Können durch Stängelabflüsse an Getreidepflanzen **Bypass-Flüsse entstehen?**

D. KLOTZ

Abstract

Bei größeren Pflanzen treten insbesondere bei Starkregen-Ereignissen Stängelabflüsse auf. Der Stängelabfluss pro Maispflanze beträgt 14 % (für drei Maispflanzen pro 12,5 dm²) bis 35 % (für eine Pflanze pro 12,5 dm²) der Beregnungshöhe. Durch Messungen der Sickerwassermengen in einer siebenfach im Auslauf unterteilten Säule und durch Tracermarkierungen konnte nachgewiesen werden, dass sich punktförmige Inputs auf der Bodenoberfläche (Stängelabfluss) bis 1 m Tiefe fortpflanzen, also Bypass-Flüsse erzeugen.

In the case of large plants, water is discharged from the stems especially during heavy precipitation. The water thus discharged from maize stems ranges between 14 % (three plants with 12.5 dm² each) and 35 % (one plant with 12.5 dm²) of the irrigation height. It has been proved by measuring the seepage water quantities in a water head with an outlet divided seven-fold and by tracer markings that dot-shaped inputs on the ground surface (stem discharge) propagate up to a depth of 1 m, i.e. they generate by-pass discharges.

Einleitung

Unter gewissen hydraulischen Randbedingungen und bei Starkregenereignissen können in Böden Bypass-Flüsse entstehen (KLOTZ, 2001; SCHNEIDER, 2001). In einer sechsjährigen Studie (KLOTZ, 2003) konnte gezeigt werden, dass diese Bypass-Flüsse bis zu ca. 30 % an der Grundwasser-Neubildung beteiligt sind. Die bisherige Auffassung ist, dass Bypass-Flüsse nur dann entstehen, wenn in den Sedimenten Kurzschlüsse bzw. Inhomogenitäten vorhanden sind. Denkbar ist aber auch, dass nicht gleichverteilte Wasserinputs auf den Boden Bypass-Flüsse induzieren.

Bei Lysimetern muss man davon ausgehen, dass über die geringen Querschnittsflächen ($\leq 2 \text{ m}^2$) der Niederschlag homogen verteilt ist. Bei großwüchsigen Pflanzen kann jedoch ähnlich wie bei Bäumen ein Stamm-/Stängelabfluss auftreten. Die Folge wäre eine inhomogene Niederschlagsverteilung pro Lysimeterquerschnitt.

Bestimmung des Stängelabflusses bei Getreidepflanzen

In vier einfachen Kleinlysimetern von ca. 0,4 m Durchmesser wurden Mais (drei Lysimeter: 1, 2 oder 3 Pflanzen pro Kleinlysimeter) und Weizen (ein Lysimeter: 97 Pflanzen) angebaut. Im Spätsommer wurden mehrmals Beregnungsversuche (Niederschlagshöhe ca. 40 mm, Niederschlagsdauer 1 h) durchgeführt und die Abflüsse über den Mais-Stamm und die Weizen-Stängel gemessen:

- Die Maispflanzen wurden mit einer trichterartigen, oben ca. 3 bis 5 mm offenen Gummimanschette versehen, die unten wasserdicht mit einem Schlauchbinder abgedichtet wurde. Aus dieser "Trichterkonstruktion" wurde das Wasser abgepumpt.
- · Zehn, gleichmäßig über den Kleinlysimeterquerschnitt verteilte Weizenpflanzen wurden abgeschnitten und konzentrisch in Kunststoffröhrchen von geringem Ouerschnitt gegeben und am Entnahmeort wieder angeord-

net. Aus dieser "Röhrchenkonstruktion" wurde das Wasser ebenfalls abgepumpt.

Beregnet wurde gleichmäßig mit der in KLOTZ und HINREINER, 1999 beschriebenen universellen Applikationsanordnung für Markierungsstoffe auf Lysimeter von kreisförmigem Querschnitt. Die drei- bzw. fünffach durchgeführte Beregnungsversuche sind gut reproduzierbar (≤ 10 %), sie weichen bei Verschieben der "Beregnungsanlage" um ca. 5 cm aus dem Mittel maximal 15 % von den gemittelten Stängelabflüssen ab.

Tabelle 1 zeigt, dass der Abfluss über den Mais-Stamm zwischen 14 und 35 % der Niederschlagsmenge, abhängig von der Pflanzendichte, beträgt. Diese "punktförmigen" (auf einer Fläche von ca. 12 cm²) Inputs können im kleinskaligen Bereich Starkregenereignisse vergrößern und möglicherweise Bypass-Flüsse induzieren. Gering sind demgegenüber die Stängelabflüsse an Weizenpflanzen (0,3 %). Bei dem dichteren Pflanzenbestand werden sich die "punktförmigen" Inputs (auf einer Fläche von ca. 0,3 cm2) durch transversale Dispersion und durch Kapillarität nach geringen Distanzen gleich verteilen.

Laborversuche in einer Säule zur Simulation des Stängelabflusses

Die Untersuchungen wurden an einer Säule der Nennweite 300 mm, Länge

Tabelle 1: Prozentualer Stängelabfluss an Mais- und Weizenpflanzen bei einem Starkregenereignis von 40 mm in 1 Stunde

anzahl	an allen Pflanzen	Stängelquerschnitt	Abfluss
	Mais		
	maio		
5	(35,3 ± 1,6) %	ca. 12 cm ²	ca. 35 %
2 3		ca. 12 cm ²	ca. 21 %
3	(40,8 ± 3,5) %	ca. 12 cm ²	ca. 14 %
	Weizen		
5	(28,2 ± 74) %	ca. 0,3 cm ²	ca. 0,3 %
	5 3 3 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 $(35,3 \pm 1,6)$ % ca. 12 cm² 3 $(41,0 \pm 8,1)$ % ca. 12 cm² 3 $(40,8 \pm 3,5)$ % ca. 12 cm² Weizen 5 $(28,2 \pm 74)$ % ca. 0,3 cm²

Autor: Dipl.-Phys. Dietmar KLOTZ, GSF-Institut für Hydrologie, Ingolstädter Landstraße 1, D-85764 NEUHERBERG

Abbildung 1: Schematische Darstellung der Segmentanordnung im Auslauf der Laborsäule

1000 mm, die mit einem gleichförmigen Quarzsand (Körnung 0,5 - 1,5 mm, totale Porosität ca. 0,39) gefüllt war, durchgeführt. Die Säule wurde kontinuierlich entweder gleichmäßig (Messreihe 1) oder ungleichmäßig verteilt (Simulation des Stängelabflusses, Messreihe 2) beregnet. Der Säulenauslauf war in 7 gleichgroße Segmente (ca. 23 cm²) unterteilt (Abbildung 1), in der Säulenmitte waren Tensiometer eingebaut. Messgrößen sind die Sickerwassermengen und die Durchgänge des hydrologischen Tracers (tritiiertes Wasser), der in der Beregnungsanlage appliziert wurde, in den Auslauf-Segmenten und in der Gesamtsäule.

In Messreihe 1 (gleichmäßige Beregnung des oberen Säulenquerschnitts) wird die Säule näherungsweise homogen durchströmt (*Tabelle 1*):

- Alle Segmente zeigen einen Abfluss, die Sickerwassermengen in den geometrisch gleichen Segmenten 1 bis 6 schwanken um den Wert 16,5 ml/h (Standartabweichung ca. 3 %), im Segment 7 weicht der Wert davon - baulich bedingt (s. *Abbildung 1*) - um ca. 45 % ab.
- Die aus den Tracerversuchen folgenden Transportgeschwindigkeiten in den einzelnen Segmenten liegen im Bereich 0,30 bis 0,64 m/d (Mittelwert $(0,47 \pm 0,12)$ m/d), die longitudinale Dispersivität im Bereich 7 bis 20 cm

Tabelle 2: Abfluss ("Sickerwassermenge") Q und Filtergeschwindigkeit v_f sowie aus den Tracerversuchen bestimmte Sickerwassergeschwindigkeit v_f bzw. v_a, effektiver Wassergehalt Θ_{eff} und Dispersivität α für die Gesamtsäule (G) und die einzelnen Segmente (Nr. 1 bis 7, s. *Abbildung 1*) bei gleichmäßiger Beregnung der Säule (ca. 39,7 mm/d) und Beregnung nur über dem Segment 3 (ca. 41,1 mm/d). W = Wiedererhalt des ³H

Nr.	[ml/b]	Q [%]	V _f	V _T	$\Theta_{\rm eff}$	α	W [%]	v _T /v _a
	[1110/11]	[/0]	[III/G]	[III/G]		louil	[/0]	

gleichmäßige Beregnung des Säulenquerschnitts

G	107,88	100,0	0,021	v _a = 0,448	0,089	20,2	95,4	1,00
1	15,68	14,5	0,040	0,297	0,135	6,8	84,6	0,66
2	16,76	15,5	0,043	0,440	0,098	19,9	94,8	0,98
3	16,23	15,0	0,042	0,576	0,072	12,5	92,0	1,28
4	16,69	15,5	0,043	0,635	0,067	11,5	99,3	1,42
5	16,49	15,3	0,042	0,530	0,080	13,8	106,1	1,18
6	16,88	15,6	0,043	0,391	0,111	11,2	97,5	0,87
7	9,15	8,5	0,024	0,398	0,059	10,5	56,5	0,89
über	iber Segment 3 beregnet (Segmente 1, 2, 5, 6 kein Abfluss)							

G 0.041 v_a = 0,775 1.00 111.61 100.0 0.053 26.2 91.8 3 93.79 84,0 0.241 0.803 0.300 26.8 73.2 1.04 4 15,82 14,2 0,041 0,796 1,03 0.052 22,1 15,1 7 2,00 1,8 0.005 0.517 0,010 7.3 1.7 0,67

(Mittelwert (12 ± 4) cm). Für die Gesamtsäule findet eine Superposition der sieben ³H-Durchgänge statt, die Transport(Fließ)geschwindigkeit beträgt ca. 0,45 m/d, die Dispersivität ca. 20 cm.

In der Messreihe 2 (**punktförmige Beregnung**) wurde ein **Stängelabfluss** auf der Säulenoberfläche gegenüber Segment 3 simuliert (*Tabelle 2*):

- Wasserführend sind nur die Segmente 3, 4 und 7 mit unterschiedlichen Sikkerwassermengen, Segmente 1, 2, 5 und 6 zeigen keinen Abfluss.
- Der Abfluss im Segment 3 beträgt 84 % des punktförmigen Niederschlags. Dass in den benachbarten Segment kein, im Segment 4 ein Abfluss auftritt, kann auf geringe Inhomogenitäten im Sandkörper zurückgeführt werden.
- Die aus dem Tracerversuch bestimmten Transportgeschwindigkeiten in den drei wasserführenden Segmenten liegen im Bereich 0,52 bis 0,80 m/d, die in den Segmenten 3 und 4 registrierten ³H-Kurven weisen größere Halbwertsbreiten (größere Dispersivitäten)

als alle Kurven der Messreihe 1 auf, was auf kegelartige Strömung in Messreihe 2 hinweist.

 Die Ergebnisse der Messreihe 2 zeigen eindeutig, dass sich ein punktartiger Wasserinput, d.h. ein Stängelabfluss bei größeren Pflanzen (z. B. Mais), auf der Bodenoberfläche bis 1 m Tiefe fortpflanzt, also einen Bypass-Fluss erzeugt.

Literatur

- KLOTZ, D., 2001: Untersuchungen zu Bypass-Flüssen an den GSF-Intensiv-Lysimetern. - In: Gebietsbilanzen bei unterschiedlicher Landnutzung, BAL-Bericht, 165 - 168.
- KLOTZ, D., 2003: Untersuchungen mit Tracern und Wasserinhaltsstoffen zu Matrix- und Bypass-Flüssen in einem Intensiv-Lysimeter. - Im gleichen Band.
- KLOTZ, D.und G. HINREINER, 1999: Applikationsvorrichtung für Markierungs- und Schadstoffe auf Gefäß-Lysimeter von kreisförmigen Querschnitt. - In: Bestimmung der Sickerwassergeschwindigkeit in Lysimetern (Hrsg.: D. Klotz, K.-P. Seiler), GSF-Bericht 01/99, 109 - 112.
- SCHNEIDER, S., 2001: Bypass- und Matrixflüsse in der wasserungesättigten Zone von Lössen und tertiären Kiessanden des Tertiär-Hügellandes von Scheyern (Oberbayern). - GSF-Bericht 14/ 01, 166 S.