Effekte einer Mulchung des letzten Aufwuchses auf einer Dauerwiese

Starz W.¹, Pfister R. ¹, Rohrer H.¹ und Steinwidder A.¹

¹Lehr- und Forschungszentrum (LFZ) für Landwirtschaft Raumberg-Gumpenstein, Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere, A-8952 Irdning, Österreich

Schlussfolgerungen

Das zusätzliche Einbringen von organischen Materialien zeigte keinen Einfluss auf den Pflanzenbestand oder den Ertrag auf der Wiese. Obwohl durch das Mulchgut des vierten Wiesenaufwuchses noch zusätzlich an die 35 kg Stickstoff, zu den 100 kg N aus der Gülle kamen, führte dies zu keinem Mehrertrag bzw. höherem Grasanteil auf der Fläche.

Einleitung und Zielsetzung

Gülle wird in der Biologischen Landwirtschaft oft als kritischer Düngerstoff betrachtet, da im Vergleich zum Festmist, geringe Kohlenstoffmengen eingebracht werden, die eine wichtige Nahrungsquelle für Mikroorganismen darstellen. Daher rührt die Überlegung, durch die Einbringung von zusätzlichem organischem Mulchmaterial dieses Defizit auszugleichen.

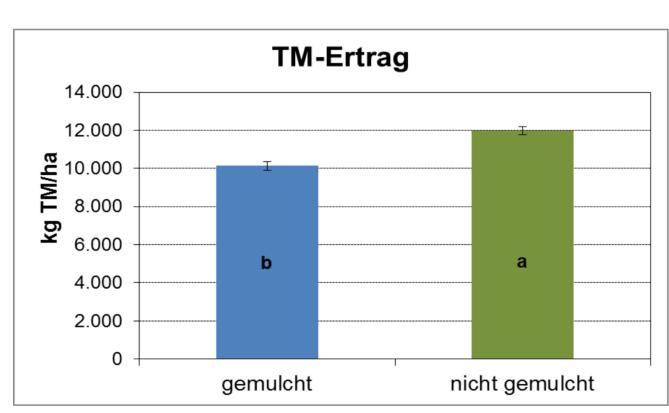
Grasmulch könnte als kostengünstiges Material zu einer verbesserten Kohlenstoffversorgung der Bodenlebewesen beitragen. Wie sich so ein Grasmulch vom 4. Auswuchs auswirkt sollte im Rahmen dieses Projektes untersucht werden.

Methoden

Standort: Bio-Institut am Moarhof in Trautenfels

Anlage: randomisierte Blockanlage mit 3 Wiederholungen (siehe Abbildung 1)

Varianten: Nutzungsart (Schnitt oder Mulch) und Güllebehandlung (mit und ohne


Steinmehl, siehe Tabelle 1)

Ernte: 4-Schnittnutzung, wobei bei den Mulchparzellen der letzte Schnitt nach der Ernte gehäckselt wurde und wieder auf der Fläche ausgebracht wurde.

Inhaltstoffe: Bestimmung der Rohnährstoffe mittels Weender Futtermittelanalyse

und Ermittlung der NEL mittels Regressionsformel aus den Rohnährstoffen

Statistik: SAS 9.2 Proc. Mixed

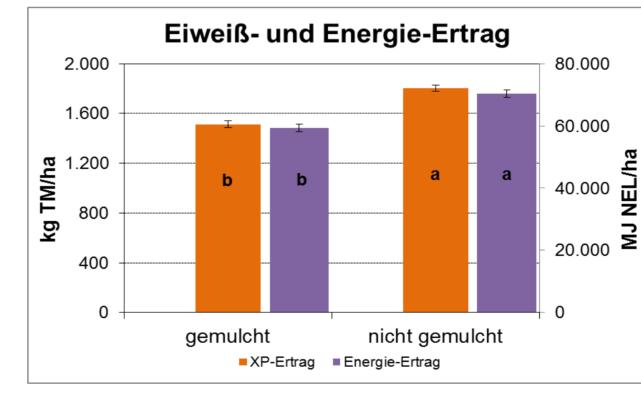


Abbildung 2: Mengen- und Qualitätserträge im Schnitt der gemulchten und nicht gemulchten Variante

Tabelle 2: Mengen- und Qualitätserträge im Schnitt der 3 Versuchsjahre

		Faktor Mulch				Fakt				
Parameter	Einheit	mit	ohne	SEM	р	mit SM	ohne SM	SEM	n	S _e
		LSMEAN	I LSMEAN	Р	LSMEAN	LSMEAN	JLIVI	р		
Ertrag	kg TM/ha	10.133	11.990	213	<0,0001	11.182	10.941	213	0,2770	619
XP-Ertrag	kg/ha	1.514	1.804	27	<0,0001	1.672	1.646	27	0,3710	85
Energie-Ertrag	MJ NEL/ha	59.315	70.444	1.213	<0,0001	65.432	64.326	1.213	0,3649	3.432

LSMEAN: Least Square Means; SEM: Standardfehler; p-Wert: Signifikanzniveau; s_e: Residualstandardabweichung

Ergebnisse

Ertrag: Die Mulchvariante erreichte im Schnitt einen um 1.857 kg/ha geringeren TM-Ertrag als die 4-Schnittnutzung

Güllebehandlung: Die Behandlung der Gülle mit Steinmehl (SM) zeigte keinen Effekt auf die Mengen- und Qualitätserträge (siehe Abbildung 2 und Tabelle 2)

Mulchmaterial: Mit dem Mulchgut wurde über eine Tonne TM je ha organische Substanz dem System zugeführt (siehe Tabelle 3). Die Mulchmenge erhöhte sich signifikant vom Ersten zum Letzten Versuchsjahr (siehe Tabelle 4). Das Mulchgut führte zusätzlich 35 kg/ha N in das System ein.

Tabelle 1: Überprüfte Versuchsvarianten

Variante	Nutzungsart	Güllebehandlung			
4S	4 Schnitte	ohne Behandlung			
3SM	3 Schnitte + Mulchung	ohne Behandlung			
4SB	4 Schnitte	mit Steinmehl			
3SBM	3 Schnitte + Mulchung	mit Steinmehl			

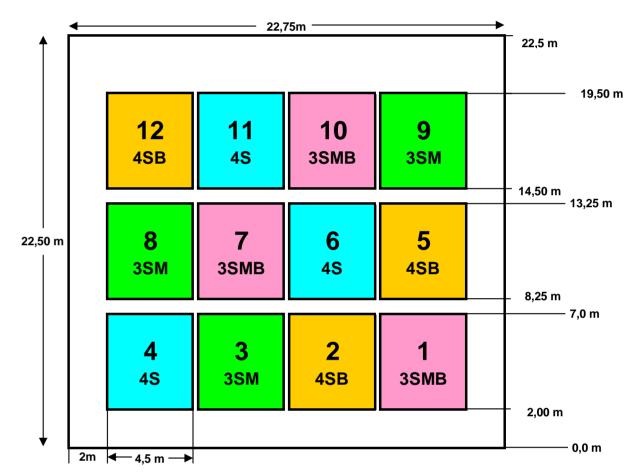


Abbildung 1: 2-faktorielle randomisierte Blockanalage

Tabelle 3: Durchschnittliche Mulch- und NPK-Mengen aus dem Mulchmaterial

		Faktor Güllebehandlung					
Parameter	Einheit	mit SM LSMEAN	Ohne LSMEAN	SEM	p	S _e	
Mulchmenge	kg/ha	1.235	1.274	82	0,6486	132	
N aus Mulch	kg/ha	34,5	34,7	3,2	0,9382	3,3	
P aus Mulch	kg/ha	5,9	6,2	0,3	0,4118	0,7	
K aus Mulch	kg/ha	24,3	22,3	1,7	0,3238	3,3	

Tabelle 4: Mulch- und NPK-Mengen aus dem Mulchmaterial in den drei bisherigen Versuchsjahren

Einheit	Jahr						
	2009	2010	2011	SE	a	S _e	
	LSMEAN	LSMEAN	LSMEAN	M	•		
kg/ha	532 ^c	1.415 ^b	1.816ª	83	<0,0001	132	
kg/ha	17,5 ^b	40,7 ^a	45,6°	3,1	<0,0001	3,3	
kg/ha	2,8 ^c	6,8 ^b	8,5ª	0,3	<0,0001	0,7	
kg/ha	9,7 ^b	28,9ª	31,3ª	1,8	<0,0001	3,3	
	kg/ha kg/ha kg/ha	kg/ha 532° kg/ha 17,5° kg/ha 2,8°	kg/ha 532° 1.415° kg/ha 17,5° 40,7° kg/ha 2,8° 6,8°	Einheit 2009 2010 2011 LSMEAN LSMEAN LSMEAN kg/ha 532° 1.415° 1.816° kg/ha 17,5° 40,7° 45,6° kg/ha 2,8° 6,8° 8,5°	Einheit 2009 2010 2011 SE LSMEAN LSMEAN LSMEAN M kg/ha 532° 1.415° 1.816° 83 kg/ha 17,5° 40,7° 45,6° 3,1 kg/ha 2,8° 6,8° 8,5° 0,3	Einheit 2009 LSMEAN 2010 LSMEAN 2011 LSMEAN SE M p kg/ha 532 ^c 1.415 ^b 1.816 ^a 83 <0,0001	

