, Pigmente (z.B. Carotin), Harze
- Stickstoffhaltige Verbindungen: Alkaloide
 - → z.B. Lupinine, Colchicin, Capsaicin, Kaffein
- Phenole
 - → **Kondensierte Tannine**, hydrolisierbare Tannine, **Chinone**, Cumarine, Lignin, Isoflavone ...


Kennwerte für die Wiederkäuerernährung:


- Kond. Tannine: ca. 10 15 g/kg TS (Optimalbereich)
- ❖ bei zu hohen Konzentrationen: ~60 120 g/kg TS
 - Hemmung mikrobieller Aktivität im Pansen
 - Verdaulichkeit der organischen Substanz ist reduziert
- Polyphenoloxidase/Chinone: Kennwerte unbekannt
 - Hohe Aktivität im Rotklee nachgewiesen

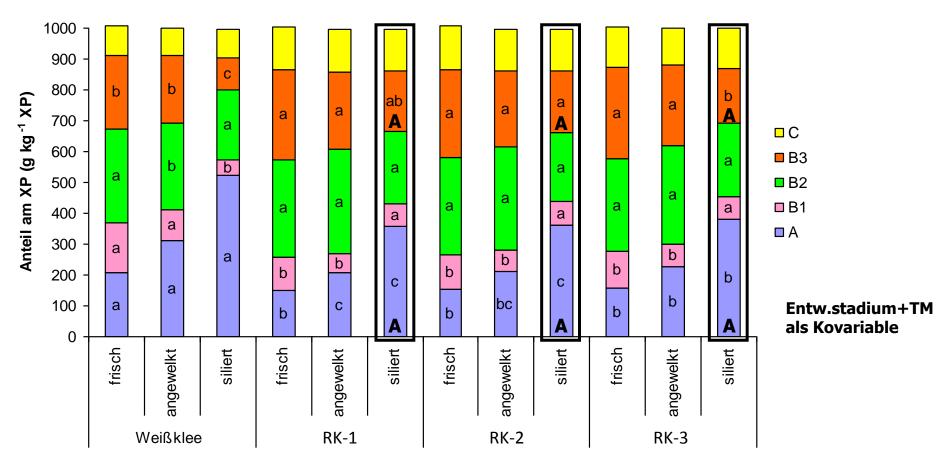
Proteinfraktionen verschiedener Futterleguminosen

Versuchsaufbau



Varianten des Silierversuches

Faktoren	Stufen
1. Sorte	1.1 Weißklee (Kontrolle) 1.2 RK-1 1.3 RK-2 1.4 RK-3
2. System	2.1 ohne mech. Stress 2.2 mit mech. Stress
3. Silierstadium	3.1 frisch3.2 angewelkt3.3 siliert (90 Tage)
4. Erntetermin	4 Aufwüchse/HNJ (42 Tage)
5. Jahr	5.1 2008 (1. HNJ) 5.2 2009 (2. HNJ)
6. Wiederholung	3



Ergebnisse

Rohproteinfraktionen von frischem, angewelktem und siliertem Klee Wechselwirkung Sorte x Silierstadium, Ausnahme: Fraktion C

a,b kennzeichnen Unterschiede zwischen den Sorten innerhalb eines Silierstadiums (P < 0.05)

Krawutschke, Weiher, Thaysen, Loges, Taube & Gierus, J. Agric. Sci. (2013)

Zwischenfazit

Leguminosen

Die Variation der PPO-Aktivität (und Bildung der *o*-Chinone) ist mittels XP-Fraktionierung nicht nachweisbar

Artenspezifischer Effekt:

Im Vergleich zu Weißklee, trägt Rotklee durch die günstigere Rohproteinzusammensetzung zu einer Steigerung der N-Nutzungseffizienz in der Wiederkäuerfütterung bei

Zusammenfassung

- Charakterisierung von Futterpflanzen mittels Fraktionierung (KHO, XP) bildet die ernährungsphysiologischen Abbauprozesse im Pansen der Wiederkäuern günstiger ab → Sortenspektrum überprüfen und ggf. züchterisch bearbeiten
- Eine Steigerung der N-Nutzungseffizienz in der Wiederkäuerfütterung ist möglich
 - Der hohe Anteil an pansenstabilen Proteinen ist von Vorteil
 - Der Bedarf an proteinreichen Kraftfuttermitteln sinkt (10-12 kg N/ha.Jahr)
 - Dedeutung des Feldfutterbaus nimmt im Vergleich zu Dauergrünland zu
 → Relevanz nicht-ausdauernder Leguminosen steigt

Reduzierter Bedarf an Soja-ES im Milchviehbetrieb durch hohem UDP

	Milch aus Grundfutter, kg/Tag	Kraftfutter- anteil, %	Getreide, kg/Kuh.Tag (Jahr)	Sojaschrot kg/Kuh.Tag (Jahr)
normal	22,7	36	1,8 (540)	1,0 (300)
UDP +10%	22,7	36	2,2 (660)	0,6 (180)
Differenz	0	0	+120	-120
*10%-Punkte UDP-Anstieg		N-Bilanz, kg/ha	130g XP/kg + 2,5 kg	480 g XP/kg -9,2 kg

30 kg Milch/Tag, 300 Tage Laktation; Grundfutter: 60% Grassilage 30% Maissilage, 10% Heu

10,7 kg N/ha.Jahr (1,6 GV/ha)