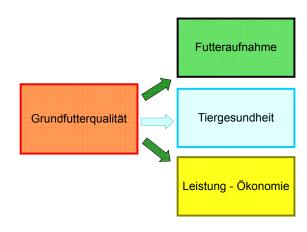
Arbeitskreis Milchproduktion

Gmunden, 11. Februar 2014

Wie gelingt eine optimale Maissilagequalität?

Ing. Reinhard Resch

LFZ-Institut Pflanzenbau und Kulturlandschaft


Ina. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung

Auswirkung der Grundfutterqualität auf die Wiederkäuerfütterung

(Wurm, 2011)

Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung

Was bestimmt die Futterqualität?

Futterwert

Pflanzenbestand Nutzungszeitpunkt Verschmutzungsgrad

> Inhaltsstoffe Energie Mineralstoffe Vitamine

Konservierungsqualität

Silagequalität

Optimaler TM-Gehalt Minimale Feldverluste Lagerstabilität Hygienestatus

Schwachstellen Maissilage

- Suboptimaler TM-Gehalt (unter 30 % bzw. über 38 % TM) Stängel-Kolben Verhältnis, Sortenwahl
- Kolbenverpilzung (Toxinbildung durch Fusarien)
- Häcksellänge und Kornaufschluss
- Verdichtung
- Gärdauer bis zur Siloöffnung (Stärkeabbaubarkeit)
- Vorschub bei der Entnahme (Risiko Erwärmung)

Verluste an Futtermasse und Qualität:

- Gärsaftbildung
- Fehlgärungen (alkoholische Gärung)
- Schimmelnester mitten im Silo
- Nacherwärmung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Silomaiskultur - Qualitätskriterien

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Kulturführung optimieren

- Sortenwahl
- Anbautermin
- Pflanzdichte
- Bedarfsgerechte Düngung (Überdüngung führt zu Reifeverzögerung)
- Integrierter Pflanzenschutz
- · Ziel: Gleichmäßige Abreife

LFZ-Ref. Futterkonservierung und Futterbewertung

Ina. R. Resch

Silomais - Erntezeitpunkt

Optimum

- Kolbenanteil 50 bis 55 %
- Stärkeanteil 30-35 % (Gesamtpflanze)
- TM-Gehalt 30-35 (38) % (Gesamtpflanze)
- TM-Gehalt 55-60 % (Kolben)

Zu frühe Ernte

- Gärsaftbildung (bis 30 % TM)
- · Weniger Ertrag und Energie

Zu späte Ernte

- Gefahr der Verpilzung
- Schlechtere Verdichtbarkeit
- Nacherwärmungsrisiko steigt

Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

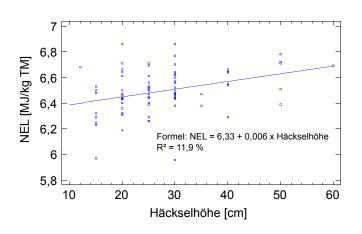
LFZ-Ref. Futterkonservierung und Futterbewertung

Hochschnitt bei der Silomaisernte

Erhöhung Kolbenanteil führt zu:

- · Besserer Verdaulichkeit
- Höherer Energiekonzentration (je 20 cm + 0,1 MJ NEL/kg TM)

Höherer TM-Gehalt


- (je 20 cm + 1 bis 2 % TM)
- · Abnahme Ertrag

(je 20 cm minus 5 %)

- Abnahme Strukturwert (je 20 cm minus 0,1)
- Höheres Risiko der Nacherwärmung

Einfluss Häckselhöhe auf Energiedichte in Maissilagen

(Daten: LK-Silageprojekt 2009)

Qualitätsmängel - Maisbeulenbrand

Ursachen

- · Pilz (Ustilago maydis)
- · Infektion durch Fritfliegen und Trockenheit

Verringerung Futterwert

- bis 18 % weniger Nettoenergie
- bis 27 % weniger verdauliches Eiweiß

Silagequalität

- · Gehalt verderbanzeigender Pilze steigt
- · Geringere aerobe Stabilität

Siliermitteleinsatz sinnvoll

• DLG-Gütezeichen mit Wirkungsrichtung 2

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch
LFZ-Ref. Futterkonservierung und Futterbewertung

Qualitätsmängel - Zweitkolbenausbildung

Ursachen

- Möglicherweise die Sortenwahl
- Umweltbedingungen

Verringerung Futterwert

- Pilzbelastung des Zweitkolbens
- Bildung von Mykotoxinen

Silagegualität

· Geringere aerobe Stabilität

Siliermitteleinsatz sinnvoll

 DLG-Gütezeichen mit Wirkungsrichtung 2

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

Qualitätsmängel - Kolbenverpilzung

Ursachen

- Umweltbedingungen (Frost, Hagel)
- Schädigung durch Tiere

Verringerung Futterwert

- Kontamination des Kolbens (Fusarien)
- Bildung von Mykotoxinen (DON, ZON)

Silagequalität

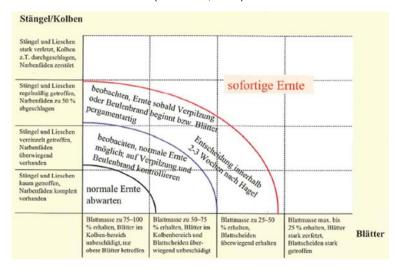
· Geringere aerobe Stabilität

Fütterund

- Belastung der Pansenmikroben
- · Reduktion der Leistung
- Gefährdung der Tiergesundheit

Qualitätsmängel - Hagelschaden

Auswirkungen


- Vergärbarkeit sinkt mit zunehmender Schadenshöhe
- Vergärbarkeit sinkt je länger mit dem Erntetermin gewartet wird. Auf den verletzten Kolben entwickeln sich schnell Schimmelpilze (Fusarien)
- Geringere aerobe Stabilität

Konsequenz

- Nicht länger als 3 bis 4 Wochen mit der Silierung warten
- Chemische Siliermittel verbessern die aerobe Stabilität
- Keine Nutzung bei Schädigung 100 %

Entscheidungsschema nach Hagelschlag

(Nußbaum, 2005)

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

Ergebnisse Maissilageprojekt 2009

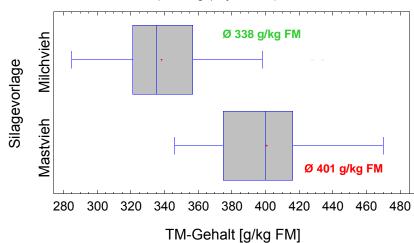
Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

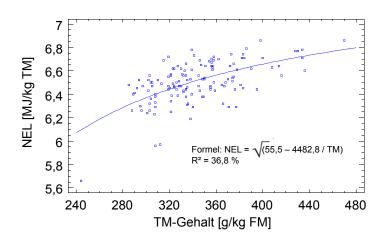
IST-Situation der Maissilage-Qualität in Österreich


(LK-Silageprojekt 2009)

Maissilage	Einheit	Richtwert 1	Futterwert- tabelle ²	Milchvieh	Mastvieh	Bio	UBAG	UBAG + Verzicht	keine ÖPUL- Teilnahme
			1998-2005	2009	2009	2009	2009	2009	2009
Probenanzahl	[n]		1135	73	11	11	40	5	24
Trockenmasse	[g/kg FM]	280 bis 360	331	338	401	342	334	347	345
Rohprotein	[g/kg TM]	über 70	75	64	61	64	63	61	65
Rohfaser	[g/kg TM]	190 bis 210	203	203	186	213	202	197	200
Rohasche	[g/kg TM]	35 bis 40	39	34	34	37	32	37	34
Umsetzbare Energie (ME)	[MJ/kg TM]	10,6 bis 10,8	10,68	10,75	10,90	10,60	10,79	10,76	10,78
Nettoenergie-Laktation (NEL)	[MJ/kg TM]	6,3 bis 6,5	6,43	6,48	6,60	6,37	6,50	6,49	6,50
Milchsäure	[g/kg TM]	über 20	-	44,7	45,1	46,6	43,8	43,3	46,6
Essigsäure	[g/kg TM]	über 10	-	14,5	12,5	16,0	14,5	13,3	14,6
Buttersäure	[g/kg TM]	unter 3	-	0,3	0,2	0,2	0,3	0,3	0,2
pH-Wert		unter 4,5	-	3,8	3,8	3,8	3,9	3,8	3,9
Ammoniak-N vom Gesamt-N	%	unter 10	-	8,5	12,3	8,3	8,3	7,1	9,9
Gärqualität	DLG-Punkte	über 75	-	98	95	99	98	100	97
Verdichtung	kg TM/m³	über 220	-	160	221	131	160	184	178

¹Richtwert (LK-Fütterungsreferenten, LFZ Raumberg-Gumpenstein)

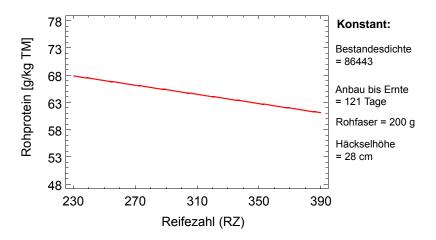
TM-Gehalte im Silomais in Österreich


(LK-Silageprojekt 2009)

²Futterwerttabellen für das Grundfutter im Alpenraum, RESCH et al. 2006

Beziehung Nettoenergie-Laktation und TM-Gehalt in Maissilagen

(Daten: LK-Silageprojekt 2009)

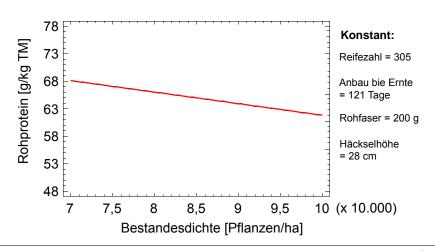


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

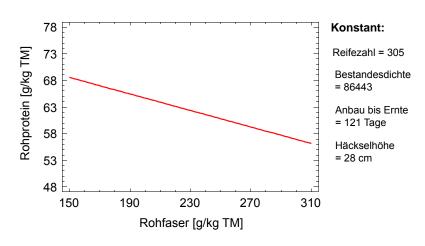
Einfluss der Reifezahl auf den Rohproteingehalt von Maissilagen

(Daten: Silageprojekt 2009, P-Wert = 0,0127)


Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung


Einfluss der Bestandesdichte auf den Rohproteingehalt von Maissilagen

(Daten: Silageprojekt 2009)

Einfluss des Rohfasergehaltes auf den Rohproteingehalt von Maissilagen

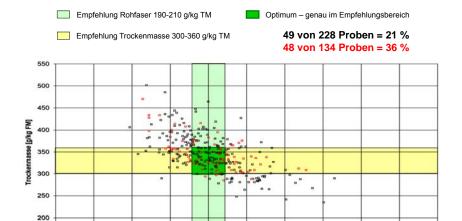
(Daten: Silageprojekt 2009)

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

IST-Situation der Maissilage-Qualität in Oberösterreich

(Futtermittellabor Rosenau der LK Niederösterreich, 2012)


Österreich				Oberösterreich			Orientierungsbereich Oberösterreich				
Parameter	Einheit	Insgesamt	2009	2010	2011	2012	Min.	unteres	Mittel-	oberes	Max.
	Proben	1558	33	87	89	19	IVIIII.	Viertel	wert	Viertel	iviax.
Trockenmasse	[g/kg FM]	356	350	337	352	353	234	318	346	374	501
Rohprotein	[g/kg TM]	71	65	67	71	73	53	65	69	73	134
UDP	[g/kg TM]	18	16	17	18	18	13	16	17	18	33
nXP	[g/kg TM]	129	128	127	128	129	118	126	128	130	149
RNB	[g/kg TM]	-9,3	-9,9	-9,6	-9,2	-8,9	-11,5	-10,0	-9,4	-8,9	-2,4
Rohfaser	[g/kg TM]	193	193	200	204	203	149	186	201	213	283
Rohasche	[g/kg TM]	36	36	36	34	37	26	32	35	37	67
ME	[MJ/kg TM]	10,84	10,84	10,77	10,77	10,76	9,86	10,64	10,78	10,94	11,40
NEL	[MJg/kg TM]	6,55	6,55	6,49	6,49	6,48	5,82	6,39	6,50	6,62	6,96
Calcium (Ca)	[g/kg TM]	2,1	1,7	1,8	2,0	1,9	1,2	1,7	1,9	2,0	4,0
Phosphor (P)	[g/kg TM]	1,9	2,0	2,0	1,8	1,7	1,1	1,7	1,9	2,1	2,7
Milchsäure	[g/kg TM]	50	42	54	54	27	2	40	51	59	105
Essigsäure	[g/kg TM]	17	18	25	14	7	4	11	18	23	72
Buttersäure	[g/kg TM]	0	1	0	0	4	0	0	0	1	4

Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014 LFZ-Ref. Futterkonservierung und Futterbewertung

Trockenmasse- und Rohfasergehalte Maissilage

(Daten: Oberösterreich 2009-2012, LK-Silageprojekt 2009)

Oberösterreich 2009-2012

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

325

LK-Silageprojekt 2009

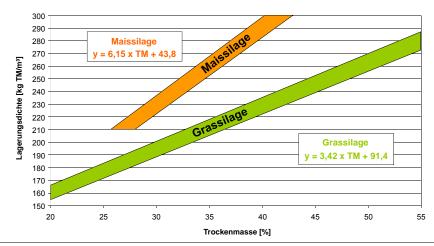
350

Optimale Häcksellänge von Silomais

Abreifestadium		
TM-Gehalt	Einsatz in der	Einsatz in der
Gesamtpflanze	Rinderhaltung	Biogaserzeugung
bis 28 %	bis 10 mm	6 - 8 mm
28 - 33 %	6 - 8 mm	3 - 5 mm
üher 33 %	6 mm	4 mm

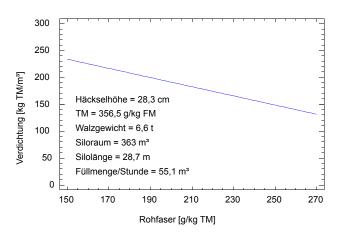
Verteilung & Verdichtung

225


Rohfaser[g/kg TM]

Orientierungsbereich für Silageverdichtung

(Empfehlung nach RICHTER et al. 2009)

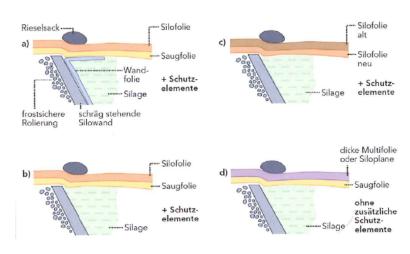


Ina. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Einfluss der Rohfaser auf die Verdichtung von Maissilagen

(Daten: Silageprojekt 2009)

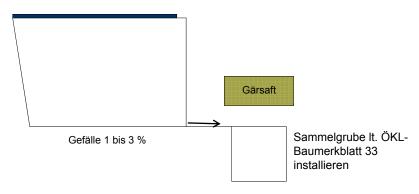

Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung

Siloabdeckung bei Maissilage

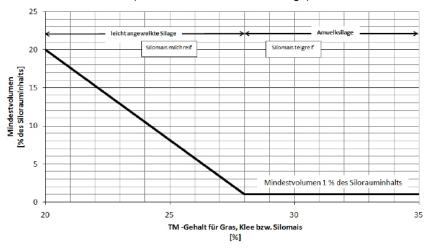
(Spiekers, Nußbaum u. Potthast, 2009)



Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Gärsaftbildung bei Maissilagen

Voraussetzungen:


- 1. TM-Gehalt unter 30 %
- 2. Strukturarmes Material (z.B. Rübenblätter, Biertreber, etc.)
- 3. Starke Verdichtung

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Erforderliches Volumen von Sickersaftsammelgruben

(ÖKL-Baumerkblatt 33, 3. Auflage)

Ina. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung

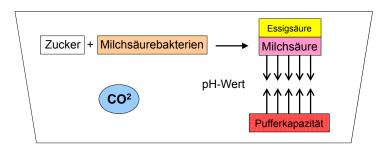
Nacherwärmung

~29 % der Maissilagen waren 2012 betroffen!

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

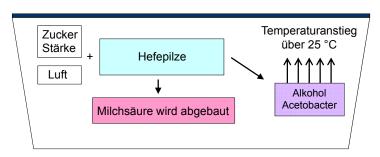

Gärprozess

(Nussbaum, 2010)

Prinzip:

Die Substratkonservierung durch Silagebereitung basiert auf zwei Säulen, die sich ergänzen:

- 1. Luftabschluss (Verdichtung, Folienabdeckung) und Bildung von CO²
- 2. Senkung des pH-Wertes (Ansäuerung durch Milchsäuregärung)


LFZ-Ref. Futterkonservierung und Futterbewertung

Nacherwärmung

(Resch 2010)

Voraussetzungen:

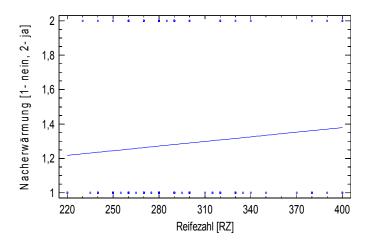
- 1. Restzucker bzw. Stärke im Gärsubstrat
- 2. Unzureichende Verdichtung (grobe Struktur, Walzgewicht, Walzzeit↓)
- 3. Fehlende Inhibitoren (Essigsäure↓, Propionsäure↓)
- 4. Unzureichende Entnahmemenge (Anschnittfläche↑, Vortrieb↓)

LFZ-Ref. Futterkonservierung und Futterbewertung

Datengrundlage

(LK-Fragebogenerhebung Silomais 2012/13)

Datenherkunft	Milch	Mast	Insgesamt	
Burgenland	7	0	7	
Kärnten	6	3	9	
Niederösterreich	23	21	50	
Oberösterreich	65	19	84	
Salzburg	22	5	29	
Steiermark	13	4	17	
Tirol	29	0	29	
Gesamt	164	52	226	

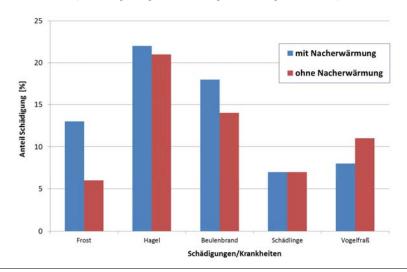


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

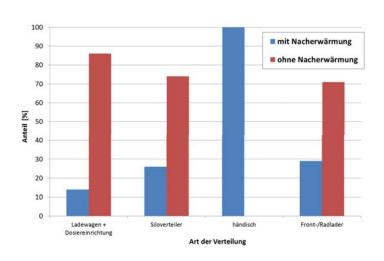
Nacherwärmung vs. Reifezahl

(LK-Fragebogenerhebung Maissilage 2012/13)

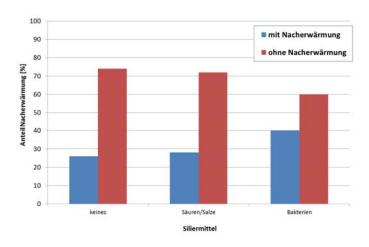


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung


Nacherwärmung vs. Schädigung/Krankheit

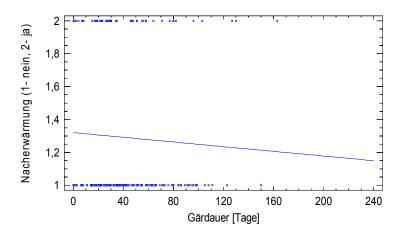
(LK-Fragebogenerhebung Maissilage 2012/13)


Nacherwärmung vs. Verteilung Erntegut

(LK-Fragebogenerhebung Maissilage 2012/13)

Nacherwärmung vs. Siliermitteleinsatz

(LK-Fragebogenerhebung Maissilage 2012/13)

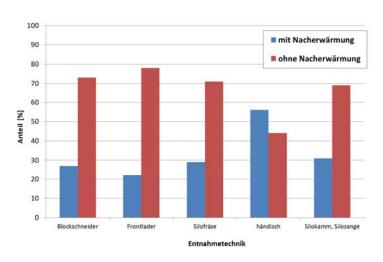


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Nacherwärmung vs. Gärdauer

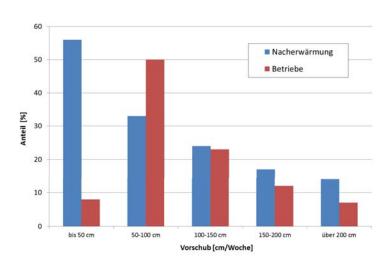
(LK-Fragebogenerhebung Maissilage 2012/13)



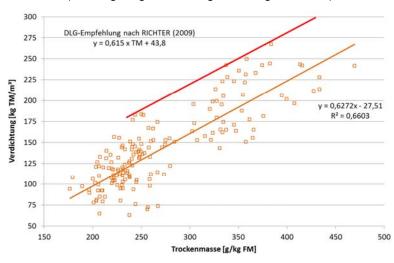
Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Nacherwärmung vs. Entnahmetechnik


(LK-Fragebogenerhebung Maissilage 2012/13)

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung


Nacherwärmung vs. Vorschub

(LK-Fragebogenerhebung Maissilage 2012/13)

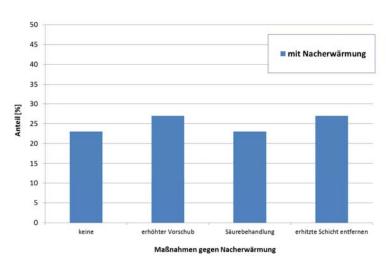
Nacherwärmung vs. Vorschub

(LK-Fragebogenerhebung Maissilage 2012/13)

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ina. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Probleme durch zu geringen Vorschub!



Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Maßnahmen gegen Nacherwärmung

(LK-Fragebogenerhebung Maissilage 2012/13)

Fazit 1 - Nacherwärmung

• Erhöhung des Risikos durch:

Sortenwahl, Frost, suboptimale Beschickung, Milchsäurebakterien (?), Gärdauer < 4 Wochen, Vorschub < 50 cm/Woche, händische Arbeit

Reduktion des Risikos durch:

Sortenwahl, optimale Beschickung, Walzgewicht, Wand- und Unterziehfolie verwenden, Gärdauer > 8 Wochen, Vorschub > 100 cm/Woche

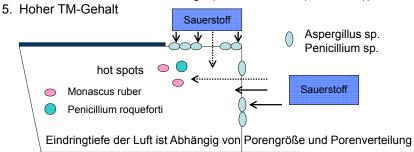
Schimmelpilzbefall bei Maissilagen

Schimmelknollen

Oberflächenschimmel

~64 % kleine Mängel, ~4 % deutliche Mängel!

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

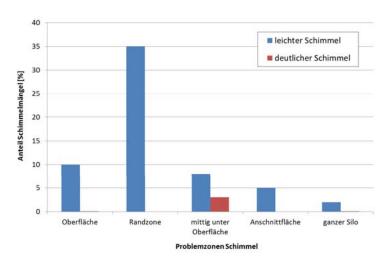

Ina. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Schimmelbildung

(Resch 2010)

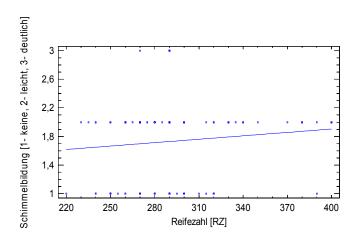
Voraussetzungen:

- 1. Zutritt von Luftsauerstoff während der Lagerung (Verletzung Folie, fehlerhafte Folienverlegung)
- 2. Lufteinschlüsse durch unzureichende Verteilung bzw. Verdichtung (grobe Struktur, Walzgewicht↓, Walzzeit↓)
- 3. Luftzutritt bei der Entnahme (Entnahmesystem)
- 4. Unzureichende Entnahmemenge (Anschnittfläche↑, Vortrieb↓)

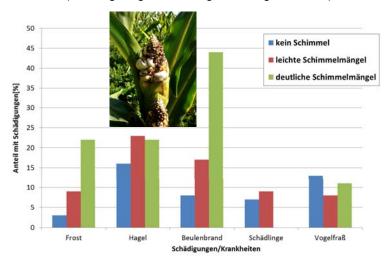


LFZ-Ref. Futterkonservierung und Futterbewertung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014


Auftreten von Schimmel in Maissilagen

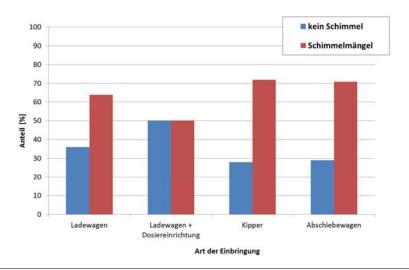
(LK-Fragebogenerhebung Maissilage 2012/13)


(LK-Fragebogenerhebung Maissilage 2012/13)

Schimmelbildung vs. Reifezahl

Schimmelbildung vs. Schädigung/Krankheit

(LK-Fragebogenerhebung Maissilage 2012/13)

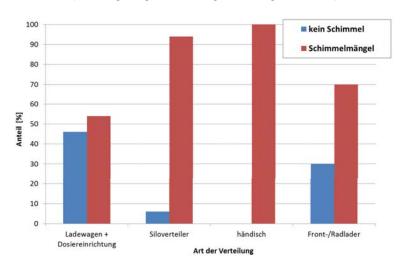


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Schimmelbildung vs. Beschickung

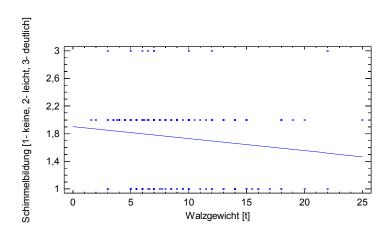
(LK-Fragebogenerhebung Maissilage 2012/13)



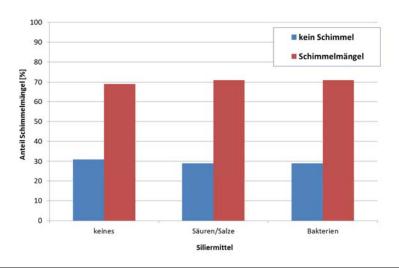
Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Schimmelbildung vs. Verteilung


(LK-Fragebogenerhebung Maissilage 2012/13)

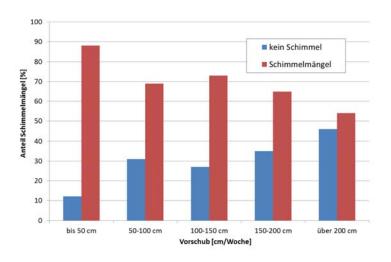
Ing. R. Resch


Schimmelbildung vs. Verdichtung

(LK-Fragebogenerhebung Maissilage 2012/13)

Schimmelbildung vs. Siliermitteleinsatz

(LK-Fragebogenerhebung Maissilage 2012/13)

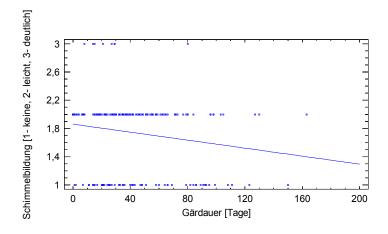


Ina. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014 LFZ-Ref. Futterkonservierung und Futterbewertung

Schimmelbildung vs. Vorschub

(LK-Fragebogenerhebung Maissilage 2012/13)


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Schimmelbildung vs. Gärdauer

(LK-Fragebogenerhebung Maissilage 2012/13)

Fazit 2 - Schimmelbildung

• Erhöhung des Risikos durch:

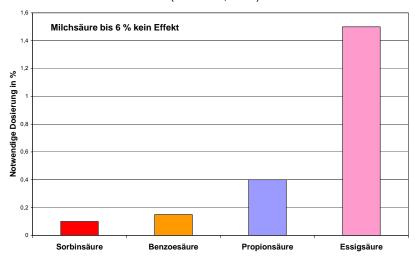
Sortenwahl, Frost, Beulenbrand, suboptimale Beschickung, Hochsilo, < Walzgewicht, Unterbrechung bei Befüllung, Gärdauer < 4 Wochen, Vorschub < 50 cm/Woche, händische Arbeit

Reduktion des Risikos durch:

Sortenwahl, Rundballen, optimale Beschickung, > Walzgewicht, Wand- und Unterziehfolie, keine Unterbrechung, Gärdauer > 8 Wochen, Vorschub > 100 cm/Woche

Einsatz von Silierhilfsmitteln

- Ziele
- Verbesserung der aeroben Stabilität heterofermentative Bakterienkulturen, Säuren, Gärsalze
- **Probleme**
- Produktauswahl (rund 40 verschiedene Mittel am Markt)
- Verteil- und Dosiergenauigkeit
- Lagerungsmängel wirken sich bei Bakterien oder Gärsalzen negativ auf die Produktqualität aus
- Wirtschaftlichkeit


Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ina. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

Hemmung des Schimmelpilzes Penicillum roqueforti durch Konservierungsstoffe in vitro

(Auerbach, 1996)

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

DLG-Gütezeichen von Silierhilfsmitteln Einteilung nach Wirkungsrichtungen

(DLG, Stand 1. Februar 2005, 63 Produkte)

- Gruppe 1: Mittel zur Verbesserung des Gärverlaufes
 - a schwer silierbares Futter (7 Produkte)
 - b mittelschwer silierbares Futter TM < 35 % (45 Produkte)
 - c mittelschwer silierbares Futter TM > 35 % (35 Produkte)
- Gruppe 2: Mittel zur Verbesserung der aeroben Stabilität

Anwelkgut > 35 % TM, Silomais oder GPS (19 Produkte)

- Gruppe 4: Mittel zur Verbesserung von Futterwert und Leistung
 - a Verbesserung der Futteraufnahme (29 Produkte)
 - b Verbesserung der Verdaulichkeit (32 Produkte)
 - c Verbesserung der Leistung beim Rind (23 Milch; 15 Mast)
- Gruppe 5: Zusätzliche Wirkung

Anwelkgut > 35 % TM, Silomais oder GPS (5 Produkte)

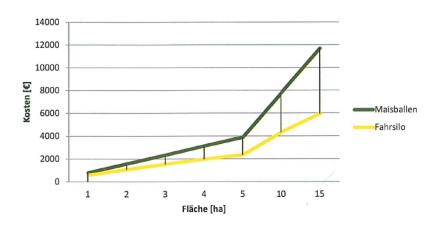
Maissilage im Rundballen

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Gärqualität

- Sehr gut
- · Keine Schimmelknollen
- · Kein Problem mit Erwärmung. wenn der Ballen in 2-3 Tagen verfüttert wird.

Vorteile


- · bei Kleinmengen ideal
- · Verkauf an Betriebe im Grünlandgebiet möglich

Nachteile

- Ballentransport
- Folienentsorgung
- · Höhere Kosten

Gesamtkostenvergleich Fahrsilo vs. Maisballen

(Puster u. Strauß, 2011)

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ina. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Stärke-Abbaubarkeit von Maissilage

 Rinder können Maisstärke zu 100 % verdauen. wenn die Körner angeschlagen sind!

Stärkeabbau im Pansen hängt ab von:

- Lagerungsdauer im Herbst geringerer Stärkeabbau im Pansen im Frühjahr 10-15 % Stärke mehr pansenverfügbar
- Sorte

Abbaugeschwindigkeit im Pansen (Azidoserisiko)

- Maistyp (Hartmais, Zahnmais)
- Sorte (LFZ-Versuch mit Pansensensor)

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Qualitätskontrolle

Analyse im Labor

Sensorische Bewertung am Hof

Sinnenbewertung mit dem ÖAG-Schlüssel

Gesamtheitliche Probenbeurteilung auf dem eigenen Hof

Ergebnis der Beurteilung sofort verfügbar

Sensorische Bewertung berücksichtigt:

Trockenmasse

Reifegrad der Maiskörner

Häcksellänge

Kornaufschluss

Geruch und Farbe

Mikrobiologie (visuell und geruchsmäßig)

Keine Kosten

Strategie zur Verbesserung der Maissilagequalität

- Betriebsspezifisches Optimum festlegen
- Qualität des Grundfutters einstufen (Chemische Analyse, ÖAG-Sinnenprüfung)
- Einflussfaktoren auf die Qualität wissen
- Einhaltung der elementaren Konservierungsregeln
- Schwachstellen oder Fehler in der Arbeitsweise erkennen und beheben

Ina. R. Resch

Informationen zur Silagequalität

Bücher

Internet: www.raumberg-gumpenstein.at www.oeag-gruenland.at

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

LFZ-Ref. Futterkonservierung und Futterbewertung

Österreichische Arbeitsgemeinschaft für Grünland und Futterbau (ÖAG)

Bestandesführung und Düngungsfragen (Erich M. Pötsch)

Klimafolgen Risikomanagement (Andreas Schaumberger)

Innovative Bauern und Bäuerinnen (Anton Hausleitner)

Milchwirtschaft (Josef Weber)

Futterbau und **Futterkonservierung** (Reinhard Resch)

Grünlandund Jagdwirtschaft Naturschutz (Franz Gahr)

Grünland- und Pferdewirtschaft

Mutterkuhhaltung und Rindermast (Rudolf Grabner)

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Österreichische Arbeitsgemeinschaft für Grünland und Futterbau +43 (0)3682 / 22451-317

oeag@gumpenstein.at www.oeag-gruenland.at

- Zentrale Wissensplattform für alle Grünlandbauern
- 13 Fachgruppen mit Experten
- Aktuelle Fachbroschüren in Top-Qualität
- Organisation von Fachveranstaltungen für die Bauern
- Mitgliedsbeitrag von 10,- €/Jahr
- Bindeglied zwischen Landwirt, Beratung, Lehre und Forschung

Kontakt: Ing. Reinhard Resch 03682 / 22451-320

<u>reinhard.resch@raumberg-gumpenstein.at</u> www.raumberg-gumpenstein.at

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Österreichische Arbeitsgemeinschaft für Grünland und Futterbau 03682 / 22451-317

oeag@gumpenstein.at www.oeag-gruenland.at

Ing. R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

Viel Erfolg auf dem Feld und im Stall!

Ing. R. Resch

Arbeitskreis Milchproduktion Gmunden, 11. Februar 2014

Ing. R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung