

Der bleifreie Schuss – Umweltaspekte und Lebensmittelsicherheit

P. Paulsen - I. Irschik - M. Sager* - F. Bauer

Institut für Fleischhygiene, Fleischtechnologie und Lebensmittelwissenschaft Veterinärmedizinische Universität Wien

Übersicht

Komplexität der Fragestellung

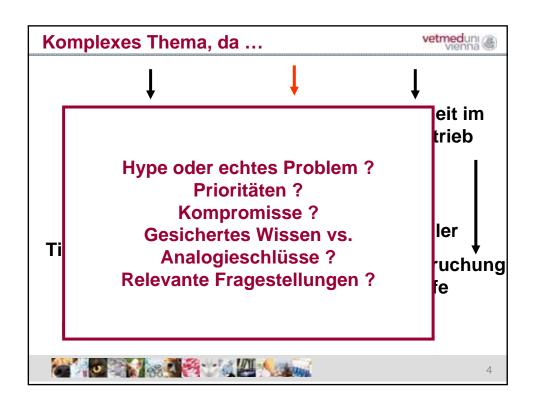
Geschoßbauweise und verwendete Materialien

Geschoßwirkung

Expositionswege

Physikalische und chemische Gefahr

Eintrag von Metallen in die Umwelt: System Boden - Pflanze


Eintrag ins Tier

Exposition des Menschen

Zusammenfassung

Geschoßbauweise

vetmeduni vienna

Hülle/Mantel und Kern

- →verpreßt
- →gebondet

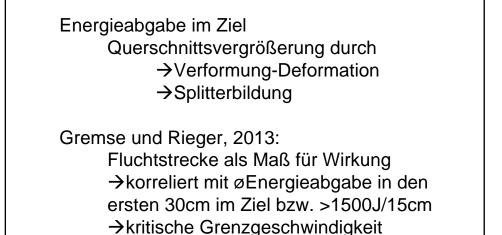
Im Querschnitt einheitliches Material

- →einzelnes Metall
- →Legierung
- →gesintertes Material

Sonstiges

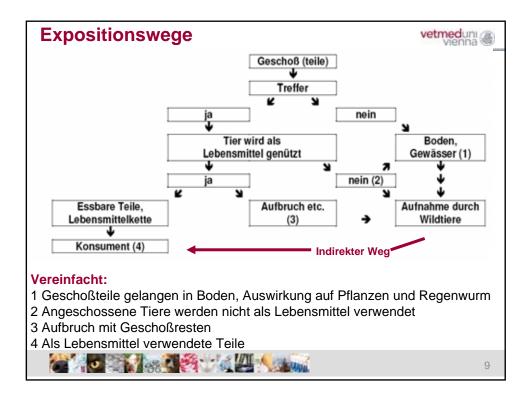
Büchsengeschoß, Teilmantel, Vollmantel

Solids:


Monolithisches Büchsengeschoß, Flintenlaufgeschoße, Schrote

z.B. verschraubt (Brenneke Flintenlaufgeschoß)

Welche Metalle werden verwendet?								
Metall / Verbindung	Dichte g/cm ³	Verwendung in Büchsengeschoßen als	% max	Verwendung in Flintenlaufgeschoßen als	% max	Verwendung in Schrotmunition als	% max	
Ĭ		10-11101		2000				
Aluminium	2,7	Spitzenbedeckung, Deformationsstarter	7	Spitzenbedeckung, Deformationsstarter	7			
Antimon	6,684	Härtungsmittel	10	Härtungsmittel	5	Härtungsmittel	5	
Arsen	5,73			Härtungsmittel	1	Härtungsmittel	1	
Blei	11,34	Grundmaterial, Bleikern	100	Grundmaterial, Bleikern	100	Grundmaterial, Bleikern	97	
Eisen	7,874	Mantel	<10	Grundmaterial	>50	Grundmaterial , Legierungsbestanteil (Hevi Shot)	100	
Kunststoffe	1,2	Spitze, Deformationsstarter	<10	Mantel, Heck, Pufferelement	>10	Tungsten-Polymer Schrot	4	
Kupfer	8,94	Grundmaterial, Deformationsstarter, Mantel	100	Grundmaterial, Spitze, Mantel	95	Mantel	3	
Molybdän	10,28	Beschichtung	<1			Grundmaterial (Molyshot)	47,6	
Nickel	8,908	Mantel, Neusilber- Legierungsbestandteil (CuNi15Zn23)	<10			Hevi Shot- Legierungsbestanteil	2,8	
Wismut	9,79					Grundmaterial	98	
Wolfram	19,25	Wolframkern in Kupfergeschoßen, Blei-Legierungsbestandteil	25			Grundmaterial, Hevi Shot- Legierungsbestanteil	82	
Zinn	7,29	Zinnkern, Bronze- Legierungsbestandteil (CuSn20)	<90			Grundmaterial, Härtungsmittel	99,5	
Zink	7,13	Grundmaterial, Härtungsmittel, Messing/ Gilding/ Neusilber/ Tombak- Legierungsbestandteil (CuZn)	37	Härtungsmittel, Spitze, Mantel	20	Grundmaterial, Härtungsmittel	98	



→bestimmt Einsatzschußweite

vetmeduni vienna

Geschoßwirkung (Büchse)

vetmeduni vienna

"Physikalische Gefahr" = Fremdkörper

→ Anzahl, Größe, Form (und Verteilung, wenn im Gewebe eingebettet)

Fremdkörper können (müssen aber nicht) mechanisch schädigen

(Mensch >7-10mm gastrointestinale Probleme kleinere Fremdkörper ev. Probleme in Mundhöhle)

oder an die Umgebung Metall(-salze) abgeben (nach oraler Aufnahme oder auch während der Lebensmittelzubereitung) = "chemische Gefahr"

Physikalische und chemische Gefahren

Aus lebensmittelhygienischer Sicht sind die im essbaren Gewebe verbleibenden Geschosse oder –fragmente das Problem –

aus ökologischer Sicht eher die in der Umwelt deponierten Geschoßteile.

- → Metallische Fremdkörper sind dabei immer unerwünscht (egal, welches Metall), wenn auch bei der Wildfleischuntersuchung toleriert.
- → Fremdkörperfrage weniger vom Metall, sondern von Konstruktion etc. abhängig.

11

vetmeduni **Eintrag von Metallen in die Umwelt:** System Boden – Pflanze Redoxpotential Geschoß(teile) in Boden Am/in Boden äsendes Natürliche Gehalte Wild /Schwarzwild Komplexbildner Boden pH Nach Metall Aufnahme in Pflanze verschieden; Blattfläche -Transpiration: Sogwirkung Verteilung in Pflanze Blätter etc. äsendes Nach Metall Wild /Rehwild verschieden: Blätter auch aerogen kontaminiert 12

Verfrachtung in Boden

Vereinfachte Berechnung:

(Jahresstrecke x øGeschoßmasse x Anzahl Geschoße/Tier) / landund forstwirtschaftlich genutzte Fläche

→ <10g/ha und Jahr, also immer vernachlässigbar

Bei 2 x28g Geschoßmasse/m² Boden:

- → Cu, Zn: vergleichbar mit dem Eintrag über Düngung;
- →Pb: vergleichbar mit dem Eintrag über Gülle oder Kompostdüngung
- →Zn: vergleichbar mit dem Eintrag über Athmosphäre

13

Anmerkung zu Kupfer

Kupfer

Bodengehalte, natürlich: 5-50 mg/kg In Weinbaugebieten: Ö ca. 80 mg/kg Nutzungsbeschränkungen ab ca. 60-100 mg/kg, je nach Land

Eintrag Spritzmittel:

bis 10 kg Cu/ha/a Bio: bis 6 kg Cu/ha/a ~ 3.,5 mg/kg

Eintrag Geschosse, flächengemittelt:

7 g Cu/ha*a wenn alle Geschoße inkl. Schrot aus Kupfer

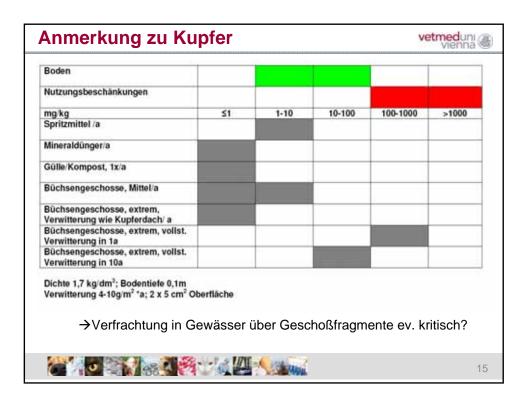
1 g Cu/ha*a wenn nur Büchsengeschoße aus Kupfer ~ 0,6 mg/kg

Eintrag Geschosse, flächengemittelt, bei 2x10g Geschoßen /m2 200 kg Cu/ha*a ~ 120 mg/kg

Korrosion von Kupfer (Dächer) 4-10 g/m²•a

bei 10 cm² Geschoßoberfläche (2 Geschoße á 5 cm²): 4-10 mg/m²

~ 20-60 µg/kg*a


Eintrag Dünger:

Mineraldünger:

10-20 g Cu/ha*a ~ 12 μg/kg

Gülle, Kompost:

100-1000 g Cu/ha*a ~ 0,6 mg/kg

Auswirkung auf Pflanzen,

Bodenlebewesen

Weidepflanzen: Zn und Cu wenig kritisch, da für Nutztiere essentiell.

Pb problematisch, da Mangelerscheinungen nicht bekannt und

Überschüsse toxisch.

Regenwürmer (Lumbricus rubellus) tolerierten

3500 mg/kg Zn; 670 mg/kg Pb (Ma, 1989);

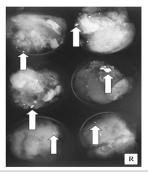
 $Im \; Regenwurm \; 100 \; mg/kg \; Cu; \; 1100 \; mg/kg \; Zn \; (in \; Trockenmasse), \; {\it Lukkari} \; {\it et} \;$

al., 2004, $1063 \ mg/kg \ Pb$

→ Ausweichverhalten bei hohen Metallgehalten im Boden

Für den schlimmsten Fall = 2 x 28 g pro m^2 = 330 mg/kg \rightarrow keine Hinweise, dass direkt toxisch für Pflanzen oder Bodentiere

Eintrag von Metallen ins Tier



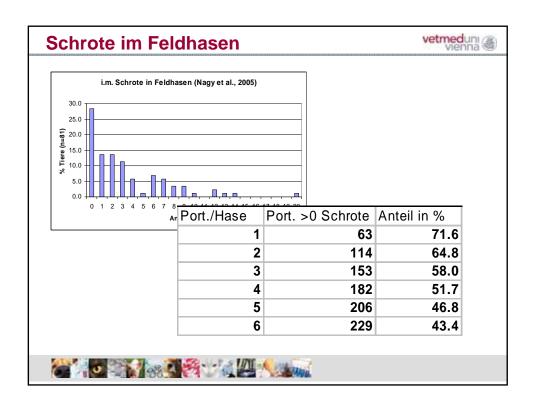
- →Geschoßfragmente und "Splitterwolken" bei Blei
- → Physikal. Gefahr Korrosion chem. Gefahr

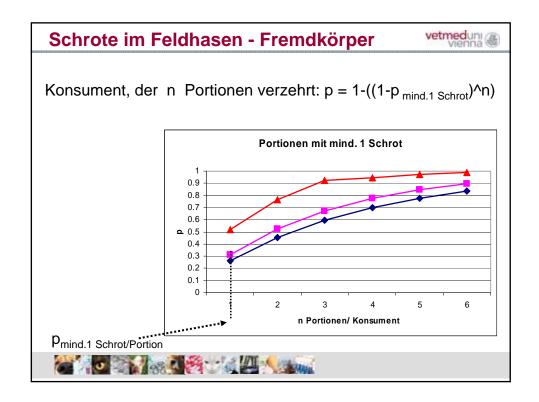
Hecht, 2000:

Tsuji et al., 2009

17

Schrote im Feldhasen




Intramuskuläre Schrote

- →65/91 Hasen (Paulsen et al., 2005)
- →46/92 Hasenkeulen Schrote (Fettinger et al., 2010)

ø 3 intramuskuläre Schrote pro Tier, Maximum 20.

Reaktion von Geschoßfragmenten

im lebenden Tier

Studien v.a. bei Federwild, Geflügel (implantierte Schrote), max. 360 Tage Erhöhung der Gehalte in den Geweben?

- →Cu, Mo, Zn, Sb???
- →Ni ja, mit Folgen
- →W teils, aber ohne Folgen
- →Pb, Bi, Sn, Fe nein.

Orale Aufnahme von Geschoßfragmenten

Studien v.a. bei Federwild, Geflügel

- →Unterschied Legierung und Sintermetall
- → Aufnahme von Magensteinchen: lange Verweildauer
- → Greifvögel: ev. Hochwürgen von Fremdkörpern (größenabhängig), Verdauung im Magen aber aggressiver
- →Cu, Pb, Ni, Fe, Sn: Erhöhung der Gewebegehalte (=Aufnahme nach Verdauung), W, Sb keine Erhöhng.

23

Exposition des Menschen

- →Wildfleisch nur eine Quelle der Exposition
- → Welches Verzehrsszenario?
- →Essentielles Element ?
- → Grenzwerte ?
- →Einflüsse in der Lebensmittelkette auf Metallgehalte
- → Bioverfügbarkeit / Magen Dünndarm)

Verzehrsszenarien

- → Durchschnittsverzehr ca. 0,5g/Jahr wenig aussagekräftig
- →BfR rechnet ca. 18 kg/Jahr als "hohen Verzehr"
- → Hoffmann (2013): Ø ca. 13 kg Schalenwildfleisch bzw. 66 Port. /Person und Jahr in Jägerhaushalten in Deutschland; "Singles": 31 kg /Person und Jahr
- → Anderer Ansatz: Gesamtfleischverzehr als Wildfleisch gerechnet

25

Lebensmittelechtheit?

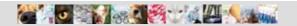
- →Im EU Recht gibt es diesen Begriff nicht
- → "Lebensmittelkontaktmaterialien" VO (EG) Nr. 1935/2004 : in erster Linie Kunststoffe
- → Keramikglasuren
- → Nationale Vorschriften (wenig über Metalle)
- → Oberflächen von Einrichtungen, die mit Fleisch in Kontakt kommen VO (EG) 853/2004
- → Normen, z.B. Alulegierungen DIN EN 601:2004-7 und DIN EN 602:2004-7

COE (2002)

Pb, Ni nein

Cu, Fe sensorische Veränderungen entscheidend Zn nicht für feuchte und saure Lebensmittel Sn nicht für Lebensmittel pH<3

→ Sn in Konserven (Hitze >121°C, pH ~5) → 200 mg Zinn/kg Lebensmittel VO(EG) 1881/2006


Lebensmittelkette

Tab. 13: Metalle, Grenzwerte Mensch (JECFA, WHO)

		Essentiell Menschen	für	TDI / PMTDI (mg/kg BW und Tag)	TWI / PTWI (mg/kg BW und Woche)
Aluminium	AI	Nein			1,0 0ber LM
Antimon	Sb	Nein		0.006	
Arsen	As	Ja		-	(0,015) ALARA
Plai	Pù	Nein		-	(0,025) MOE
Eisen	Fe	Ja		8,0	-
Kupfer	Cu	Ja		0.5	
Molybdän	Mo	Ja		-	
Nickei	Mi	Nein		0.005-0.012	-
Wismut	Bi	Nein			-
Wolfram	W	Nein			-
Zinn, anorgan.	Sn	Nein		2	14
Zink	Zn	Ja		1	-

Werte in Klammern sind zurückgezogene Werte;
ALARA... Gehalte sollten so niedrig gehalten werden, wie mit vertretbarem Aufwand möglich;
MOE... Bewertung von Gehalten in Lebensmitteln nach Verzehrgewohnheiten und Schwellenwerten für
bestimmte Organ- / Entwicklungstoxizitäten
TDI .. duldbare tägliche Aufnahme in mg/kg Körpergewicht
PMTDI... provisor. maximale tägliche Aufnahme in mg/kg Körpergewicht
TWI... duldbare Aufnahme pro Woche in mg/kg Körpergewicht
PMTDI-.. provisor. maximale duldbare Aufnahme pro Woche in mg/kg Körpergewicht

27

Lebensmittelkette

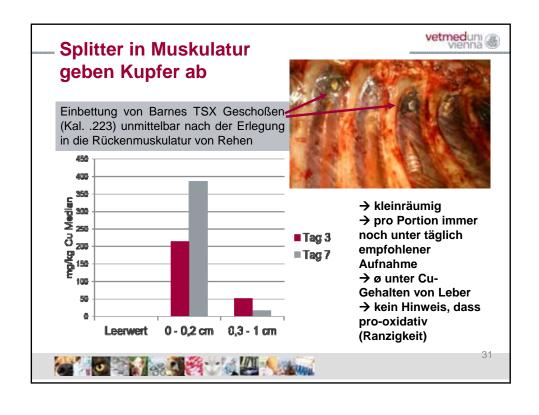
	Toxische Wirkungsschwelle (NOEL) oral, Friberg et al., 1979	Tagesbedarf nach Anke et al., 1991, 1993, Turconi et al., 2009 mg/d	Zufuhrmenge	Empfohlene Aufnahme Turconi et al., 2009 mg/d	Tolerierbare wöchentliche Aufnahmerate mg/d	Vergiftungen (Friberg et al., 1979)
Bi	450 mg					
Cu	100 mg/d		1.0 - 1.5	1.2		400 mg *(Mensch)
Мо	•	0.075		0.05-0.10		•
Ni	1000 mg/kg (Ratte)	0,025-0,035	0,025-0,030		0,6	
Pb					0,25	
Sn	100 mg/kg				140	250 mg/kg *(Mensch)
Zn	135 mg/d	7,0	10 für ♂ 7 für ♀	10 für ♂ 7 für ♀		1000 mg/kg ** (Schwein)
Sb						10 g ZnSO ₄ letal (Mensch) 5 mg/kg ** (Ratte) 10 mg/kg * (Katze,

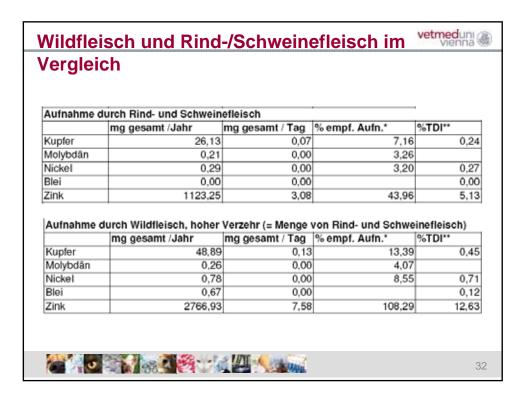
^{*} Erbrechen und Durchfall, akut ** bei chronischer Belastung

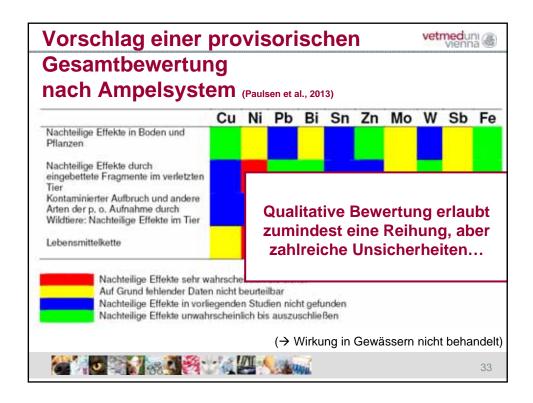
Lebensmittelkette

Ändern sich die Metallgehalte in der Umgebung von Geschoßfragmenten während der Fleischreifung?

→ Für die meisten Metalle ist wenig/nichts bekannt. Bei Cu und Fe ist die Erhöhung der Gehalte sehr kleinräumig. Studien des BfR (2013): Cu,Zn in "bleifrei" erlegtem Wild nicht erhöht.


Bei der Verarbeitung von Fleisch sind verschiedene Prozesse zu berücksichtigen, die zur Freisetzung von Metallen (Metallsalzen) bzw. zur Konzentrationsänderung führen können.


- → Salzzusatz 2%
- → Natriumnitrit /-nitrat ~0.1%
- → Trocknung bis -30%
- → Säuerung (pH <5)
- → Erhitzung >100°C


Für Pb gibt es 2 Studien mit Extremrezepten Für Cu gibt es 2 Studien mit realistischen Prozeduren

20

Zusammenfassung

Splitterbildung primäre Frage

Essentiell für den Menschen: Eisen, Kupfer, Molybdän, Zink.

Als Lebensmittelkontaktmaterial: Zinn; gegen Kupfer und Eisen sprechen nur sensorische Veränderungen

Nickel: Kontaktallergen

Zink: säureempfindlich, Tagesversorgung durch Fleisch schon bei 50%, Wildfleisch hat dabei mehr Zn als Rind- und Schweinefleisch

Bei Eisen und Zinn bestehen aus lebensmittelhygienischer Sicht geringere Vorbehalte, bei Kupfer, Wolfram, und schließlich bei Wismut und Molybdän sind weitere Studien notwendig

Weitere Informationen

Symposium im März 2013 am BFR (Berlin):

http://www.bfr.bund.de/de/uebersicht_der_praesentationen_zum_bmelv_bfr_symposium_alle_s_wild_stand_der_wissensc_haft_zum_verhalten_bleifreier_munition_bei_der_jagd_sowie_z_um_eintrag_der_munitionsbestandteile_blei_kupfer_und_zink_in_jagdlich_gewonnenes_wildbret_am_18_3_2013-133154.html

http://www.bfr.bund.de/de/uebersicht_der_praesentationen_zum_bmelv_bfr_symposium_alle_s_wild_stand_der_wissensc haft_zum_verhalten_bleifreier_munition_bei_der_jagd_sowie_z um_eintrag_der_munitionsbestandteile_blei_kupfer_und_zink in_jagdlich_gewonnenes_wildbret_am_19_3_2013-133155.html

25

Danksagung

