

Ketose vorbeugen -

Versuchsergebnisse zur Verringerung des Energiedefizits bei Bio-Milchkühen

Andreas Steinwidder^a, Stefanie Ratheiser ^{a,c}, Leopold Podstatzky^a, Hannes Rohrer^a, Markus Gallnböck^a, Johann Gasteiner^b und Werner Zollitsch^c

^a HBLFA Raumberg-Gumpenstein, Bio-Institut

^b HBLFA Raumberg-Gumpenstein, Institut für Tier, Technik & Umwelt

^c Universität für Bodenkultur, Institut für Nutztierwissenschaften

Hintergrund

Milchleistung steigt zu Laktationsbeginn rascher als Futteraufnahme an

Negative Energiebilanz zu Laktationsbeginn

➤ Bei deutliche Unterversorgung → Stoffwechselbelastung mit Auswirkungen auf Tiergesundheit, Fruchtbarkeitsdaten und Nutzungsdauer

Energie-Bedarf

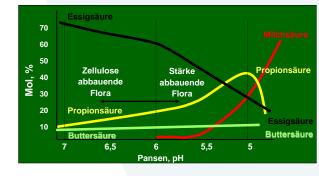
150

Energie-Aufnahme

1 40 80 120 160 200 240 280

Laktationstag

Strategien zur Vorbeuge: Zucht, Haltung, Fütterung, Management



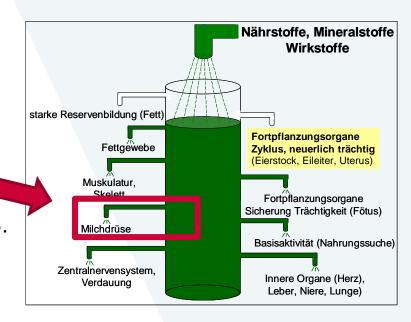
Fütterungsstrategien

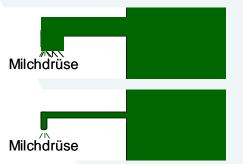
Optimierung der (Grund-)Futteraufnahme

<u>Erhöhung der Nährstoffdichte zu Laktationsbeginn</u> ... aber begrenzt ...

- Mangel an Struktur
- > Überschuss an schnell fermentierbaren KH
- Kosten/Akzeptanz von Spezial-Futtermitteln
- "Nutrient partitioning" -> Milchleistung steigt weiter an

HBLFA Raumberg-Gumpenstein Landwirtschaft


Weitere Ansätze


"Energieabfluss" über Milch reduzieren

Milchfettsynthese reduzieren zu Lak. Beginn: z.B. ungesättigte Fettsäuren (CLA) → aber häufig kein positiver Effekt auf Energiebilanz da Milchleistung stieg...

Milchleistung/Entzug in den ersten Tagen/Wochen reduzieren

- > Fütterung: Vorlaktation/Trockenstehzeit/Transitphase
- > Milchentzug reduzieren

Fütterung a.p. und Milchleistung

Fütterungsintensität vor Kalbung nicht zu hoch

BCS – Überkonditionierung vermeiden

Kraftfutter erst ab der Kalbung

einige Bio-Betriebe füttern Kraftfutter **teilweise auch erst später**

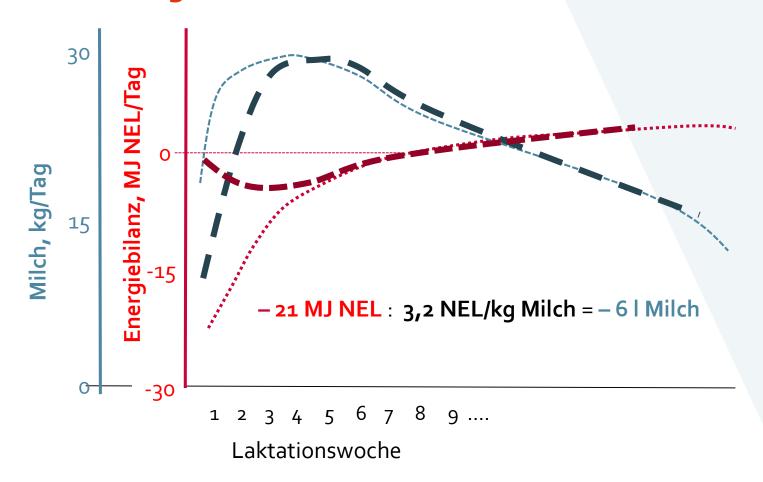
Fütterung letzten 4 Wochen	Stroh/GS	GS
Fütterung ersten 8 LakWochen	G	rassilage +
_ebendgewicht, kg	602	623
Milch, kg (Mittel -8. Wo.)	24,1	26,2
Fett, %	3,86	4,03
Eiweiß, %	3,16	3,15
Energieaufnahme	86,2	88,2
Entspricht kg Milch:	7,4	9,6
Energiebilanz	-23,6	-30,6

Irland, HF, 2. Lak., N=60 Mc Namara et al. 2003

GS + 3 kg KF KF 619

> 28,2 4,15 3,23 90,6 11,3

> -36,1



Milchentzug reduzieren

Milchentzug reduzieren

Milchentzug reduzieren

Reduzierte Melkhäufigkeit

1x statt 2x

2x statt 3x

in den ersten Laktationstagen/-wochen

Reduzierter Milchentzug bei der Melkung

- 5 bis - 15 l/Tag weniger Milchentzug

in den ersten Laktationstagen

Zu beachten bzw. Fragen:

Carry-Over-Effekte Eutergesundheit?

Nachwirkungen in der Milchleistung

Versuch 1:

Welchen Einfluss haben die **Kraftfutteranfütterung** bzw. **Melkfrequenz zu Laktationsbeginn** auf saisonal abkalbende Bio
Weide-Milchkühe?

Kraftfutter(an)fütterung (C) rund um die Abkalbung

Melkfrequenz (M)
in der ersten Laktationswoche

M₂

M1

C-21 C+1 C+21

Versuchsplan 3 Wochen vor Abkalbung bis 14. Lak.Woche; 3 Abkalbesaisonen

	C-21	C+1	C+21
Tiere insgesamt, N	22	22	22
Kraftfutter-Beginn	21 Tage a.p.	ab Abkalbung	21 Tage p.p.
Kraftfutter kg FM/Tag:	_		
Kraftfutter, kg FM/Tier u. Tag			
Vor Abkalbung	2 auf 3 kg	-	-
Lakt. Beginn - Lak.Tag 14	3 auf 6,5	3 auf 6,5	-
ab 14. Laktationstag	nach Leistung	nach Leistung	-
ab 21. Laktationstag	nach Leistung	nach Leistung	3 auf 6,5
ab 35. Laktationstag	nach Leistung	nach Leistung	nach Leistung

- ➤ **Grundfutter**: 4 kg FM Heu + Grassilage zur freien Aufnahme
- > Kraftfutter: 57 % Gerste, 20 % Körnermais, 23 % Erbsen
 - o nach Leistung: KF kg FM= -0,0252 * (kg Milch) 2 + 1,8063 * kg Milch 22,8 (Anpassung 2x/Woche Milchmittel letzte 4 Tage).

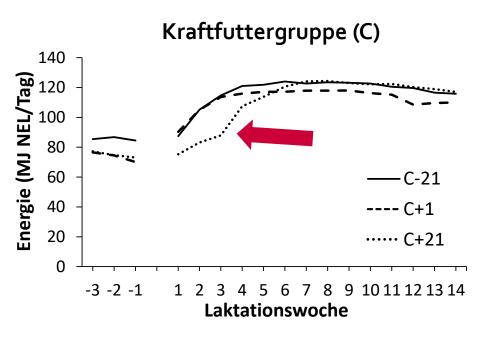
Versuchsplan 3 Wochen vor Abkalbung bis 14. Lak.Woche; 3 Abkalbesaisonen

	C-21	C+1	C+21
Tiere insgesamt, N	22	22	22
Kraftfutter-Beginn	21 Tage a.p.	ab Abkalbung	21 Tage p.p.
Kraftfutter kg FM/Tag:	_		
Kraftfutter, kg FM/Tier u. Tag			
Vor Abkalbung	2 auf 3 kg	-	-
Lakt. Beginn - Lak.Tag 14	3 auf 6,5	3 auf 6,5	-
ab 14. Laktationstag	nach Leistung	nach Leistung	
ab 21. Laktationstag	nach Leistung	nach Leistung	3 auf 6,5
ab 35. Laktationstag	nach Leistung	nach Leistung	nach Leistung
	M1 M2	M1 M2	M1 M2
Melkungen pro Tag in Wo 1	1X 2X	1X 2X	1X 2X
	morgens	morgens	morgens

➤ Grundfutter: 4 kg FM Heu + Grassilage zur freien Aufnahme

Kraftfutter: 57 % Gerste, 20 % Körnermais, 23 % Erbsen

o nach Leistung: KF kg FM= -0,0252 * (kg Milch) 2 + 1,8063 * kg Milch - 22,8 (Anpassung 2x/Woche - Milchmittel letzte 4 Tage).



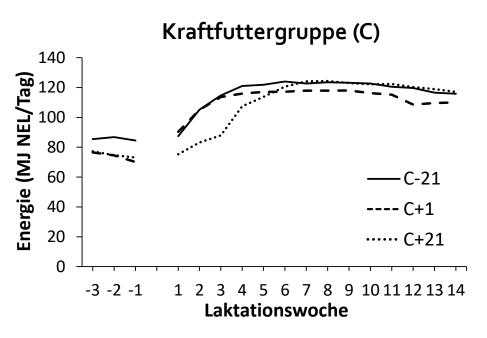
Energieaufnahme MJ NEL/Tier u. Tag

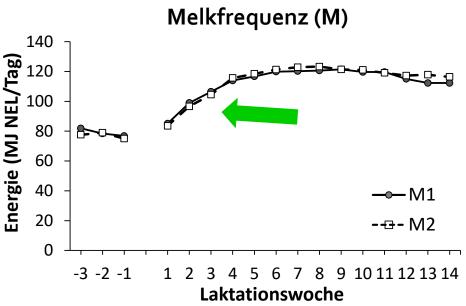
Haupteffekte

P-Werte Wo 1 bis 7:

 P_{C} <0,001 P_{M} =0,943 $P_{C\times M}$ =0,311

- Ersten 3 Lakt. Wochen C-21 und C+1 gleiche Energieaufnahme
- C+21 Energieaufnahme bis Woche 6 tiefer




Energieaufnahme MJ NEL/Tier u. Tag

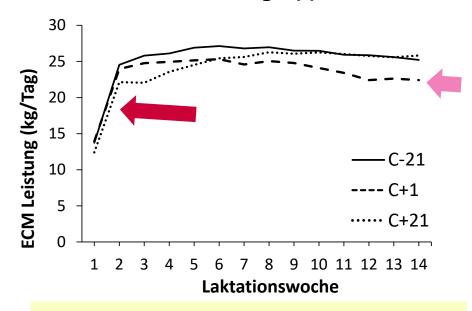
Haupteffekte

P-Werte Wo 1 bis 7:

 P_{C} <0,001 P_{M} =0,943 $P_{C\times M}$ =0,311

- Ersten 3 Lakt. Wochen C-21 und C+1 gleiche Energieaufnahme
- C+21 Energieaufnahme bis Woche 6 tiefer

Melkfrequenz kein Effekt auf Energieaufnahme


$\textbf{Milchleistungsverlauf}_{\text{kg ECM}_{3.2}}$

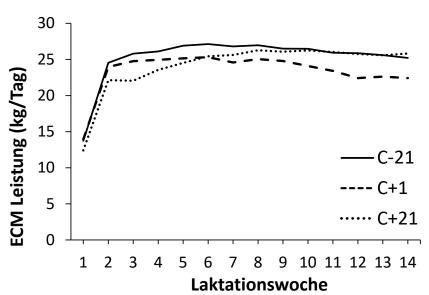
Haupteffekte

P-Werte Wo 1 bis 7:

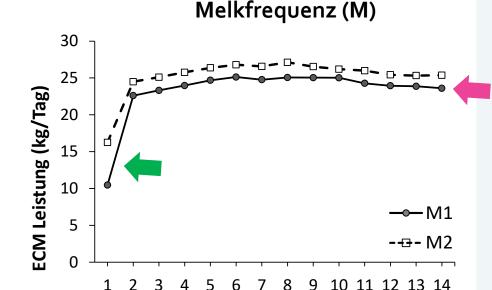
 $P_{C} = 0.562$ $P_{M} < 0.001$ $P_{C \times M} = 0.067$

Kraftfuttergruppe (C)

- Ersten zwei Wochen Milchleistung relativ unabhängig von Fütterung
- ➤ C+1 tieferer Verlauf → siehe C+1M1


$\textbf{Milchleistungsverlauf}_{\text{kg ECM}_{3.2}}$

Haupteffekte


P-Werte Wo 1 bis 7:

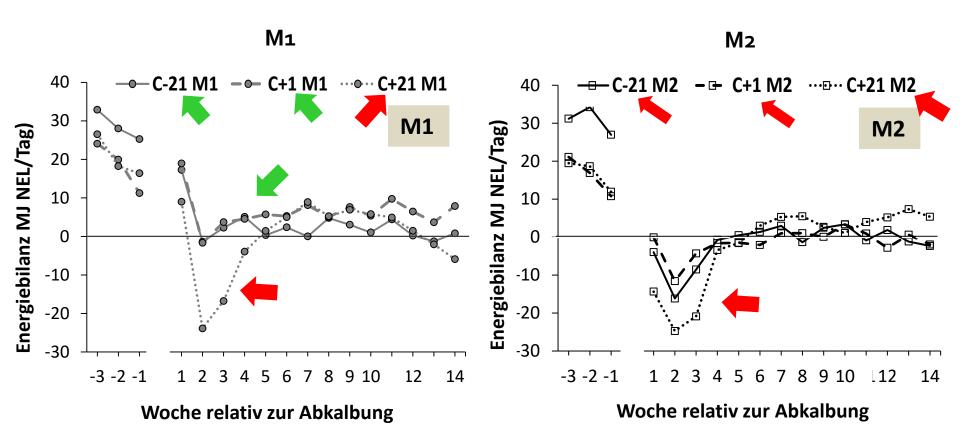
 P_{C} =0,562 P_{M} <0,001 $P_{C\times M}$ =0,067

- Ersten zwei Wochen Milchleistung relativ unabhängig von Fütterung
- C+1 tieferer Verlauf → C+1M1

1. Woche: Milchleistung in M1 um 36 % (5,8 kg) tiefer als in M2

Laktationswoche

M1 zeigte in C-21 keine in C+21 bis Woche 3 leichte und vor allem C+1 Nachwirkungen



Energiebilanz MJ NEL/Tag

C x M Gruppen

P-Werte Wo 1 bis 7:

 P_{C} =0,014 P_{M} <0,001 $P_{C\times M}$ =0,573

ß-Hydroxybuttersäure mmol/l

C	X	M	Gr	UI	מכ	en
	/\		U :	\sim 1	y	

	C -	21	C	+1	C+:	21		P-Werte	
Woche 1-6	Мı	M2	M1	M2	М1	M2	C	М	C×M
BHBA (mmol/l)	0,79 ^{bc}	0, 75 ^{bc}	0,70 ^c	0, 74 ^{bc}	o,80 ^{ab}	0,92ª	<,001	0,273	0,341
BHBA > 1,2 mmol/l (%)	2	4	0	5	7	13	0,368	0,756	0,459

Ergebnisse 1. – Ende 14. Laktationswoche Summen kg bzw. Zellzahlmittel

	C-21		C+	C+1		C+21		P-Werte		
	М1	M2	М1	M2	Мı	M2	C	М	C×M	
Milchproduktion u. Energiebilanz:										
ECM-Leistung (kg ∑)	2.397 ^{ab}	2.567 ^a	2.114 ^b	2.443 ^{ab}	2.371 ^{ab}	2.346 ^{ab}	0,134	0,071	0,288	
Zellzahl (LSM*1000)	152ª	41 ^{cd}	138ª	36 ^d	114 ^b	58 ^{bc}	0,421	<,001	0,006	
EB-Summe (MJ NEL ∑)	369	-108	598	3	-49	-115	0,318	0,093	0,620	

- M1: ECM Leistung in C-21 und C+1 nummerisch jeweils tiefer; C+1M1 signifikant unter C-21M2
- Zellzahl in M1 höher
- ➤ EB-Summe (kumulativ) in M1 tendenziell höher

Tierärztliche Behandlungen Wo 1 - 15

	C-	21	C	+1	C+	21		P-Wert	e
	М1	M2	М1	M2	М1	M2	C	М	CxM
Tierärztliche Behandlungen, % (N)									
Ketose	O (o)	O (o)	o _(o)	9 (1)	O (o)	O (o)	0,368	0,336	0,416
Milchfieber	9 (1)	18 (2)	o _(o)	18 (2)	18 (2)	18 (2)	0,683	0,294	0,752
Nachgeburtsverhalten & Endometritis	9 (1)	9 (1)	o _(o)	O (o)	o _(o)	18 (2)	0,351	0,317	0,387
Fruchtbarkeitsbehandlungen	9 (1)	o _(o)	o _(o)	9 (1)	o _(o)	O (o)	0,602	0,991	0,541
Mastitis	18 (2)	9 (1)	o _(o)	O (o)	o _(o)	18 (2)	0,225	0,656	0,289
Andere tierärztl. Behandlungen	o _(o)	9 (1)	o _(o)	o _(o)	o _(o)	O (o)	0,368	0,335	0,289
Summe tierärztl. Behandlungen	45 ₍₅₎	45 ₍₅₎	O ₍₀₎	36 ₍₄₎	18 (2)	55 (6)	0,360	0,030	0,135

- > Keine Unterschiede bei den einzelnen Behandlungsgruppen
- Keine tierärztlichen Behandlungen in C+1M1
- ➤ M1 in Summe weniger Behandlungen in C+1 und C+21

Fruchtbarkeitsergebnisse

	C-21		C	C+1		C+21		P-Werte		
	М1	M2	М1	M2	М1	M2	С	М	CxM	
Fruchtbarkeitsergebnisse										
Tage bis zur ersten Belegung (Tage)	4 5 ^b	58ª	46 ab	58ª	40 ^b	48 ^{ab}	0,171	0,004	0,857	
Verbleiberate bei der 1. Belegung (%)	36	45	64	60	55	45	0,445	0,671	0,791	
Tage bis zur Trächtigkeit (Tage)	96	70	67	78	68	78	0,344	0,639	0,361	
Besamungsindex (N)	2,45	1,67	1,45	1,44	2,00	1,80	0,290	0,496	0,566	
Trächtig am 84. Lak.Tag (%)	64	45	73	73	64	45	0,368	0,325	0,623	
Trächtig am 119. Lak.Tag (%)	73	82	91	90	82	82	0,510	0,794	0,893	

- M1 Kühe signifikant kürzere Dauer bis zur 1. Belegung
- > Keine signifikanten Unterschiede bei weiteren Fruchtbarkeitsergebnissen

Ergebnisse Versuch 1 zusammengefasst

	sign. Dif.	C-	C-21		+1	C+21		
	Untergruppen	M1	M2	Мı	M2	М1	M2	
Milchleistung 1-15	Х	1,5	1	2,5	1,5	1,5	1,5	
Energiebilanz 1-7	X	1,5	2,5	1	2,5	2	3	
ß-Hydroxybuttersäure	X	1,5	1,5	1	1,5	2,5	3	
Zellzahl	X	3	1,5	3	1	2,5	2	
Trächtig 119 Tag		1,5	1,3	1	1	1,3	1,3	
	Mittel	1,8	1,6	1,7	1,5	2,0	2,2	

- C+21 Gruppen (Kraftfutter erst ab Wo 3) geringere Futter- und Energieaufnahme zu Laktationsbeginn und metabolisch stärker gefordert
- C-21 Gruppen (Kraftfutteranfütterung vor Abkalbung) im Vergleich zu C+1 (Kraftfutter ab Kalbung) keine signifikanten Auswirkungen auf: Energieaufnahme, Milchleistung, Energiebilanz und Stoffwechselparameter
- M1: Futteraufnahme zu Lakt. Beginn nicht tiefer, Milchleistung geringer → Energiebilanz & Stoffwechselparameter günstiger; frühere erste Brunst jedoch Fruchtbarkeitsergebnisse keine Unterschiede, Zellzahl erhöht aber nicht mehr Eutererkrankungen.

Versuch 2:

Welchen Einfluss hat ein **reduzierter Milchentzug in den ersten beiden Laktationswochen** auf saisonal abkalbende Weide-Milchkühe?

2 x Melkung pro Tag

Kontrollgruppe: Melkung wie üblich (vollständig)

Versuchsgruppe: Laktationstag 1 – 3 maximal 6 l Milch pro Tag (3 l/Melkung),

Laktationstag 4 - 7 maximal 12 l/Tag

Laktationstag **7 - 14** maximal **16 l/Tag**

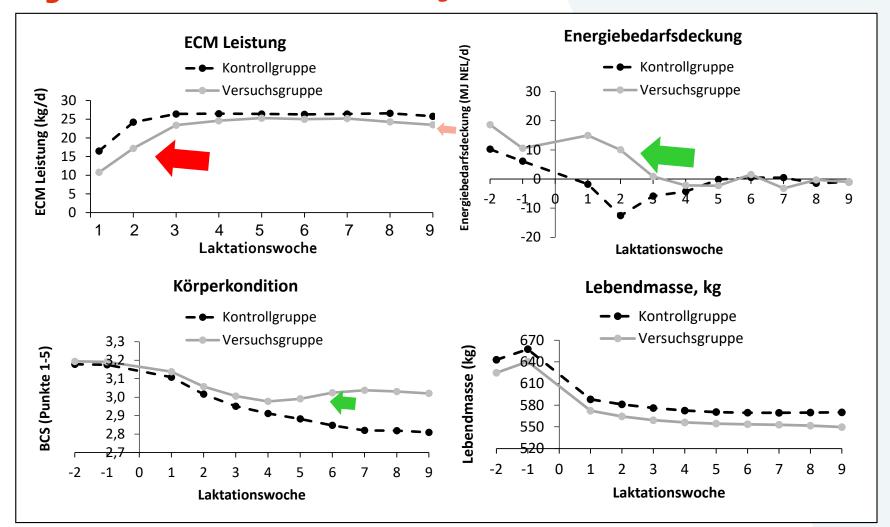
Ab dem 15. Laktationstag wie üblich (vollständig).

Fütterung: Grassilage + Heu zur freien Aufnahme + Kraftfutter (KF)

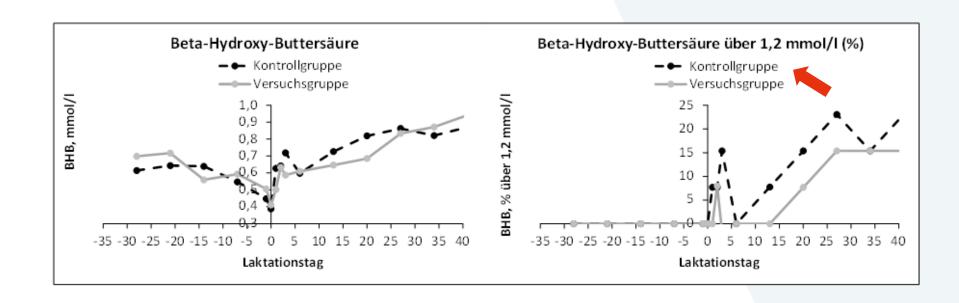
Kraftfutter: steigend von Laktationstag 1 bis 14 (von 3,1 auf 6 kg)

konstant 6,2 kg von Lakt. Tag 15-35

leistungsbezogen ab Lak. Tag 36 aber max. 6,6 kg


Ergebnisse zu Laktationsbeginn - reduzierter Milchentzug Versuch 2

	Laktationswoche									
	Gruppe	1	2	3	4	5	6	7	8	9
Futteraufnahme (kg TM/d)	K V	13,6 13,1	15,0 14,8	16,8 16,1	17,0 16,3	17,6 16,7	17,7 17,1	17,8 16,6	17,7 16,7	17,4 16,2
ECM-Leistung (kg/Tag)	K	16,5 ^b	24,2 ^b	26,4 23,2	26,5 24,6	26,4 25,3	26,3 25,0	26,4	26,6	25,8
Anzahl s. Zellen (n*1000)	K V	639 713	214 207	170 151	285 63	149 55	149 63	25,2 145 61	24,4 127 59	23,5 166 66
Energie-Deckung (MJ NEL/ d)	K V	-1,8 ^a	-12,6° a	-5,9 0,9	-4,3 -2,2	-0,2 -2,3	0,5 1,5	0,5 -3,2	-1,5 -0,3	-1,0 -1,0



Ergebnisse - reduzierter Milchentzug Versuch 2

Ergebnisse – BHB Blutplasma - reduzierter Milchentzug Versuch 2

Ergebnisse – BHB Blutplasma - reduzierter Milchentzug Versuch 2

	Gruppe		P-Wert
	K	V	Gruppe
Energiebedarfsdeckung \(\square\) Wo. 1-9 (MJ NEL)	-183	129	0,280
Lebendmasse Ø Laktationswoche 1-9 (kg)	574	557	0,493
BCS Laktationswoche 1 (Punkte 1-5)	3,11	3,14	0,841
BCS Laktationswoche 9 (Punkte 1-5)	2,81	3,02	0,157
BCS Tiefpunkt in Woche (Woche)	6,6	3,6 🛑	0,001
ECM-Leistung ∑ (kg)			
bis Laktationstag 56	1575	1395 🔷	0,140
bis Laktationstag 154	3684	3304	0,335
bis Laktationstag 203	4551	4134	0,144

Ergebnisse zusammengefasst

		Gruppe M	ilchentzug
	Sig. Dif.	Kontrolle	Versuch
Milchleistung 1-9		1	1,5
Energiebilanz 1-3	ja	2	1
Energiebilanz 1-9		1,5	1
ß-Hydroxybuttersäure		1,5	1
Zellzahl		1,5	1
Fruchtbarkeit		1	1
	Mittel	1,4	1,1

Zusammenfassung - beide Versuche

Verzicht auf Kraftfutter in den ersten Laktationswochen

→ Verschlechterung der Energiebilanz und erhöhtes Ketoserisiko

Kraftfutter-Anfütterung vor der Abkalbung

→ keine Verbesserung in der Energiebilanz im Vergleich zu KF ab der Kalbung

1x Melkung oder eingeschränkter Milchentzug zu Laktationsbeginn

- → in den ersten Laktationswochen kann die Energiebilanz und damit die Stoffwechselsituation verbessert werden.
- → Beide Maßnahmen verringerten jedoch im weiteren Laktationsverlauf die Milchleistung leicht (nicht signifikant).
- → Bei einmaliger Melkung in der ersten Woche lag die Milchzellzahl im gesamten Laktationsverlauf höher

Zusätzliche Ketosevorbeuge-Maßnahmen

- 1. Keine verfetteten Kalbinnen und Kühe bei der Abkalbung
- 2. Gleitende Futterumstellung in den letzten 2-3 Wochen a.p.
- 3. Beste Betreuung der Tiere rund um die Geburt
- 4. Optimierung der (Grund-)Futteraufnahme nach der Geburt
- 5. Beachtung der Milchinhaltsstoffe sowie Nutzung sonstiger Daten oder Verhaltensbeobachtungen (Futteranalysen, Sensordaten etc.) im Management
- **6. Vorbeugung von Milchfieber** bzw. **sonstiger (Stoffwechsel-)Belastungen** im Geburtszeitraum
- 7. Langsame Kraftfuttersteigerung in den ersten Laktationstagen
- 8. Berücksichtigung der betriebsindividuellen Fütterungsmöglichkeiten bei der **Zuchttierauswahl** und **Züchten mit "starken" Kuhlinien**
- 9. Tiergemäße Haltungsbedingungen und beste Betreuung

Vielen Dank für Ihre Aufmerksamkeit

Ketose vorbeugen -Versuchsergebnisse zur Verringerung Des Energiedefizits bei Bio-Milchkühen

Andreas Steinwidder^a, Stefanie Ratheiser ^{a,c}, Leopold Podstatzky^a, Hannes Rohrer^a, Markus Gallnböck^a, Johann Gasteiner^b und Werner Zollitsch^c

^a HBLFA Raumberg-Gumpenstein, Bio-Institut

^b HBLFA Raumberg-Gumpenstein, Institut für Tier, Technik & Umwelt

^c Universität für Bodenkultur, Institut für Nutztierwissenschaften