

Umweltwirkung und Produktivität von biologischen und konventionellen Systemen

Ergebnisse aus 42 Jahre DOK Versuch

Hans-Martin Krause, Klaus Jarosch, Astrid Oberson, Jochen Mayer, Andreas Fliessbach, Paul Mäder

Geschichte und Hintergrund

- Seit 1978
- Systemvergleich
- Beratergruppe mit Landwirten und Wissenschaftlern
- Ursprüngliches Ziel: "Machbarkeit von Biolandbau zu testen"

- Versuchsaufbau
- Pflanzenschutz, Düngung
- Erträge
- Bodenkohlenstoff und Stickstoff
- Klimawirkung
- ➤ Biologische Bodenqualität

Versuchsaufbau

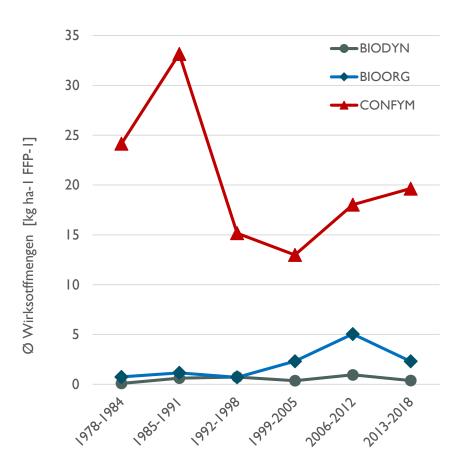
- Pseudovergleyte Parabraunerde
- 791 mm und 10.9°C
- 8 Verfahren 3 Schläge 4 Wiederholungen
- 96 Feldparzellen (5x20m)
- Gleiche Fruchtfolge und Bodenbearbeitung

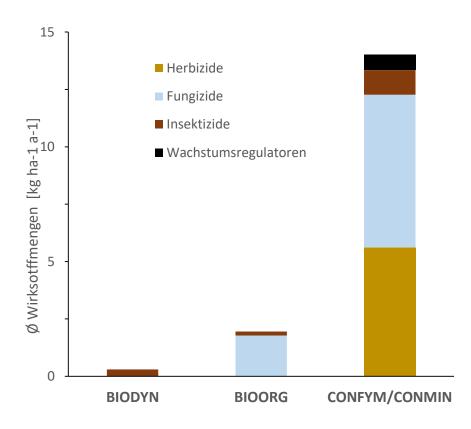
BIODYN – biodynamisch (demeter)

BIOORG – bioorganisch (Bio Suisse)

CONFYM – konventionell (IP Suisse)

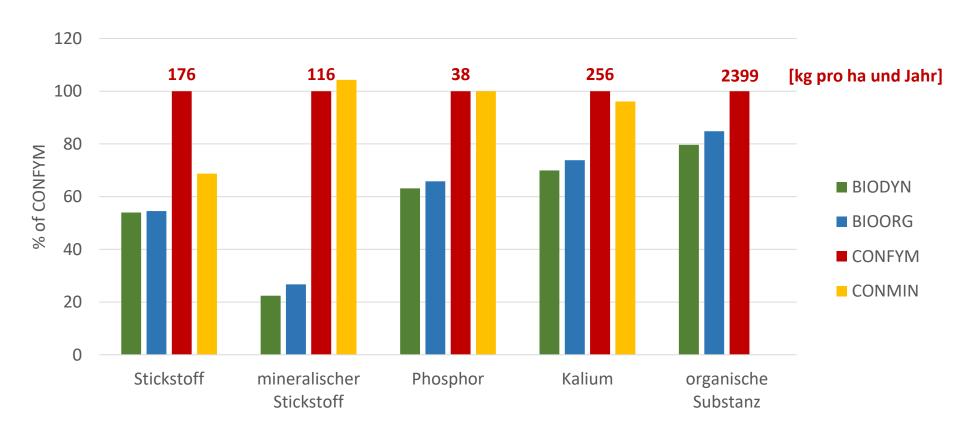
CONMIN – konventionel,I mineralische Kontrolle


Suctions	NOFFRE	BIODYN	BIOORG	CONFYM	CONMIN	I.4 DGVE
System	NOFERT				CONMIN	0.7 DGVE
Düngung	Keine Düngung	Mistkompost, Gülle	Rottemist, Gülle	Stapelmist, Gülle, mineralisch	mineralisch	
Pflanzenschutz	mechanisch	biodynamische Präparate	Kupfer	Insektizide, Fungizide, Herbizide		
		mechanisch, indirekt		(Grenzwerte)		


Fruchtfolgeperioden

	1978-1984	1985-1991	1992-1998	1999- 2005	2006-2012	2013-2019
Jahr	1. FFP	2. FFP	3. FFP	4. FFP	5. FFP	6. FFP
1	Kartoffel Zwischenfrucht	Kartoffel Zwischenfrucht	Kartoffel	Kartoffel	Mais	Mais
2	Winterweizen 1 Zwischenfrucht	Soja				
3	Weisskohl	Rote Beete	Rote Beete	Soja, Zwischenfrucht	Soja, Zwischenfrucht	Winterweizen 1 Zwischenfrucht
4	Winterweizen 2	Winterweizen 2	Winterweizen 2	Mais	Kartoffel	Kartoffel
5	Gerste	Gerste	Kleegrass 1	Winterweizen 2	Winterweizen 2	Winterweizen 2
6	Kleegrass 1	Kleegrass 1	Kleegrass 2	Kleegrass 1	Kleegrass 1	Kleegrass 1
7	Kleegrass 2	Kleegrass 2	Kleegrass 3	Kleegrass 2	Kleegrass 2	Kleegrass 2

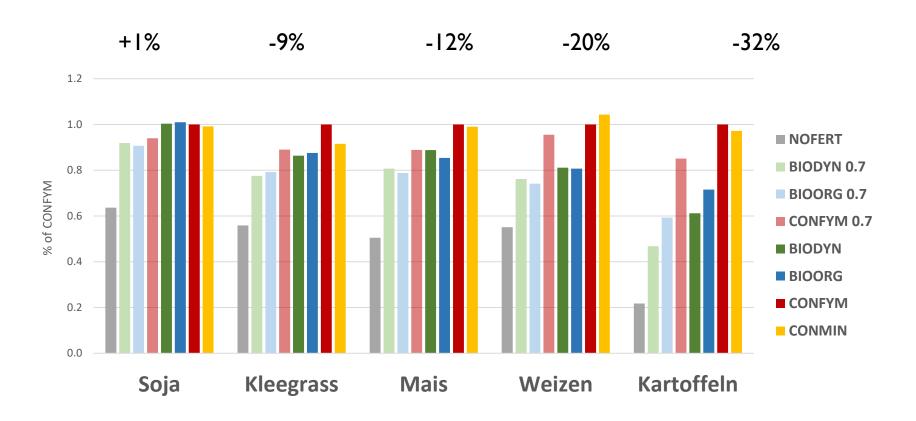
Pflanzenschutz



- Gleicher Pflanzenschutz in CONMIN und CONFYM
- Reduzierter chemischer Pflanzenschutz ab 3. FFP (Einführung von IP Suisse)
- 92% weniger chemischer Pflanzenschutz in BIODYN/BIOORG im Vergleich zu CONFYM/CONMIN

Düngung

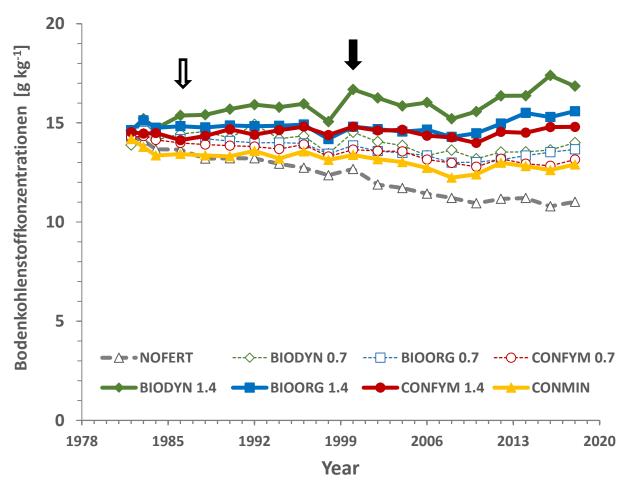
Mittlere jährliche Düngeeinträge (2.-6. FFP)

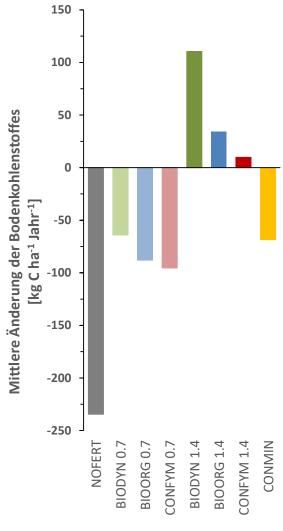


- Deutlich reduzierter Stickstoffeinsatz in BIOORG und BIODYN
- Eintrag organischer Substanz unterschiedet sich zwischen den Verfahren
- Auf 0.7 DGVE gedüngte Verfahren erhalten die Hälfte der Dünger

Erträge

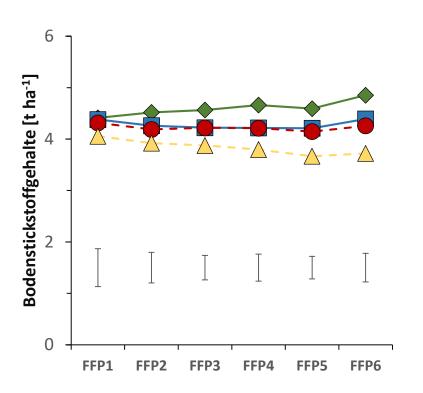
Mittlere Erträge über 2.-6. FFP

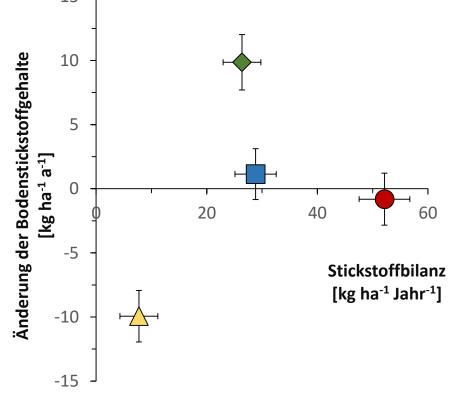



Knapp et al. (2023)

- Stabile Erträge in allen Verfahren
- Kulturspezifische Ertragslücke: Kartoffeln>Weizen>Mais> Kleegrass>Soya
- Bei 1.4 DGVE ergeben sich 15% weniger Ertrag in BIO im Vergleich zu CON über alle Kulturen

Bodenkohlenstoff

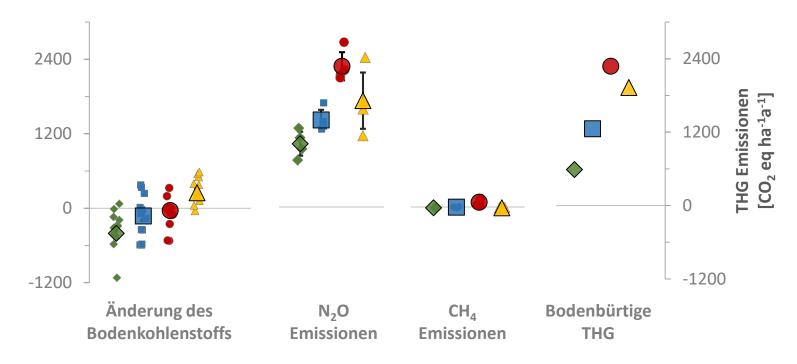

Krause et al 2022

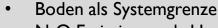


- Alle auf 0.7 DGVE gedüngten Verfahren, CONMIN und NOFERT verlieren Bodenkohlenstoff
- Verfahren auf 1.4 DGVE können Bodenkohlenstoff stabil halten
- Bodenkohlenstoff kann durch Mistkompostierung (BIODYN) auf Dauer erhöht werden

Bodenstickstoff und Stickstoffbilanz

Stickstoffbilanz über 2.-6. FFP beinhaltet Einträge durch Düngung, Deposition und Stickstofffixierung und Austräge über die Ernte $_{15}$

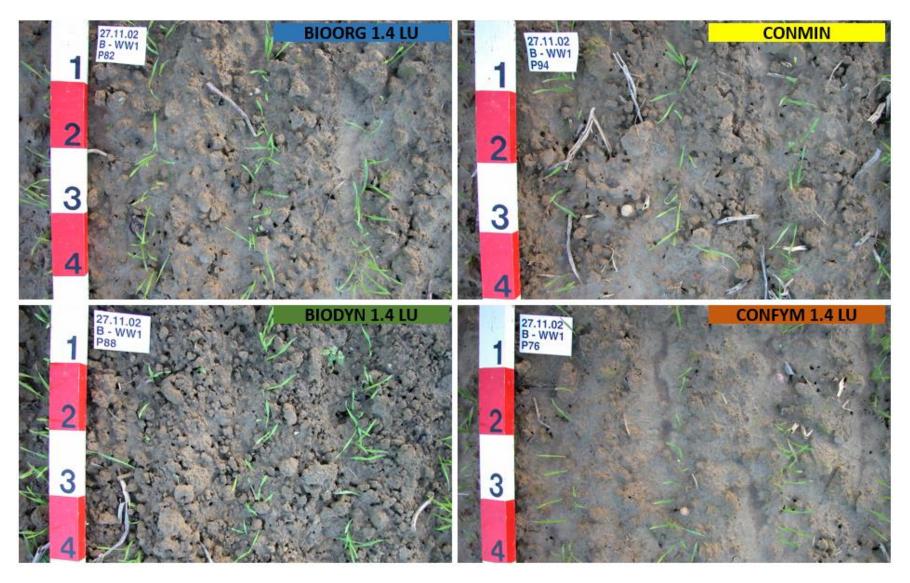



Oberson et al (2023)

- CONFYM braucht 50 kg ha⁻¹ Jahr⁻¹ Stickstoffüberschuss um Bodenvorräte stabil zu halten
- CONMIN verliert Bodenstickstoff bei ausgeglichener Bilanz

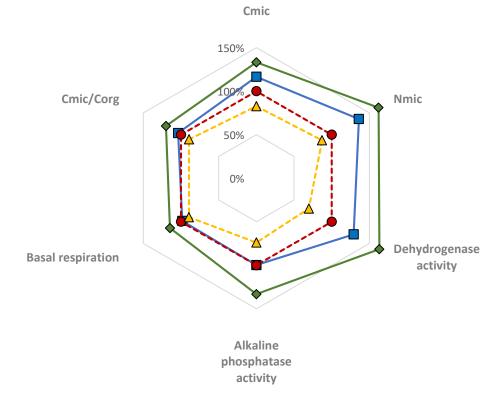
Klimawirkung

Mittlere jährliche Änderungsrate für Bodenkohlenstoff über 42 Jahre Treibhausgasemissionen während Kleegrass – Mais – Gründüngung in der 6ten FFP (571 Tage)



- N₂O Emissionen als Haupttreiber der Klimawirkung in Ackersystemen
- Erhöhte Bodenkohlenstoffvorräte in BIODYN führen nicht zu höheren N₂O Emissionen
- 56% weniger bodenbürtige THG-Emissionen in BIODYN/BIOORG vs CONFYM/CONMIN

Bodenstruktur


FiBL

Biologische Bodenqualität

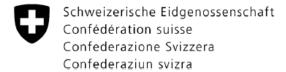
Bodenbiodiversität (Artenanzahl)

Seeds Seeds Carabidae 150 Araneae Fungi genotypes Microbial phenotypes Nematoda

Biologische Bodenqualitätsindikatoren

- Höhere Artenanzahl für Spinnen, Käfer, und Regenwürmer in BIOORG und BIOODYN, aber auch höherer Unkrautdruck
- Steigerung der biologischen Bodenqualität in biologischen Systemen

Zusammenfassung


- > Deutlich reduzierte Nährstoffeinträge in biologischen Systemen
- ➤ 15% weniger Ertrag in biologischen Systemen
- Stickstoffüberschuss wird benötigt um Bodenvorräte stabil zu halten
- Klimawirkung wird v.a. durch N₂O Emissionen gesteuert
- Verfahren mit 1.4 DGVE halten Bodenkohlenstoffgehalte stabil
- Kompostierung von Mist erhöht den Bodenkohlenstoffgehalt und steigert die biologische Bodenqualität

Danke für die Aufmerksamkeit!!!

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Bundesamt für Landwirtschaft BLW Fachbereich Forschung, Innovation, Evaluation

