Nitrat-Abbau in wiedervernässtem Torf-Substrat und Emission von N₂Ound N₂-Ergebnisse einer Doppeltracer-Studie unter Laborbedingungen

Nadine Tauchnitz1*, Rolf Russow2, Oliver Spott2, Sabine Bernsdorf1 und Ralph Meißner3

Zusammenfassung

Ziel vorliegender Untersuchungen war die Ermittlung des Nitrat-Abbaus mittels einer ¹⁵NO₃-/Br-Doppeltracermethode und der N₂O- und N₂-Emission mit Hilfe der 15N-Gas-Fluss-Methode eines wiedervernässten Torf-Substrates unter Laborbedingungen. Der Tracer wurde in differenzierten Tiefen und bei unterschiedlichen Wasserständen in die Torfsäulen eingebracht.

Bei Applikation des Tracers in die ungesättigte Zone wurden in den unteren gesättigten Bereichen nur sehr geringe ¹⁵NO₃⁻-Konzentrationen ermittelt. Bereits 2 Tage nach der Markierung waren 23 bis 54 % des eingesetzten ¹⁵NO₃⁻-Tracers abgebaut. Zum Ende des Experimentes erhöhte sich der ¹⁵NO₃⁻-Abbau von 70 bis auf nahezu 100 %. Die gemessenen N₂O- und N₂-Emissionen waren bei Markierung des ungesättigten Bereiches mit maximalen Emissionen von 2,5 ± 0,8 kg N ha⁻¹ für N₂ und 2,1 ± 0,3 kg N ha⁻¹ für N₂O sehr hoch. Demgegenüber führte die Applikation des Tracers in den gesättigten Bereich zu deutlich niedrigeren Emissionen.

Schlagwörter: Moore, stabile Isotope, Treibhausgase

Einleitung

Moore sind Ökosysteme, die aufgrund der vorherrschenden anaeroben Bedingungen und damit verbundenen langsamen Stoffumsetzungsprozesse entscheidende Senken für Kohlenstoff (C) und Stickstoff (N) darstellen (GORHAM 1991, TURUNEN et al. 2001, MOORE et al. 2004). Eine Beschleunigung der Umsetzungsprozesse infolge der Entwässerung von Mooren kann dazu führen, dass Moore von C- und N-Senken zu C- und N-Quellen werden. Zahlreiche Untersuchungen belegen, dass entwässerte Moore entscheidende Quellen für N₂O und CO₂ darstellen, währenddessen eine Abnahme der CH_4 -Emissionen infolge einer Absenkung der Wasserstände beobachtet wurde (z.B. MARTIKAINEN et al. 1993, FLESSA et al. 1997, AUGUSTIN et al. 1998). Aufgrund der Klimarelevanz von N2O befassten sich in den letzten Jahren viele Untersuchungen mit der Ermittlung der N2O-Freisetzung entwässerter Moore und deren Einflussfaktoren (z.B. MARTIKAINEN et al. 1993, NY-KÄNEN et al. 1995, AUGUSTIN et al. 1998, KOPONEN

Summary

Study aimed to determine the nitrate consumption by the ${}^{15}NO_{3}$ -/Br-double tracer method and to quantify N₂O and N₂ emissions of a rewetted peat soil using the ${}^{15}N$ gas-flux-method in laboratory experiments. Peat soil cores were labelled at different depths and at different water table levels.

In the variants in which the tracer was applied into the unsaturated zone only small amounts of ¹⁵NO₃⁻ were detectable in the deeper water saturated zones. Already 2 days after labelling 23 to 54 % of the applied tracer were degraded. At the end of the experiment the calculated ¹⁵NO₃⁻ consumption increased from 70 to nearly 100 %. N₂O und N₂ emissions were high from the cores labelled at the unsaturated soil zone with maximal emissions of 2.5 ± 0.8 kg N ha⁻¹ for N₂ and 2.1 ± 0.3 kg N ha⁻¹ for N₂O. In contrast labelling of the saturated soil zone caused markedly smaller emissions.

Keywords: peatlands, stable isotopes, greenhouse gases

et al. 2006). Demgegenüber gibt es nur wenige Freilanduntersuchungen, die sich mit der Bildung und Freisetzung von N₂ aus Böden oder gar Moorsubstraten beschäftigten (MOSIER et al. 1986, WEIER et al. 1996). Ursache dafür sind die methodischen Schwierigkeiten der N2-Messung aufgrund der extrem hohen Hintergrundkonzentration des Luft-N₂ (SPEIR et al. 1995, WATTS und SEITZINGER 2000). Änerkannte Methoden der N₂-Messung von Böden im Freiland sind die Acetylen-Inhibierungsmethode (z.B. WEIER et al. 1993) und die ¹⁵N-Gas-Fluss-Methode (z.B. HAUCK und BOULDIN 1961, SIEGEL und HAUCK 1982, ARAH 1992). Die Acetylen-Inhibierungsmethode zeigt gravierende Mängel, die zu einer deutlichen Unterschätzung der Denitrifikationsrate führen können (z.B. WATTS und SEITZINGER 2000). Die ¹⁵N-Gas-Fluss-Methode ermöglicht eine parallele Messung von N2O und N2 und weist die methodisch begründeten Mängel der Acetylen-Inhibierungsmethode nicht auf. Voraussetzungen sind die Applikation eines hoch ¹⁵N angereicherten (>40 at. %) NO₃ Tracers und die homogene Verteilung des Tracers im Boden.

¹ Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Agrar- und Ernährungswissenschaften, Julius-Kühnstraße 23, D-06112 HALLE (SAALE)

² UFZ-Helmholtz-Zentrum für Umweltforschung, Department Bodenphysik, Stoffkreisläufe und stabile Isotope, Theodor-Lieser-Straße 04, D-06120 HALLE (SAALE)

³ UFZ-Helmholtz-Zentrum für Umweltforschung, Department Bodenphysik, Lysimeterstation, Dorfstraße 55, D-39615 FALKENBERG

^{*} Ansprechpartner: Dr. Nadine Tauchnitz, nadine.tauchnitz@landw.uni-halle.de

Die Methode wurde bisher überwiegend im Labor durchgeführt (RUSSOW et al. 1996, STEVENS und LAUGHLIN 1998). Erfahrungen bei der Anwendung der Methode in Mooren liegen bisher nicht vor.

Ziel der späteren in situ-Untersuchungen in einem wiedervernässten Moor ist die Quantifizierung der N₂O- und N₂-Emissionen mit Hilfe der ¹⁵N-Gas-Fluss-Methode. In den vorliegenden Laboruntersuchungen an ungestörten Torfmonolithen wurden als Voraussetzung für die spätere Anwendung der Methode im Freiland folgende Schwerpunkte untersucht:

- die Verteilung des Tracers innerhalb der Bodensäule bei unterschiedlichen Wasserständen und Markierungstiefen.
- der Nitrat-Abbau innerhalb der Bodensäule in unterschiedlichen Tiefen mit Hilfe der ¹⁵NO₃/Br-Doppeltracer-Methode und
- Einflussgrößen auf die N₂O- und N₂-Emission (Wasserstand, Markierungstiefe).

Material und Methoden

Untersuchungsgebiet

Die Torfmonolithen wurden in einem entwässerten Moor (Blumentopfmoor) im Nationalpark Harz (51°48' N, 10°37' E, 650-680 m ü. NN) entnommen. In den Jahren 1750 bis 1776 wurde das Moor durch Anlage von Gräben nahezu vollständig entwässert. Im Jahr 2005 begann die gezielte Wiedervernässung des Moores. Das Moor weist im entwässerten Bereich eine mehr oder weniger starke Vererdung der oberflächennahen Torfhorizonte auf und kann nach KA5 als Übergangserdmoor klassifiziert werden. Die Torfmächtigkeiten des Moores liegen im Bereich von 0,2 bis maximal 2 m in ungestörten Moorbereichen. Die durchschnittlichen Wasserstände im entwässerten Moorbereich betragen $-31 \pm$ 9 cm unter Flur (TAUCHNITZ et al. 2010).

Tabelle 1: Untersuchungsvarianten und Parameter

Methodische Vorgehensweise

Mit Hilfe einer speziellen Bohrtechnik der Fa. UGT wurden am Versuchsstandort 40 Torfmonolithe mit einem Durchmesser von 20 cm und 50 cm Höhe entnommen und in ein klimatisiertes Labor (20°C) überführt. In den Torfsäulen wurde ein konstanter Wasserstand von - 30 cm eingestellt und in 3 Tiefen (gesättigte, ungesättigte Zone und Übergangszone zwischen beiden Bereichen) Redoxsensoren eingebaut. Das Bodenwasser wurde mittels Mikrosaugkerzen in 3 Tiefen (analog Redoxmessung) beprobt und auf die in *Tabelle 1* zusammengefassten Parameter untersucht.

Die Markierung der Säulen erfolgte mit ¹⁵NO₃⁻ (30 kg N ha⁻¹, 60 at. %) und mit einem zweiten konservativen Tracer, dem Bromid, der nicht von mikrobiellen Umwandlungen beeinflusst wird. Die Anwendung dieser Doppeltracer-Methode ermöglicht eine Korrektur der Abnahme des ¹⁵NO, -Tracers durch Verdünnung und/oder Austrag aus dem System und damit Erfassung des realen Nitratverbrauches durch mikrobiellen Abbau und der Festlegung in Boden und Pflanze. Der Tracer wurde mittels Spritze und Schablone gleichmäßig über die Oberfläche verteilt appliziert. Gasproben wurden am Tag der Markierung zweimal täglich, am Tag 2 bis 4 täglich und danach zweitägig entnommen. Die Probenahme erfolgte nach luftdichtem Abschluss der Säulen mit einer 100 ml Spritze innerhalb eines Zeitraumes von 2 Stunden insgesamt 6-mal pro Säule in Abständen von jeweils 20 Minuten. Vor Abschluss der Säulen wurden Nullproben entnommen. Die Gasproben wurden auf CH₄-, N₂O- und CO₂-Gehalte mittels eines speziell konfigurierten GC-Systems (GC 14B, Shimadzu, Japan) mit FID und ECD (SEGSCHNEIDER et al. 1996) analysiert. Die N₂-Flüsse wurden mit Hilfe der ¹⁵N-Gas-Fluss-Methode, basierend auf der Bestimmung der Isotopenverhältnisse R₂₉ und R₃₀ am IRMS Delta S (Thermo-Finnigen, Germany), kalkuliert. Eine genaue Beschreibung der Methode geben ARAH (1992), RUSSOW et al. (1996) und SPOTT et al. (2006).

Varianten	Parameter	Untersuchungsintervall	Beregnung
1 - Wasserstand -30 cm unter Flur - Markierung der un- gesättigten Zone (1 cm tief)	pH (potentiometrisch) NH_4^+ (photometrisch) Br, NO_3^- (ionenchromatographisch) ¹⁵ N Häufigkeiten im NO_3^- und NH_4^+ (SPINMAS, Russow 1999; Stange et al., 2007)	Tag 1 bis 4: täglich Tag 4 bis 8: zweitägig	- jweils 15 mm (Gesamt 90 mm) Tag 1 bis 4: täglich Tag 4 bis 8: zwei- tägig
2 - Wasserstand 0 cm unter Flur - Markierung der un- gesättigten Zone (1 cm tief)	analog Variante 1	analog Variante 1	analog Variante 1
3 - Wasserstand -15 cm unter Flur - Markierung der ge- sättigten Zone (25 cm tief)	analog Variante 1	analog Variante 1	analog Variante 1

Nitrat-Abbau in wiedervernässtem Torf-Substrat und Emission von $\rm N_2O$ - und $\rm N_2$ -Ergebnisse einer Doppeltracer-Studie unter Laborbedingungen

Abbildung 1: ¹⁵NO₃⁻ und Br-Konzentrationen im Bodenwasser sowie ¹⁵NO₃⁻ -Abbau bei Variante 1 (-30 cm unter Flur, Markierung der ungesättigten Zone)

Ergebnisse

¹⁵NO₃⁻-Konzentrationen im Bodenwasser

Das Bodenwasser der Variante 1 (*Abbildung 1A*, Wasserstand -30 cm unter Flur, Markierung der ungesättigten Zone) zeigte die höchsten ¹⁵NO₃ -Konzentrationen in der ungesättigten Bodenzone (-15 cm).

Auffallend ist die erhebliche Streuung der gemessenen hohen ¹⁵NO₃⁻-Konzentrationen von durchschnittlich 1355 nmol ml⁻¹ unmittelbar nach der Markierung am Tag 1. Diese hohen Anfangskonzentrationen sanken im Laufe des Experimentes jedoch rasch ab. Zum Ende des Experimentes (Tag 9) waren nur noch 15 nmol ml⁻¹ im Bodenwasser der ungesättigten Bodenzone nachweisbar. Die ¹⁵NO₃⁻-Konzentrationen des Bodenwassers der beiden tieferen Bodenzonen waren deutlich geringer mit maximal 274 nmol ml⁻¹ in der Übergangszone ungesättigt/gesättigt und maximal 147 nmol ml⁻¹ in der gesättigten Zone einen Tag nach der Markierung.

Die Torfsäulen der Variante 2 (Wasserstand 0 cm unter Flur, Markierung der ungesättigten Zone, *Abbildung 2A*) zeigten analog Variante 1 die höchsten ¹⁵NO₃⁻-Konzentrationen in der oberen Bodentiefe (-15 cm).

Im Unterschied zu Variante 1 wurden die höchsten ¹⁵NO₃ -Konzentrationen von 1439 nmol ml⁻¹ erst am 2. Tag ge-

Abbildung 2: ¹⁵NO₃⁻ und Br-Konzentrationen im Bodenwasser sowie ¹⁵NO₃⁻ Abbau bei Variante 2 (0 cm unter Flur, Markierung der ungesättigten Zone)

messen, sie nahmen zudem im Vergleich zur Variante 1 im Verlaufe des Experimentes langsamer ab.

¹⁵NO₃⁻-Abbau

Variante 1 zeigte deutliche Unterschiede des ¹⁵NO₃⁻Abbaus in den unterschiedlichen Bodentiefen (*Abbildung 1C*, verdünnungs-korrigiert mittels Br-Konzentrationen aus *Abbildung 1B*). Der geringste ¹⁵NO₃⁻Abbau trat mit 71 % in der Übergangszone ungesättigt/gesättigt auf. Der gesättigte und der ungesättigte Bereich wiesen einen ähnlichen Verlauf des Abbaues auf. In der gesättigten Zone waren bereits am 3. Tag 54 % und zum Ende des Experimentes 96 % des eingesetzten ¹⁵NO₃⁻-Tracers nicht mehr nachweisbar, d.h. verbraucht/abgebaut. In der ungesättigten Bodenzone war ein Abbau des ¹⁵NO₃⁻ von 37 % am 2. Tag und 98 % zum Ende des Experimentes zu verzeichnen. Bei der gesättigten Variante 2 wurden nur geringe Unterschiede im ¹⁵NO₃⁻-Verbrauch zwischen den unterschiedlichen Bodentiefen ermittelt (*Abbildung 2C*).

Abbildung 3: N₂- und N₂O-Emissionen der Variante 1 (-30 cm unter Flur, Markierung der ungesättigten Zone), Variante 2 (0 cm unter Flur, Markierung der ungesättigten Zone) und Variante 3 (-15 cm unter Flur, Markierung der gesättigten Zone)

N_2O - und N_2 -Emissionen

Die N2-Emissionen der Variante 1 lagen im Bereich von 78 μ g Ñ m² h⁻¹ am 1. Tag unmittelbar nach der Markierung bis maximal 2071 µg N m² h⁻¹ am 6. Tag (Abbildung 3). Die N₂O-Emissionen stiegen bis zum 3. Tag kontinuierlich von 91 µg N m² h-1 auf maximal 2022 µg N m² h-1 an und nahmen danach wieder auf ca. 500 µg N m² h-1 ab. Die berechnete Gesamt-Emission betrug $2,5 \pm 0.8$ kg N ha⁻¹ für N₂ und 2,1 \pm 0,3 kg N ha⁻¹ für N₂O. Variante 2 zeigte eine ähnliche N₂-Emission von $2,5 \pm 0,6$ kg N ha⁻¹, während im Vergleich zu Variante 1 die N₂O-Emission mit 1.6 ± 0.5 kg N ha⁻¹ etwas geringer war. Die maximale N₂-Emissionsrate von 3630 µg N m² h⁻¹ war am 6. Tag messbar. Ebenso wurde ein deutlicher Anstieg der N₂O-Emissionen von 7 µg N m² h⁻¹ vor der Markierung (Tag 0) auf maximal 1800 µg N m² h⁻¹ bereits am 2. Tag nach der Markierung beobachtet. Deutlich geringere Gesamt-Emissionen von 0.4 ± 0.4 kg N ha⁻¹ N₂ und 0.2 ± 0.07 kg N ha⁻¹ N₂O wurden bei Variante 3 ermittelt.

Diskussion

Verteilung des Tracers und ¹⁵NO₃-Abbau

Anhand der ¹⁵NO₃⁻-Konzentrationen im Bodenwasser unterschiedlicher Tiefen der Torfsäulen war bei Applikation des Tracers in den ungesättigten Bereich (1 cm tief) eine sehr ungleichmäßige Verteilung des Tracers nachweisbar. In den unteren Bodentiefen 25 und 40 cm waren nur noch geringe Mengen ¹⁵NO₃⁻ messbar. Eine bessere Verteilung des Tracers, auch in die unteren Bodentiefen, konnte mit Hilfe der Applikation des Tracers in den gesättigten Bereich erreicht werden (Ergebnisse nicht dargestellt). Die ¹⁵NO₃⁻-Konzentrationen im Bodenwasser wiesen Unterschiede in Abhängigkeit von den Wasserständen auf.

Die Variante 2 (Wasserstand 0 cm) zeigte eine langsamere Abnahme der ¹⁵NO₂⁻-Konzentrationen im Verlaufe des Experimentes. Die ¹⁵NO, - Abbau-Kurve dieser Variante zeigte zwischen dem 2. und 3. Tag eine deutliche Verzögerung, die vermutlich im Zusammenhang mit dem Erreichen der vollständigen Wassersättigung stand. Während bei einem Wasserstand von -30 cm unter Flur deutliche Unterschiede des ¹⁵NO₂⁻ -Abbaus in den einzelnen Bodentiefen mit den geringsten Werten in der Übergangszone ungesättigt/ gesättigt nachweisbar waren, zeigten die Varianten mit Wasserständen von 0 und -15 cm Flur kaum Unterschiede zwischen den verschiedenen Bodentiefen. Insgesamt zeigten die Laboruntersuchungen einen relativ schnellen Abbau des applizierten ¹⁵NO₃⁻ - Tracers, der auf die Prozesse der Denitrifikation und Immobilisierung zurückzuführen ist. Die Pflanzenaufnahme war mit einem Anteil von maximal 2% (Ergebnisse nicht dargestellt) sehr gering. Ein schneller Abbau von NO₃⁻ in Mooren aufgrund der geringen Sauerstoffverfügbarkeit wird auch in der Literatur beschrieben (z.B. BRAGAZZA et al. 2005).

N_2O - und N_2 -Emissionen

Die ermittelten N₂O- und N₂-Emissionen der Varianten 1 und 2 sind als sehr hoch einzuschätzen. Vor der Markierung wurden sehr geringe N₂O-Emissionen von 7 µg N m² h⁻¹ erfasst, die typisch sind für natürliche Moore mit geringen Nitratgehalten (z.B. MARTIKAINEN et al. 1993). Der deutliche Anstieg der Emissionen nach der Applikation des Tracers zeigt das hohe Denitrifikations-(Emissions-)Potential der Torfsäulen bei Zugabe von Nitrat. Ebenso AERTS (1997) wies in einem Laborversuch nach, dass natürliche Moorstandorte in den Niederlanden ein hohes Denitrifikationspotential besitzen. Die Zugabe von NO,⁻ führte zu einer deutlichen Steigerung der Denitrifikationsraten, wobei N₂O als Hauptprodukt der Denitrifikation nachgewiesen wurde. Ursache dafür ist eine Hemmung der N₂O-Reduktase bei niedrigen pH-Werten in sauren nährstoffarmen Mooren. In unseren Untersuchungen wurden im Vergleich zum N₂O etwas höhere N₂-Emissionen nachgewiesen, die auch in anderen Untersuchungen bestätigt werden (z.B. RÜCKAUF et al. 2004). Erstaunlich sind die geringen Unterschiede der N2O- und N2-Emissionen bei den Varianten mit unterschiedlich eingestellten Wasserständen. Steigende Wasserstände führen zu einer Zunahme des wassergefüllten Porenvolumens und damit einem Anstieg des Grades anaerober Bedingungen, der eine Verschiebung des N2O:N2-Verhältnisses zugunsten des N₂ erwarten lässt (SCHOLEFIELD et al. 1997). In unseren Untersuchungen wurden in der Variante mit gesättigten Verhältnissen (Wasserstände 0 cm unter Flur) etwas geringere N₂O-Emissionen im Vergleich zur Variante -30 cm unter Flur ermittelt. Die insgesamt minimalen UnterNitrat-Abbau in wiedervernässtem Torf-Substrat und Emission von $\rm N_2O$ - und $\rm N_2$ -Ergebnisse einer Doppeltracer-Studie unter Laborbedingungen

schiede in den N2-Emissionsraten bei beiden Varianten sind vermutlich darauf zurückzuführen, dass die Wasserstände im Laufe des Versuches infolge der Beregnung nur langsam von -30 cm unter Flur auf 0 cm anstiegen. Demzufolge sanken die Redoxpotentiale nur langsam von 511 mV zu Beginn des Versuches auf 226 mV zum Versuchsende ab. Deutlich niedrigere Redoxpotentiale traten unter Freilandbedingungen auf (TAUCHNITZ et al. 2008, 2010). Eine Zunahme der N₂-Emissionen zum Ende des Experimentes mit Erreichen wassergesättigter Verhältnisse und abnehmenden Redoxpotentialen konnte beobachtet werden. Auffallend sind die im Vergleich zu den anderen Varianten geringen N₂O- und N₂-Emissionen bei Applikation des Tracers in den gesättigten Bereich (Variante 3). Die Frage, ob die starke Reduktion der N₂- als auch N₂O-Emissionen in dieser Variante auf die Ausbildung einer Diffusionsbarriere innerhalb der Grenzfläche zwischen Wasser und Atmosphäre aufgrund unterschiedlicher Diffusionsgeschwindigkeiten von N₂O in beiden Medien zurückzuführen ist (GEISTLINGER et al. 2010), bedarf weiterer Klärung.

Danksagung

Wir danken der Deutschen Forschungsgemeinschaft (DFG) und dem Land Sachsen-Anhalt für die finanzielle Förderung des Projektes als auch der Verwaltung des Nationalparks Harz für die Unterstützung unserer Forschungsarbeiten.

Literatur

- AERTS, R., 1997: Atmospheric nitrogen deposition affects potential denitrification and N₂O emission from peat soils in the netherlands. Soil Biology and Biochemistry 29, 1153-1156.
- ARAH, J.R.M., 1992: New formul for mass spectrometric analysis of nitrous oxide and dinitrogen emission. Soil Science Society of American Journal 56, 795-800.
- AUGUSTIN, J., W. MERBACH, L. STEFFENS and B. SNELINSKI, 1998: Nitrous oxide fluxes of disturbed minerotrophic peatlands. Agribiological Research 51, 47-57.
- BRAGAZZA, L., J. LIMPENS, R. GERDOL et al., 2005: Nitrogen concentration and δ^{15} N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biology 11, 106-114.
- FLESSA, H., U. WILD, M. KLEMISCH und J. PFADENHAUER, 1997: C- und N-Stoffflüsse auf Torfstichsimulationsflächen im Donaumoos. Zeitschrift für Kulturtechnik und Landentwicklung 38, 11-17.
- GEISTLINGER, H., R. JIA, D. EISERMANN and C.F. STANGE, 2010: Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone. J. Plant Nutr. Soil Sci 173: 601-609.
- GORHAM, E., 1991: Northern Peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological APPLICATIONS 1, 182-195.
- HAUCK, R.D. and D.R. BOULDIN, 1961: Distribution of isotopic nitrogen gas during denitrification. Nature 191, 871-872.
- KOPONEN, H.T., C.E. DURAN, M. MALJANEN, J. HYTÖNEN and P.J. MARTIKAINEN, 2006: Temperature responses of NO and N₂O emissions from boreal organic soil. Soil Biology and Biochemistry 38, 1779-1787.
- MARTIKAINEN, P.J., H. NYKÄNEN, P. CRILL and J. SILVOLA, 1993: Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51-53.

- MOSIER, A.R., W.D. GUENZI and E.E. SCHWEIZER, 1986: Field denitrification estimation by nitrogen-15 and acetylene inhibition techniques. Soil Science Society of America Journal 50, 831-833.
- MOORE, T., C. BLODAU, J. TURUNEN, N. ROULET and P.J.H. RICHARD, 2004: Patterns of nitrogen and sulfur accumulation and retention in ombrotrophic bogs, eastern Canada. Global Change Biology 11, 356-367.
- NYKÄNEN, H., J. ALM, K. LÅNG, J. SILVOLA and P.J. MARTIKAI-NEN, 1995: Emissions of CH₄, N₂O and CO₂ from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography 22, 351-357.
- RÜCKAUF, U., J. AUGUSTIN, R. RUSSOW and W. MERBACH, 2004: Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil biology and biochemistry 36, 77-90.
- RUSSOW, R., R.J. STEVENS and R.J. LAUGHLIN, 1996: Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification. Isotopes in Environmental and Health Studies 32, 289-297.
- RUSSOW, R., 1999: Determination of ¹⁵N in ¹⁵N-enriched nitrite and nitrate in aqueous samples by reaction continuous-flow quadrupole mass spectrometry. Rapid Communication in Mass Spectrometry 13, 1334-1338.
- SCHOLEFIELD, D., J.M.B. HAWKINS and S.M. JACKSON, 1997: Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biology and Biochemistry 29, 1337-1344.
- SIEGEL, R.S. and R.D. HAUCK, 1982: Determination of ${}^{30}N_2$ and application to measurement of N_2 evolution during denitrification. Soil Science Society of American Journal 46, 68-74.
- SEGSCHNEIDER, H.-J., I. SICH and R. RUSSOW, 1996: Use of special configured gas chromatographic system for the simultaneous determination of methane, nitrous oxide and carbon dioxide in ambient air and soil atmosphere. Transactions of the 9th Nitrogen Workshop, Braunschweig, September 1996, 547-550.
- SPEIR, T.W., H.A. KETTLES and R.D. MORE, 1995: Aerobic emissions of N₂O and N₂ from soil cores: measurement procedures using ¹³N-labelled NO₃⁻ and NH₄⁺. Soil Biology and Biochemistry 27, 1289-1298.
- SPOTT, O., R. RUSSOW, B. APELT and F. STANGE, 2006: A ¹⁵N aided artificial atmosphere approach for an online determination of soil N₂ release using the zeolite Köstrolith SX6[®]. Rapid Communication in Mass Spectrometry 20, 3267 – 3274.
- STANGE, C.F., O. SPOTT, B. APELT and R. RUSSOW, 2007: Automated and rapid online determination of ¹⁵N abundance and concen-tration of ammonium, nitrite or nitrate in aqueous samples by the SPIN-MAS technique. Isotopes in Environmental and Health Studies 43, 227-236.
- STEVENS, R.J. and R.J. LAUGHLIN, 1998: Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems 52, 131-139.
- TAUCHNITZ, N., R. BRUMME, S. BERNSDORF and R. MEISSNER, 2008: Nitrous oxide and methane fluxes of a pristine slope mire in the German National Park Harz Mountains. Plant and Soil 303: 131-138.
- TAUCHNITZ, N., K. OSTERLOH, S. BERNSDORF, R. MEISSNER und U. KISON, 2010: Veränderungen der Wasser- und Nährstoffdynamik eines entwässerten Moores im Nationalpark Harz nach Wiedervernässung. Telma 40: im Druck.
- TURUNEN, J., A. PITKÄNEN and A. TAHVANAINEN, 2001: Carbon accumulation in West Siberian mires, Russia. Global Biogeochemical Cycles 15, 285-296.

- WATTS, S.H. and S.P. SEITZINGER, 2000: Denitrification rates in organic and mineral soils from riparian sites: a comparison of N_2 flux and acetylene inhibition methods. Soil Biology and Biochemistry 32, 1383-1392.
- WEIER, K.L., J.W. DORAN, J.F. POWER and D.T. WALTERS, 1993: Denitrification and the dinitrogen/nitrous oxide ratio as affected

by soil water, available carbon and nitrate. Soil Sci. Soc. Am. J. 57, 66-72.

WEIER, K.L., C.W. MCEWAN, I. VALLIS, V.R. CATCHPOOLE and R.J. MYERS, 1996: Potential for biological denitrification of fertilizer nitrogen in sugarcane soils. Australian Journal of Agricultural Research 47, 67-79.