

# Möglichkeiten und Notwendigkeiten im Bio-Grünland

Bio-Grünlandtag 2017 Niederösterreich Grundfutterqualität verbessern, Vielfalt erhöhen Ardagger, 21. April 2017

Walter Starz, Bio-Institut - HBLFA Raumberg-Gumpenstein





MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH

## Probleme am Dauergrünland



Bia Institut



#### Was sind die aktuellen Probleme?

- hauptsächlich fehlt die Kulturpflanze Gras!
- daher liefern viele Flächen nicht jenen Ertrag, den der Standort bereitstellen könnte
- moderne Wiesennutzung erfordert Kenntnisse über die wichtigsten Grasarten in Mitteleuropa
- alle Maßnahmen im Grünland sind nur nach einer Bestandesanalyse sinnvoll
- ertragreiche und stabile Bestände benötigen eine regelmäßige Kontrolle und eine intensive Pflege von der Düngung bis zur Nachsaat!



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



### Warum sind Bestände lückig?

- Grünlandnutzung hat sich im 20. Jh. stark verändert
- Schnittanzahlen wurden vervielfacht
- Verlust der grünen Blätter hat großen Einfluss auf die Entwicklung und die Ausdauer der Gräser
- Verschwinden und Zurückdrängen der Gräser über Jahrzehnte führte zu entscheidenden Veränderungen in den Grünlandbeständen
- Nutzung des Grünlandes im 21. Jh. muss neu gedacht und verstanden werden!



MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH HBLFA RAUMBERG - GUMPENSTEIN

#### Zielkonflikt im Bio-Grünland?

- Wiederkäuergemäße Fütterung versucht den KF-Einsatz zu reduzieren → GF-Aufnahme muss steigen
- GF-Leistungen von **4.500-5.000 kg Milch** pro Tier und Jahr bzw. **15-17 kg Milch pro Tier und Tag** angestrebt
- um dies zu erreichen sind beste GF-Qualitäten von Intensivwiesen mit hohen Energie- und Proteinkonzentrationen notwendig → nur möglich wenn das Grünland früh genutzt wird und die Bestände blattreich sind
- mehr als 1-2 Schnitte pro Jahr führen zu deutlichen Rückgang der Artenvielfalt am Grünland



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



### Nutzung und Futterqualität

- Alter des Bestandes entscheidet über die Qualität des Futters
- hohe Qualität im Zeitpunkt des Ähren- und Rispenschiebens
- Ergebnisse aus Schnittversuchen des Bio-Instituts (2008-2013)

|                | Parameter    | Einheit      | 1. Schnitt | 2. Schnitt | 3. Schnitt | 4.Schnitt |
|----------------|--------------|--------------|------------|------------|------------|-----------|
|                | Energie      | MJ NEL/kg TM | 5,67       | 5,57       | 5,8        |           |
| 3-Schnittwiese | e Rohprotein | g/kg TM      | 110        | 141        | 152        |           |
|                | Rohfaser     | g/kg TM      | 306        | 290        | 267        |           |
| 4-Schnittwiese | Energie      | MJ NEL/kg TM | 6,13       | 5,89       | 5,75       | 6,14      |
|                | e Rohprotein | g/kg TM      | 133        | 152        | 155        | 179       |
|                | Rohfaser     | g/kg TM      | 265        | 255        | 260        | 205       |



MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH

#### Boden und Standort





Bi@ Institut

Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



#### Boden und Standort am Grünland

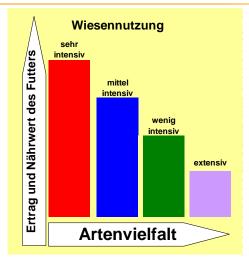
- ausgeglichene und regelmäßige
  Wasserversorgung ist für optimales
  Graswachstum notwendig
- für die Bildung von 1 kg TM werden ca. 600 l
  Wasser benötigt bzw. 2-3 l täglich je m²
- unter optimalen Bedingungen wächst Gras bis zu 2 mm in der Stunde
- bei Trockenheit wird das Wachstum sofort eingestellt



 $Abgestufter\ Wiesenbau\ \mid\ Bio\text{-}Institut\ \mid\ Umsetzungsm\"{o}glichkeiten$ 



### Lösung wäre abgestufte Nutzung


- meist unterschiedlich tiefgründige Böden am Betrieb
  - Anpassung der Bewirtschaftung an den Standort
- wegen der Viehbesätze in Bio (1,3 GVE/ha in Österreich)
  - zu wenig Wirtschaftsdünger um alle Flächen gleich intensiv zu nutzen und bedarfsgerecht zu versorgen
- Bereitstellung unterschiedlicher GF-Qualitäten
- Flächen auf eine Nutzungsintensität einstellen
- Grünlandbetrieb fördert Artenvielfalt
  - Grundsatz von Bio!



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



## Lösung wäre abgestufte Nutzung



(Quellen: Dietl et al., 1998; Dietl und Lehmann, 2004)

Bio Institut



## Extensive Wiesen



Bio Institut

Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



### Intensive Wiesen

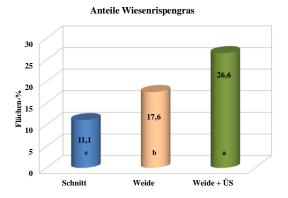




Bio Institut

## Bestandsverbesserung mit Übersaaten

- Übersäen = auf die Bodenoberfläche legen
- nachfolgendes Anwalzen verbessert die Wasserversorgung und so die Keimung
- Bestandslücken sind notwendig
- Übersaat bringt **moderne Zuchtsorten** in das Grünland
- Übersaaten vor dem 1. Aufwuchs nur in sehr lückigen Beständen
- entstehen **Bestandslücken** muss **sofort** mit gezielten **Übersaaten** reagiert werden!




Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



#### Pflanzenbestand

• Übersaat zu drei Terminen mit je 10 kg/ha in Kombination mit intensiver Kurzrasenweide durch Jungvieh (Bio-Institut 2008-2011)







## Optimierung am Grünland als Ziel!





Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



### Düngung am Dauergrünland

- Düngung im Dauergrünland hat die Aufgabe den Boden zu aktivieren
- Wirtschaftsdünger sind optimal, da sie Nährstoffe und Spurenelemente für Bodenlebewesen und die Grünlandpflanzen bereitstellen
- **Je intensiver** die **Nutzung** des Grünlandes, **desto mehr Wirtschaftsdünger** müssen rückgeführt werden
- Bei 4-5 Schnitten sind die in Bio erlaubten 170 kg
  N/ha notwendig!
- Vielflach nur mit einer abgestuften Nutzung möglich





### Düngerplanung am Betrieb

- wichtiges Instrument zur gezielten Kreislaufwirtschaft auf den Grünlandflächen
- Nährstoffkreislauf muss für jede Nutzung optimal geschlossen werden
- je höher die gedüngte **Stickstoffmenge**, desto besser das **Graswachstum** und desto höher der **Ertrag**
- Betriebe unter 2 GVE/ha müssen abgestuft nutzen, da sonst zu wenig Dünger vorhanden
- Kraft- und Mineralstofffuttermittel sind am Dauergrünlandbetrieb ein Düngerzukauf



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



#### Beispiel-Betrieb hoher Tierbesatz

• Quelle: Sachgerechte Düngung 6. Auflage 2006

| Stück | Kategorie                       | System             | m³/Jahr | kg N/Jahr feldfallend |
|-------|---------------------------------|--------------------|---------|-----------------------|
| 30    | Milchkühe 6.000 kg <sup>2</sup> | Gülle <sup>1</sup> | 1.062   | 1.604                 |
| 7     | Kalbinnen <sup>3</sup>          | Tiefstall          | 58      | 155                   |
| 8     | Jungvieh 1-2 J <sup>3</sup>     | Tiefstall          | 50      | 137                   |
| 9     | Jungvieh 1/2-1 J <sup>3</sup>   | Tiefstall          | 56      | 154                   |
| 10    | Kälber bis 1/2 J <sup>4</sup>   | Tiefstall          | 34      | 95                    |

<sup>1:</sup>Gülle 1:1 Verdünnung mit Wasser

• Dauergrünlandbetrieb mit 28 ha und einem Tierbesatz von **1,8 GVE/ha** 





<sup>&</sup>lt;sup>2</sup>: Milchkühe auf Tagesweide (10-12 h) = \*0,75 der in Tabelle 4 kalkulierten m<sup>3</sup> und N aus Gülle

<sup>3:</sup> Jungvieh und Kalbinnen auf Vollweide (24 h) = \*0,5 der in Tabelle 4 kalkulierten m3 und N aus Tiefstallmist

<sup>4:</sup> Kälber ohne Weidegang

## Beispiel Düngerzuteilung

 Optimierung der Ausbringmengen je Termin und je Nutzungsintensität

| 28 ha<br>GL | Nutzung    | Gülle 1:1 verdünnt in m³ |            |            | Mist in m³ | Gülle  |                |             | Mist |                |         |      |
|-------------|------------|--------------------------|------------|------------|------------|--------|----------------|-------------|------|----------------|---------|------|
|             |            | Frühling                 | 1. Schnitt | 2. Schnitt | 3. Schnitt | Herbst | N kg<br>gesamt | m³<br>Gülle | N/ha | N kg<br>gesamt | m³ Mist | N/ha |
| 8           | 4-Schnitt  | 15                       | 15         | 15         | 15         | 10     | 725            | 480         | 91   | 219            | 80      | 27   |
| _ 7         | 3-Schnitt  | 15                       | 15         | 15         |            | 10     | 476            | 315         | 68   | 192            | 70      | 27   |
| 4           | 2-Schnitt  |                          |            |            |            | 12     | 0              | 0           | 0    | 131            | 48      | 33   |
| 9           | Dauerweide | 15                       | 15         |            |            |        | 408            | 270         | 45   | 0              | 0       | 0    |
|             |            |                          |            |            |            | Summe  | 1609           | 1065        |      | 542            | 198     |      |



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



## Beispiel-Betrieb niedriger Tierbesatz

• Quelle: Sachgerechte Düngung 6. Auflage 2006

| Stück | Kategorie                       | System             | m³/J | kg N/J feldfallend |
|-------|---------------------------------|--------------------|------|--------------------|
| 18    | Milchkühe 6.000 kg <sup>2</sup> | Gülle <sup>1</sup> | 637  | 963                |
| 4     | Kalbinnen <sup>3</sup>          | Tiefstall          | 33   | 88                 |
| 3     | Jungvieh 1-2 J <sup>3</sup>     | Tiefstall          | 19   | 51                 |
| 4     | Jungvieh 1/2-1 J <sup>3</sup>   | Tiefstall          | 25   | 68                 |
| 5     | Kälber bis 1/2 J <sup>4</sup>   | Tiefstall          | 9    | 24                 |

<sup>&</sup>lt;sup>1</sup>:Gülle 1:1 Verdünnung mit Wasser

 Dauergrünlandbetrieb mit 24 ha und einem Tierbesatz von 1,2 GVE/ha





 $<sup>^2</sup>$ : Milchkühe auf Tagesweide (10-12 h) = \*0.75 der in Tabelle 4 kalkulierten  $\mathrm{m}^3$  und N aus Gülle

<sup>3:</sup> Jungvieh und Kalbinnen auf Vollweide (24 h) = \*0,5 der in Tabelle 4 kalkulierten m3 und N aus Tiefstallmist

<sup>4:</sup> Kälber ohne Weidegang

### Beispiel Düngerzuteilung

 Optimierung der Ausbringmengen je Termin und je Nutzungsintensität

| 24 ha<br>GL | Nutzung    | Gülle 1:1 verdünnt in m³ |               |               | Mist in Gülle |        |                |             | Mist |                |            |      |
|-------------|------------|--------------------------|---------------|---------------|---------------|--------|----------------|-------------|------|----------------|------------|------|
|             |            | Frühling                 | 1.<br>Schnitt | 2.<br>Schnitt | 3.<br>Schnitt | Herbst | N kg<br>gesamt | m³<br>Gülle | N/ha | N kg<br>gesamt | m³<br>Mist | N/ha |
| 7           | 4-Schnitt  | 15                       | 13            | 10            | 10            |        | 508            | 336         | 73   | 0              | 0          | 0    |
| 6           | 3-Schnitt  | 15                       | 10            | 10            |               |        | 317            | 210         | 53   | 0              | 0          | 0    |
| 5           | 2-Schnitt  |                          |               |               |               | 17     | 0              | 0           | 0    | 233            | 85         | 47   |
| 6           | Dauerweide | 15                       |               |               |               |        | 136            | 90          | 23   | 0              | 0          | 0    |
|             |            |                          |               |               |               | Summe  | 961            | 636         |      | 233            | 85         |      |



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



## Düngerplanung am Betrieb

- Optimieren der Nährstoffflüsse auf den Grünlandflächen
- zielgerichtete Zuteilung auf die Flächen
- Bewusste Reduktion der Schnittintensität auf ausgewählten Flächenstücken
- Somit mehr Dünger für intensiv genutzte Wiesen
- Gesamtbetrieblich damit kein mengenmäßiger
  Futterverlust, sofern Maßnahmen zur Verbesserung des Pflanzenbestandes durchgeführt werden





### Maßnahmen zur Nährstoffoptimierung

- permanente Einplanung der Nachlieferung an Nährstoffen aus dem Boden ist langfristiger Abbau an Vorräten und Humus
- grundsätzliche Tatsache auf vielen landw. Betrieben
- mittelfristig Überlegungen notwendig, Nährstoffflüsse halbwegs im Gleichgewicht zu halten
- Stickstoff muss hier als Nährstoff in den Focus der Bemühungen rücken
- dies unter Berücksichtigung der Bio-Richtlinien



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



### Stickstoffoptimierung

- mögliche Strategien Stickstoff in das Bio-Grünland zu bringen:
  - aktive Förderung von Futterleguminosen
  - regelmäßiges nachsäen von Rotklee in Dauergrünland
  - Kultivierung von Kleegras ohne zusätzliche Düngung
  - eventuell Zukauf organischer Dünger, wenn diese günstig und in der Region verfügbar sind
  - wichtig ist bei Einbringung zugekaufter Dünger, dass diese ausschließlich auf den mit Nährstoffen aufzuwertenden Flächen ausgebracht werden
  - einzelne Flächen optimieren und nicht auf einmal die gesamten Betriebsflächen!



MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH

#### Basis für ein wertvolles Grünland

- Aufbau grasreicher Bestände mit an die Nutzung angepassten Futtergräsern
- im Dauergrünland ist in erster Linie **Gras** die zu fördernde **Kulturpflanze**
- eine **geschlossene** und **dichte Narbe** lässt sich mit wertvollen **Futtergräsern** verwirklichen
- Jede Nutzungsintensität braucht ihre Düngung und eine schlagbezogene Düngerplanung hilft dabei!
- **Lücken** müssen so bald wie möglich und so oft wie nötig **mit Übersaaten geschlossen** werden!



Abgestufter Wiesenbau | Bio-Institut | Umsetzungsmöglichkeiten



#### Danke für die Aufmerksamkeit!





