

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Agroscope

Nitrate leaching under vegetables with different crop residue management

Ernst Spiess, Clay Humphrys, Reto Neuweiler, Volker Prasuhn, Frank Liebisch

14 April 2021

Initial situation and objectives

- Measurement data on nitrate leaching from field vegetable are still scarce and often not transferable to Swiss conditions (e.g. much rainfall).
- Some vegetable species have high amounts of N in the crop residues, which increases the risk of nitrate leaching when incorporated into the soil.
- In a 3-year lysimeter experiment with vegetables, two forms of crop residue management were compared:
 a) incorporation of crop residues
 - b) removal of above-ground crop residues from the field

Lysimeter experiment

- 12 lysimeters (surface area of 3 m²; 2.5 m deep)
- 2 different types of repacked soils: sandy-loamy Cambisol ("gravel soil") and loamy Cambisol ("moraine soil")
- 2 treatments of crop residue management
- 3 replicates
- Measurement data on nitrate leaching are reported from April 2017 to March 2020:

nitrate concentration of seepage water was measured every 2 weeks Crop rotation and management

Crop rotation:

year 1: broccoli + lettuce 1 + 2
year 2: chinese cabbage + leek
year 3: cabbage + sugar loaf
bare soil over winter

Crop management as far as possible in accordance with standard practice

Official N fertilizer recommendations were reduced by 20% of N in crop residues, if residues were not removed.

 Precipitation:
 928 mm year⁻¹ (range: 826 - 981)

 Irrigation:
 164 mm year⁻¹ (range: 135 - 200)

 Total:
 1092 mm year⁻¹

Marketable yields

Seepage volume and nitrate leaching

	Gravel soil Removed	Left	Moraine so Removed	il Left	Overall mean: Removed Left	Difference
Seepage v	olume (mm)	:				
2017/18	489	491	450	443		
2018/19	469	479	478	462	512 = 507	1%
2019/20	582	593	605	571		
Nitrate con	centration (n	ng NO $_3$	₃ ⁻ L ¹):			
2017/18	99	132	116	85		
2018/19	56	71	43	56	102 < 119	-14%
2019/20	77	108	200	236		
Amount of	nitrate leach	ed (kg	N ha⁻¹):			
2017/18	109	146	118	85		
2018/19	60	77	46	58	118 < 136	-13%
2019/20	101	144	273	305	Diff. 18 kg N ha ⁻¹	

Precipitation, irrigation, seepage volume and amount of N leached

Agroscope

Development over time of nitrate concentration of seepage water

V halance (kg ha⁻¹)

	N balance	9					N in
	Residues	s remove	d	Residues	crop		
	Fertilizer	Remova	I Balance	Fertilizer	Remova	Balance	residues
Broccoli	250	230	20	245	71	174	156
Lettuce 1	120	96	24	90	74	16	28
Lettuce 2	120	65	55	110	48	62	19
Year 1	490	390	100	445	193	252	203
Chinese cal	o. 180	268	-88	175	125	50	135
Leek	220	226	-6	200	178	22	73
Year 2	400	495	-95	375	302	73	208
Cabbage	220	217	3	200	130	70	80
Sugar loaf	140	226	-86	110	145	-35	95
Year 3	360	443	-83	310	275	35	175
3-yr mean	417	443	-26	377	257	120	195

Diff. 146 kg N ha⁻¹

Conclusions:1) General remarks

Mean nitrate concentration >100 mg NO₃ L⁻¹ \rightarrow above limit for drinking water quality

Amount of nitrate leached: $50 - 300 \text{ kg N} \text{ ha}^{-1} \text{ year}^{-1}$ \rightarrow field vegetables > arable crops > grassland

Influence of removing crop residues

equal:

crop yield (marketable yield and crop residues) seepage volume

somewhat smaller:

nitrate concentration - 14% amount of nitrate leached - 18 kg N ha⁻¹

much smaller:

N balance - 146 kg N ha⁻¹

What happens to the 128 kg N ha⁻¹ not accounted for? Increase in soil N, ammonia volatilization, denitrification, increasing vegetable yields and/or leaching losses in future?

 \rightarrow We prolong our lysimeter experiment.

3) Other consequences

Removing crop residues reduces nitrate leaching, but:

- increases workload and production costs
- what do we do with the crop residues removed? aerobic or anaerobic fermentation (compost, biogas), other solutions?
- humus balance of soil: Do we have to replace the crop residues removed by other organic matter?
 What is the impact of applying compost on nitrate leaching?

Thank you for your attention

Ernst Spiess Ernst.Spiess@agroscope.admin.ch

good food, healthy environment Agroscope www.agroscope.admin.ch

