



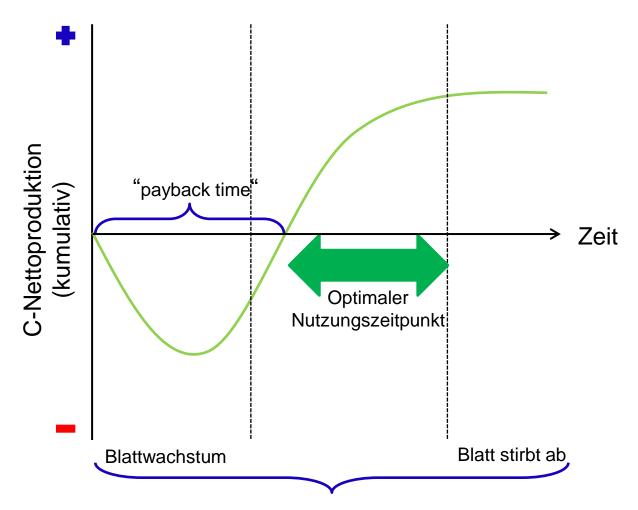
Grünlandbewirtschaftung in der Biologischen Landwirtschaft

VO Ökologische Landwirtschaft 09.12.2013 BOKU, Wien

Übersicht

- Bio-Grünland in AT
- Graswachstum und Nutzung
- NST-Bilanzen auf Milchviehbetreiben
- Mulchen von Schnittwiesen
- Übersaat von Wiesenrispe
- Weidehaltung von Rindern

Bio-Grünland in AT


- ca. 60 % der Bio-Fläche in Österreich ist Dauergrünland
- hauptsächlich in Ländern mit hohem Anteil an Alpen

	Burgenland	Kärnten	Niederösterreich	Oberösterreich	Salzburg	Steiermark	Tirol	Vorarlberg	Wien	Österreich
Anteil Bio-Grünland an der gesamten Bio Fläche in %	7	78	30	62	97	84	98	98	1	63
Anteil Bio-Grünland an der gesamten Grünland- Fläche in %	25	19	25	20	49	27	21	15	27	26

Blattlebensdauer und Nutzung

Blattlebensdauer

Quelle: verändert nach Kikuzawa, 1995

Pflanzenbestand und Nutzung

- Nutzung hat einen sehr großen Einfluss auf die Artenzusammensetzung
- Nicht nur die Anzahl der Schnitte im Jahr sondern gerade der Zeitpunkt des 1. Schnittes haben einen Effekt
- Unterschiedliche Nutzungsintensitäten stellen auch unterschiedliche Grundfutterqualitäten zur Verfügung, je nach Leistungsstadium des Tieres

Extensive Wiesen

Intensive Wiesen

Nährstoffbilanzen von biologisch wirtschaftenden Milchviehbetrieben im Grünlandgebiet bei reduziertem Kraftfuttereinsatz

Allgemeine Informationen

Ziele

- Feststellen der aktuellen NST-Bilanz für N, P und K
- Einfluss des KF zur NST Bilanz bewerten

Fragestellung

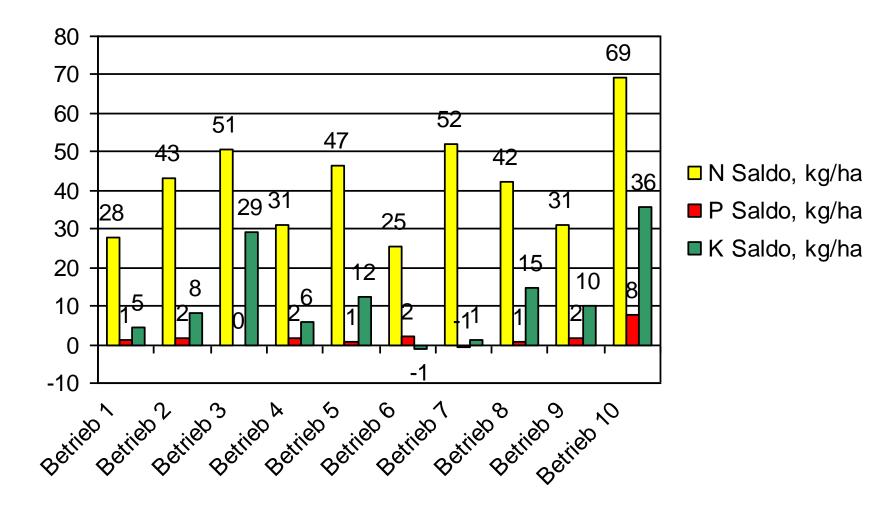
Wie verändern sich die Bilanzsalden am Gesamtbetrieb durch Reduktion des Kraftfutter-Einsatzes in der Milchviehfütterung?

Methode

Modellierungen

Reduzierung des Kraftfuttereinsatzes um 25%

- Verbesserung des Managements
- Mehr Erträge im Grünland
- Bessere Grundfutterleistung


Reduzierung des Kraftfuttereinsatzes um 25% und 50%

- Milchleistungsrückgang
- Mehr Kühe
- Erhöhter Grundfutterbedarf der Kühe
- Kalbinnenverkauf

Ergebnis-Ausgangshoftorbilanz

Ergebnis Modellierung I

		N		Р		К
	Saldo	Veränderung	Saldo	Veränderung	Saldo	Veränderung
	kg /ha	kg /ha	kg /ha	kg /ha	kg /ha	kg /ha
Betrieb 1	24	3	1	1	4	1
Betrieb 2	37	(6)	0	(2)	6	(3)
Betrieb 3	46	5	-1	1	27	2
Betrieb 4	29	2	1	0	5	1
Betrieb 5	42	5	0	1	10	2
Betrieb 6	22	3	1	1	-2	1
Betrieb 7	50	2	-1	0	1	(1)
Betrieb 8	39	3	0	1	14	1
Betrieb 9	27	4	1	1	9	1
Betrieb 10	65	4	7	1	34	1
					0	
Minimum	22	2	-1	0	-2	1
Maximum	65	6	7	2	34	3
Mittelwert	35	4	0	1	8	1

Ergebnis Modellierung II

		N		Р		K
	Saldo	Veränderung	Saldo	Veränderung	Saldo	Veränderung
	kg /ha	kg /ha	kg /ha	kg /ha	kg /ha	kg /ha
Betrieb 1	25	3	1	0	4	1
Betrieb 2	38	5	0	(1)	6	(3)
Betrieb 3	46	4	-1	1	27	2
Betrieb 4	30	2	1	0	5	1
Betrieb 5	42	4	0	1	10	2
Betrieb 6	23	2	2	0	-2	1
Betrieb 7	50	2	-1	0	1	(1)
Betrieb 8	39	3	0	0	14	1
Betrieb 9	24	7	1	1	8	2
Betrieb 10	65	4	7	1	34	1
				0	0	0
Minimum	23	2	-1	0	-2	1
Maximum	65	7	7	1	34	3
Mittelwert	38	4	1	1	11	1

Ergebnis Modellierung III

		N		Р		K
	Saldo	Ver änderung	Saldo	Veränderung	Saldo	Veränderung
	kg /ha	kg /ha	kg /ha	kg /ha	kg /ha	kg /ha
Betrieb 1	21	6	0	1	3	2
Betrieb 2	32	(11)	-1	(3)	3	5
Betrieb 3	41	9	-1	1	26	3
Betrieb 4	28	3	1	1	4	2
Betrieb 5	37	9	-1	2	8	5
Betrieb 6	22	(3)	_ 2	0	-2	1_
Betrieb 7	49	3	-1	0	0	1
Betrieb 8	37	6	0	1	13	1
Betrieb 9	24	7	1	1	8	2
Betrieb 10	61	8	7	1	33	3
				0	0	0
Minimum	21	3	-1	0	-2	1
Maximum	61	11	7	3	33	5
Mittelwert	35	7	0	1	9	3

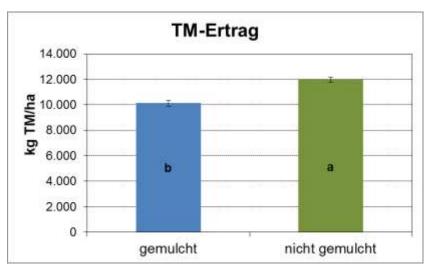
Schlussfolgerungen

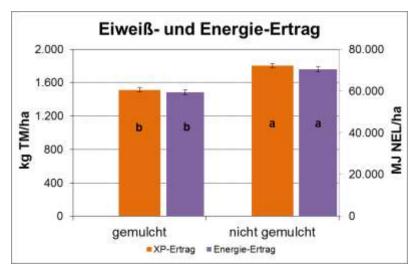
- Mit der Reduktion des Kraftfutters kommen die Betriebe einer Wiederkäuergerechten Fütterung näher
- Durch die Kraftfutterreduktion wurden Nährstoffüberschüsse vermindert und zugleich keine defizitären Bilanzen ermittelt
- Bei einer eingesetzten Kraftfuttermenge von 400-600kg KF je Kuh und Jahr kommt es zu keinem Nährstoffdefizit am Dauergrünlandbetrieb
- P-Bilanzen sind in allen Modellierungen ausgeglichen, weshalb auf kein Defizit geschlossen werden kann

Optimierung der Gülledüngung auf Wiesen durch Einbringung zusätzlicher organischer Materialien

Ziele

 Durch Mulchung des letzten Aufwuchses sollen zusätzliche organische Stoffe dem Bodenleben bereitgestellt werden


 Das mehr an organischen Düngerstoffen soll zu einer Erhöhung der Erträge in den folgenden Jahren führen



Erträge

				Varia	Variante				Faktor Mulch			
Parameter	Einheit	3SMB	3SM	4SB	4S	SEM	р	mit	ohne	SEM	р	
Ertrag	kg TM/ha	10.447	9.820	11.916	12.063	261	0,087	10.133	11.990	213	<0,0001	
XP-Ertrag	kg/ha	1.551	1.477	1.794	1.814	34	0,122	1.514	1.804	27	<0,0001	
Energie- Ertrag	MJ NEL/ha	60.995	57.634	69.869	71.018	1.477	0,074	59.315	70.444	1.213	<0,0001	

Mulchgut

		Fakt	or Gülleb	ehandlu	ıng	Jahr				
Paramenter	Einheit	mit SM	ohne SM	SEM	р	2009	2010	2011	SEM	р
Mulchmenge	kg/ha	1235	1274	82	0,6486	532	1415	1816	83	<0,0001
N aus Mulch	kg/ha	34,5	34,7	3,2	0,9382	17,5	40,7	45,6	3,1	<0,0001
P aus Mulch	kg/ha	5,9	6,2	0,3	0,4118	2,8	6,8	8,5	0,3	<0,0001
K aus Mulch	kg/ha	24,3	22,3	1,7	0,3238	9,7	28,9	31,3	1,8	<0,0001

Schlussfolgerungen

- Obwohl über das Mulchgut große NST-Mengen eingebracht wurden, führte dies zu keinem Mehrertrag in den Folgejahren
- Die hohen Erträge auf dem Standort und die hohen Humusgehalte im Dauergrünland dürften eine weitere Ertragssteigerung kaum möglich machen
- Ökologisch und Ökonomisch wäre es sinnvoller den letzten Aufwuchs als Herbstweide über die Wiederkäuer zu nutzen

Etablierung von Wiesenrispengras in einer 3-schnittigen Dauerwiese mittels Kurzrasenweide

Ziele

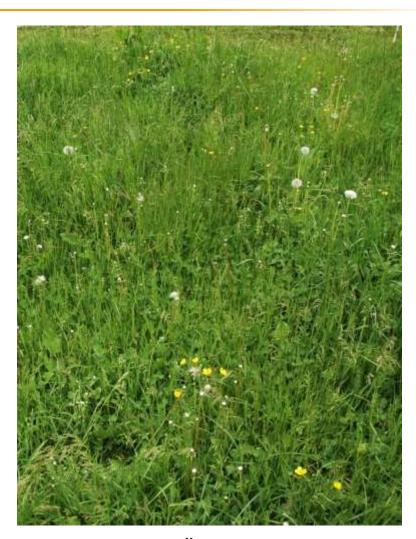
- Anteil von Wiesenrispengras durch mehrmalige Übersaaten erhöhen
- Reduzierung der Konkurrenz des übrigen Bestandes für die Sämlinge
- Umsetzung einer intensiven Kurzrasenweide als kostengünstige und im Betriebskreislauf der Biologischen Landwirtschaft passende Methode in Kombination mit einer Übersaat

Pflanzenbestand

	F:	Variante								
Parameter	Ein- heit	Schnitt	Weide	Weide ÜS	SEM	p-Wert	Se			
	11010	LSMEAN	LSMEAN	LSMEAN	OLIVI	pvvon				
Gräser	%	73,5	67,9	70,8	1,6	0,0840	1,4			
Dactylis glomerata	%	15,2ª	7,4 b	8,0 b	2,0	0,0200	4,4			
Lolium perenne	%	5,6	7,1	6,6	0,6	0,1671	4,6			
Poa trivialis	%	16,3 ^a	6,4 b	5,1 ^b	1,5	0,0003	5,3			
Poa pratensis	%	11,1 ^c	17,6 b	26,6 ^a	1,5	<0,0001	1,9			
Leguminosen	%	3,5 ^b	15,2 ^a	13,9 ^a	1,6	0,0002	4,3			
Kräuter	%	18,0 ^a	13,5 ^b	11,8 ^b	0,7	<0,0001	4,3			

LSMEAN: Least Square Means; SEM: Standardfehler; se: Residualstandardabweichung

- Weißkleeanteil in beweideten Variante höher und der Krautanteil niedriger
- Knaulgras und Gemeine Rispe wurden durch Beweidung zurückgedrängt
- Wiesenrispengras breitete sich am stärksten in der Übersaatvariante aus



Pflanzenbestand

mit Übersaat

Ertrag und Futterqualität

	Fin	Variante							
Parameter	Ein- heit	Schnitt Woide Wei		Weide ÜS	SEM	p-Wert	Se		
		LSMEAN	LSMEAN	LSMEAN	OLIVI	PWOIL			
TM Ertrag	kg/ha	10110	9879	10416	249	0,3413	705		
XP Ertrag	kg/ha	1335 ^b	1328 ^b	1475 ^a	40	0,0394	114		
NEL Ertrag	MJ/ha	56627	56862	59525	1380	0,2907	3903		
XP Gehalt	g/kg TM	132 ^b	144 ^a	144 ^a	2	<0,0001	8		
NEL Gehalt	MJ/kg TM	5,60 ^b	5,75 ^a	5,70 ^a	0,03	0,0073	0,08		

LSMEAN: Least Square Means; SEM: Standardfehler; se: Residualstandardabweichung

- Zwischen den Varianten gab es keine TM-Ertragsunterschiede
- XP-Ertrag war in der Übersaatvariante am höchsten
- Konzentration an Energie und XP war in den beweideten Varianten höher als in der klassischen 3-Schnittnutzung

Schlussfolgerungen

- Wiesenrispengras-Übersaat in Kombination mit einer Kurzrasenweide ist eine kostengünstige Maßnahme zur Bestandesverbesserung
- Wiesenrispengras-Bestände bilden eine dichte und stabile Narbe und beugen einer Verkrautung vor
- Ertrag und Qualität können mit traditionellen Schnittwiesen mithalten und übertreffen diese teilweise

Weidehaltung

 Gras und Kuh haben seit 15 Millionen Jahren eine gemeinsame Evolution

Kurzrasenweide

Die Futterqualität ist relativ gleich bleibend, da immer das neu gebildete Pflanzengewebe gefressen wird.

Die Fläche wird je nach Graswachstum angepasst und somit Fläche dazu oder weg gezäunt.

Koppelweide

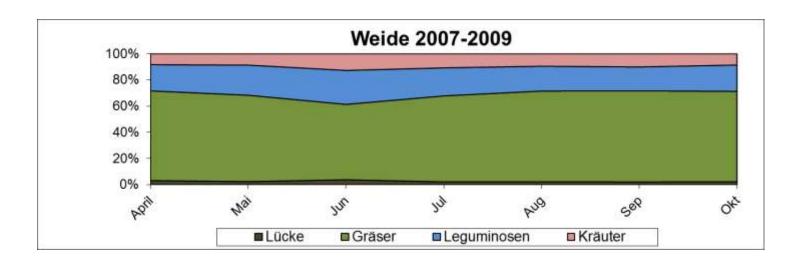
Der Koppelbedarf ändert sich je nach Graswachstum, jedoch nicht Besatzeit je Koppel, die bei Milchvieh 5 Tage nicht überschreiten soll.

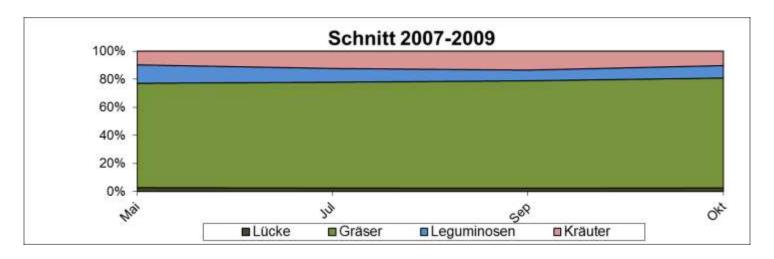
Je länger eine Koppel bestoßen wird, schwankender ist die desto Futterqualität während der gesamten Weideperiode.

Portionsweide

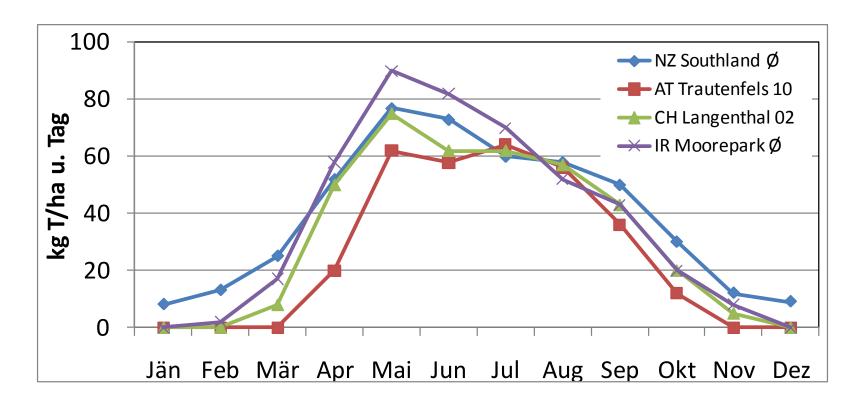
Bei der Protionsweide sollte nach längstens 4 Tagen die abgeweidete Fläche weggezäunt werden.

Die Protionsweide ist im Herbst ungünstig, da leicht Schäden an der Grasnarbe entstehen können.


Pflanzenbestand

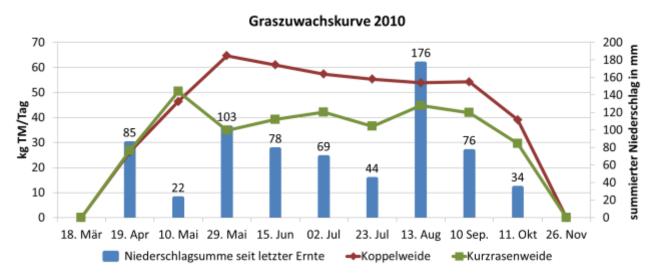

Parameter	Einheit	Weide	Schnitt			S _e
		LSMEAN	LSMEAN	SEM	р	
Lücke	%	1,3	1,9	0,4	0,4010	0,7
Gräser	%	68,2	77,9	1,0	0,0224	2,5
Englisches Raygras	%	19,8	10,9	1,9	0,0819	4,1
Gemeine Rispe	%	4,8	18,2	1,8	0,0330	4,4
Goldhafer	%	2,3	11,2	1,0	0,0242	2,5
Knaulgras	%	3,1	12,3	1,0	0,0218	2,0
Lägerrispe	%	3,5	0,0	0,5	0,0395	1,2
Quecke	%	5,0	5,4	0,4	0,4726	1,1
Rasenschmiele	%	0,6	0,2	0,2	0,1994	0,6
Wiesenfuchsschwanz	%	1,3	2,4	0,4	0,1835	0,9
Wiesenlischgras	%	1,5	0,7	0,4	0,3261	0,7
Wiesenrispengras	%	21,5	7,0	1,2	0,0140	3,2
Wiesenschwingel	%	2,7	4,6	0,5	0,1107	1,3
Glatthafer	%	0,0	2,6	0,4	0,0547	0,9
Leguminosen	%	18,1	7,7	1,2	0,0252	1,6
Kräuter	%	12,4	12,5	0,6	0,9656	1,5
Arten	Anzahl	26,7	26,3	0,4	0,5331	1,5

Artengruppen



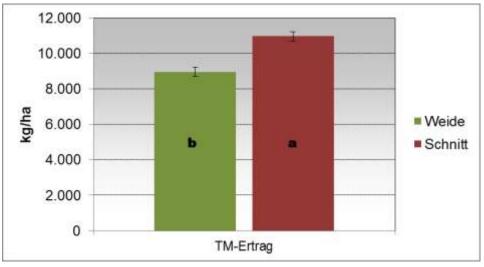
Futterzuwachs

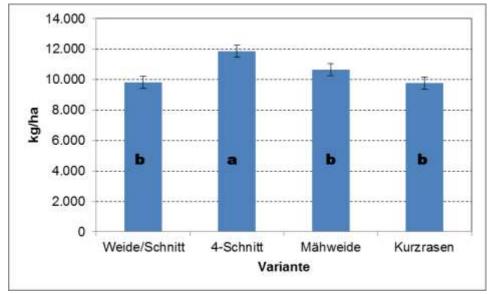
<u>Zu beachten</u>: Neuseeland – Futterzuwachs jeweils um 6 Monate verschoben; unterschiedliche Düngung


Quellen: Holmes et al. 2002, Thomet et al. 2004, Starz et al. 2011, O'Mara, 2011

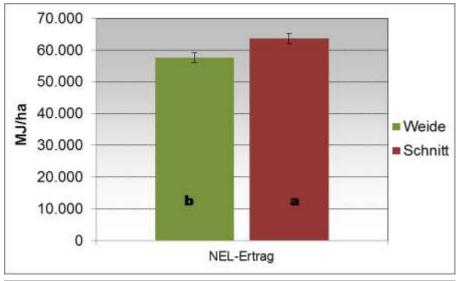
Graszuwachskurven

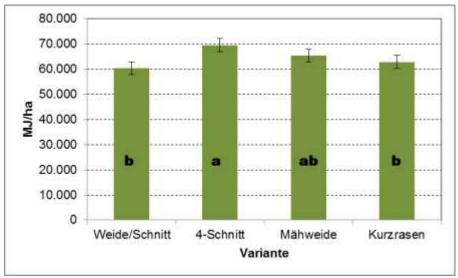
Systemvergleich bei ungleichmäßiger Niederschlagsverteilung



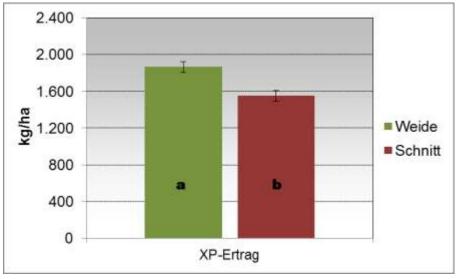

- TM-Ertrag: 7,8 t/ha Kurzrasenweide: 10,6 t/ha Koppelweide
- XP Differenz: 280 kg/ha; Energie Differenz: 15.500 MJ **NEL/ha**
- Umgerechnet in Milch: 2.400 kg Milch/ha Mehrertrag

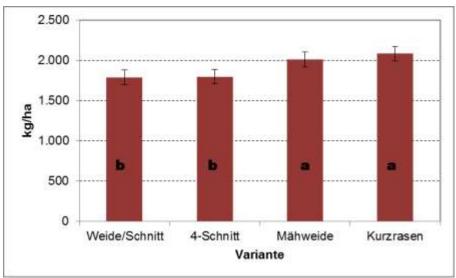
TM-Erträge



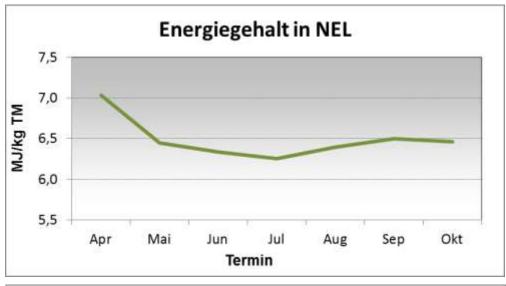


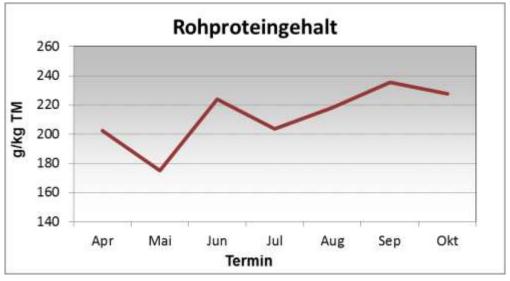
Energie-Erträge



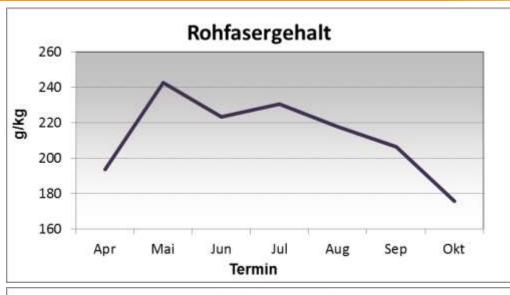


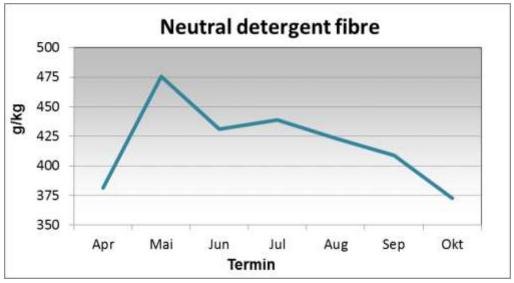
XP-Erträge





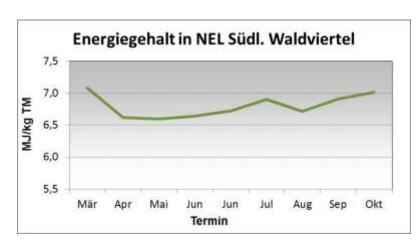
Verlauf Energie und XP



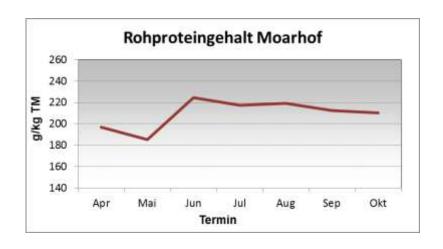


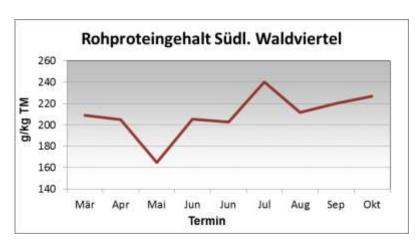
Verlauf XF und NDF

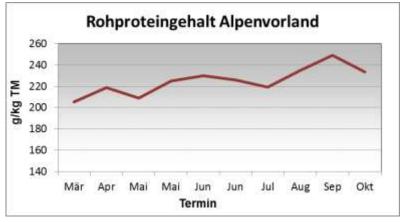




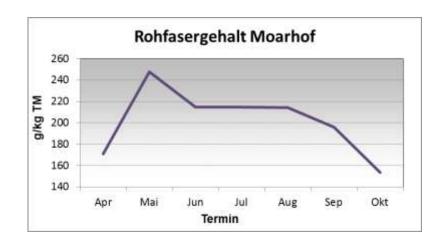
Energiegehalt - Kurzrasenweide

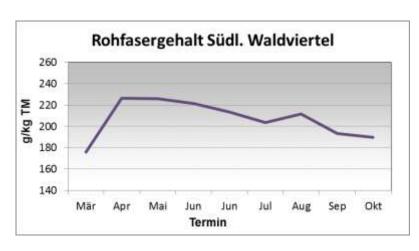




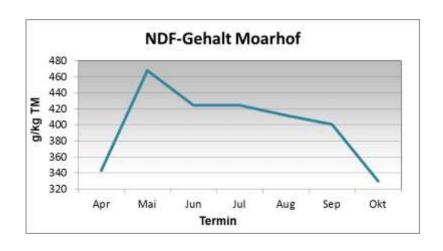


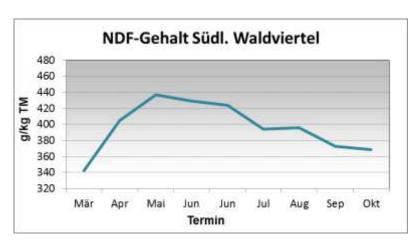
Rohproteingehalt - Kurzrasenweide

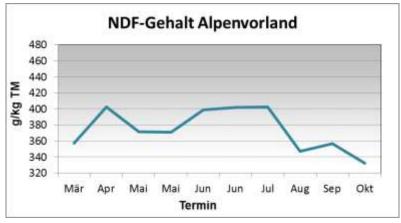




Rohfasergehalt - Kurzrasenweide







NDF-Gehalt - Kurzrasenweide

VX Grünland in der ÖLW

- Sommersemester 2014
- 3 Blöcke zu je 2 Tagen
- davon 1 Tag Exkursion auf einen Bio-Grünlandbetrieb in NÖ
- Inhalte:
 - Pflanzenwachstum im Grünland
 - Boden und Düngung
 - Grünlandnutzungsformen
 - Weidehaltung

Danke für die Aufmerksamkeit!

