# 8. Eifeler Futterbautag, DLR Eifel

Bitburg, 27. November 2013



# **Top-Grundfutter**

dank geringer Verluste Fehler bei der Futterkonservierung vermeiden

#### **Reinhard Resch**

LFZ-Institut Pflanzenbau und Kulturlandschaft











8. Eifeler Futterbautag, 27. November 2013

LFZ-Ref. Futterkonservierung und Futterbewertung


# Milchleistungen bei unterschiedlicher Grundfutterqualität

(Häusler, 2007)



LFZ-Ref. Futterkonservierung und Futterbewertung

## Einflussfaktoren auf Ertrag, Futterqualität und Pflanzenbestand (Pötsch, 2006 modifiziert Resch, 2013)



#### LFZ-Ref. Futterkonservierung und Futterbewertung

# Pflanzenbestand = Qualitätsbasis



8. Eifeler Futterbautag, 27. November 2013









# Optimalzustand

> 60 % wertvolle Gräser > 15 % Leguminosen Beste Narbendichte Keine Krankheiten Kein Schädlingsbefall

# Mängel

Hoher Kräuteranteil > 30 % Gemeine Rispe > 10 % Geringe Narbendichte Krankheiten Schädlingsbefall

# Technische Möglichkeiten der Regeneration

#### Starkstriegel Güttler



8. Eifeler Futterbautag, 27. November 2013



**Schwachstriegel** Einböck



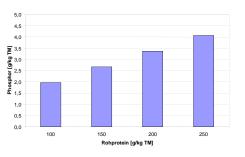
Hatzenbichler



#### Schlitzdrilltechnik Vredo



R. Resch


LFZ-Ref. Futterkonservierung und Futterbewertung

# **Phosphor-Gehalt im Grünfutter** Zusammenhang mit Rohproteingehalt

|                                         | Phosphor |
|-----------------------------------------|----------|
| Mineralisches Element                   | (P)      |
|                                         | g/kg TM  |
| Anzahl Futtermittelanalysen             | 1779     |
| Gehaltswert - Mittelwert                | 3,0      |
| Gehaltswert - Standardabweichung        | 1,0      |
| Gehaltswert - Minimum                   | 0,5      |
| Gehaltswert - unteres Quartil (25 %)    | 2,2      |
| Gehaltswert - oberes Quartil (75 %)     | 3,5      |
| Gehaltswert - Maximum                   | 7,0      |
| Einflussfaktor                          |          |
| Standort - Geologie                     | 3        |
| Standort - Seehöhe                      | 8        |
| Standort - Wasserverhältnisse           | 5        |
| Boden - pH                              | n.s.     |
| Boden - Gehaltswert                     | 2        |
| Grünland - Nutzungshäufigkeit           | 4        |
| Grünland - Aufwuchs                     | 6        |
| Grünfutter - Rohproteingehalt           | 1        |
| Grünfutter - Rohfasergehalt             | 7        |
| Grünfutter - Rohaschegehalt             | n.s.     |
| r² in % (adjustiert auf Freiheitsgrade) | 53,6     |

8. Eifeler Futterbautag, 27. November 2013

8. Eifeler Futterbautag, 27. November 2013



Mittelwert Rohprotein = 153 g/kg TM Rohfaser = 245 g/kg TM Rohasche = 98 g/kg TM

Regr.koeffizient = + 0.014 gRSD = 0.7 g

R. Resch

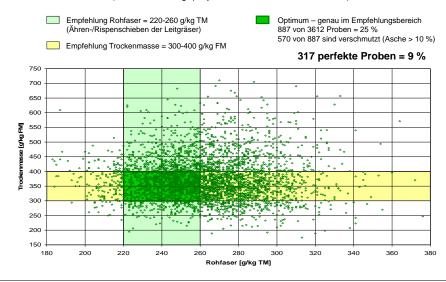
LFZ-Ref. Futterkonservierung und Futterbewertung

# Fazit 1: Ertragsoptimum anstreben

- Standortpotenzial ausschöpfen Klima, Boden, Seehöhe, Hangneigung, Wasserversorgung, etc.
- Bestände nicht übernutzen fördert wertvolle Gräser, verhindert Verunkrautung
- Bedarfsgerecht düngen Bodenuntersuchung 1 x je Förderperiode, Ergänzungsdüngung
- Dichte Grasnarbe f\u00f6rdern Schnitthöhe > 5 cm, Lücken mit standortangepasstem Qualitätssaatgut schließen, Mähweide
- Bodenschonung Traktor- und Gerätegewicht, Bereifung, Reifendruck, etc.

# **Top-Grundfutter** durch optimale Konservierung










### Schnittzeitpunkt und Anwelkung in der Praxis

(Daten: LK-Silageprojekt, 2003 / 2005 / 2007 / 2009)



R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

# Rohfaser-Effekt bei Grassilage

(Daten: LK-Silageprojekt 2003/05/07/09)

# Steigerung des Rohfasergehaltes um 1 % bewirkte:

Rohprotein - 4,1 g/kg TM

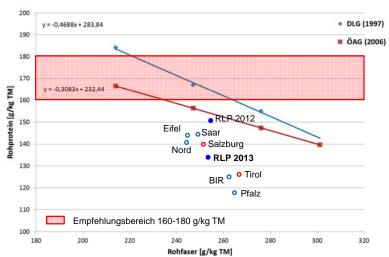
Rohasche - 3,2 g/kg TM

• NEL - 0,1 MJ/kg TM

Lagerungsdichte - 2,9 kg TM/m³

• pH-Wert + 0,03

Buttersäure + 0,5 g/kg TM


Eiweißabbau + 0,5 %

DLG-Punkte - 1,8 Punkte

R. Resch
LFZ-Ref. Futterkonservierung und Futterbewertung

# Rohproteingehalte in Grassilagen – 1. Aufwuchs

(Daten: D - DLG bzw. FPR 2013, ÖAG bzw. LK 2013)



\_

R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

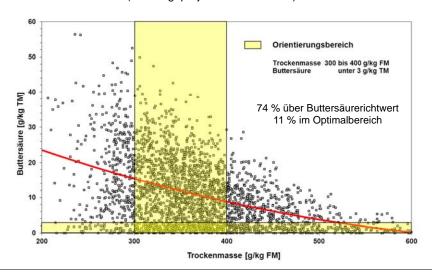
# Nitratarmes Futter vergärt schlechter

### Ursachen für geringen Nitratgehalt

- Reduktion der N-Düngung, insbesondere leichtlösliche N-Dünger
- Reduktion der Schnitthäufigkeit
- Wetterlage (Trockenheit, Kälte)

### Auswirkungen

8. Eifeler Futterbautag, 27. November 2013

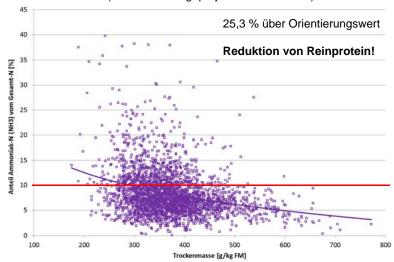

- Erhöhtes Risiko der Buttersäuregärung
- Erhöhte Verluste an Energie und Protein
- Optimale TM und Zuckergehalte bieten keine Sicherheit

Quelle: WEISS, K. (2000) "Gärungsverlauf und Gärqualität von Silagen aus nitratarmem Grünfutter"

R. Resch

# Buttersäure in österreichischen Grassilagen

(LK-Silageprojekt 2003/05/07/09)

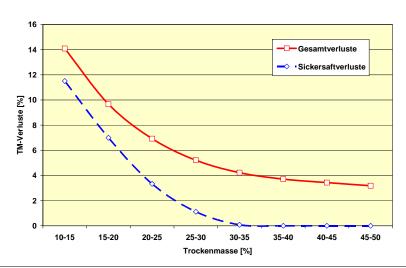



R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

### Proteinabbau in Grassilagen

(Daten: LK-Silageprojekt 2003/05/07/09)



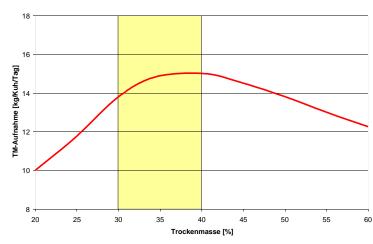

R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

# Einfluss des TM-Gehaltes auf die Gärungsverluste

(Resch und Buchgraber, 2006)




#### LFZ-Ref. Futterkonservierung und Futterbewertung

# **Einfluss des TM-Gehaltes** auf die Futteraufnahme von Grassilage

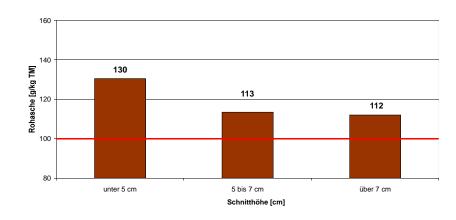
8. Eifeler Futterbautag, 27. November 2013

8. Eifeler Futterbautag, 27. November 2013

(SPANN, 1993)



# **Achtung Futterverschmutzung!!**

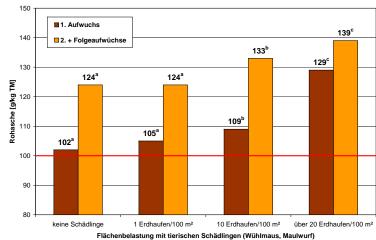



8. Eifeler Futterbautag, 27. November 2013

R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

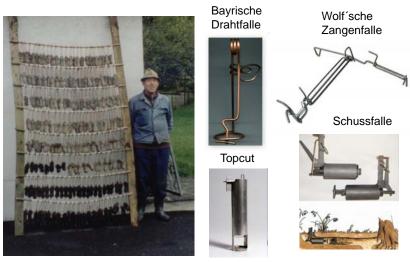
# Signifikanter Einfluss der Schnitthöhe auf den Rohaschegehalt von Grassilagen

(Datenquelle: Silageprojekt 2003/05/07)




R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung


# Einfluss tierischer Schädlinge auf Rohaschegehalt von Grassilagen

(LK-Silageprojekt 2009)



#### R. Resch

# Wühlmausbekämpfung bringt's



Fangkurse (LK's, Maschinenringe, Mäuseakademie Sauwald, Hans Hanserl, uva.)

R. Resci

# Rohasche-Effekt bei Grassilage

(Daten: LK-Silageprojekt 2003/05/07/09)

### Steigerung des Rohaschegehaltes um 1 % bewirkte:

| • | Rohprotein | - |
|---|------------|---|
|---|------------|---|

- 3,8 g/kg TM Rohfaser

NEL

8. Eifeler Futterbautag, 27. November 2013

- 0,1 MJ/kg TM

1,6 g/kg TM

pH-Wert

Buttersäure

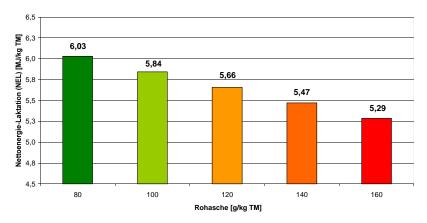
+ 0,4 g/kg TM

Eiweißabbau

+ 0.3 %

DLG-Punkte

- 1,5 Punkte

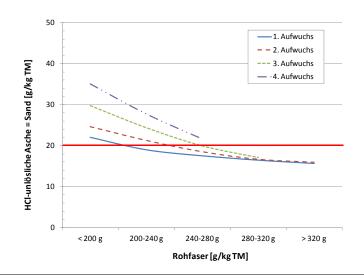

R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

# Signifikanter Einfluss der Rohasche auf die **Energiedichte (NEL)**

(Datenquelle: LK-Silageprojekt, 2003/2005/2007/2009)

#### 1 % erdige Verschmutzung → 200 kg weniger Milch aus Grundfutter




R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

# Sandanteil vs. Rohfaser in Grassilage

(Daten: LK-Silageprojekt 2003/05/07/09)



# Futteraufbereitung bringt's



8. Eifeler Futterbautag, 27. November 2013



Mahd mit Mähaufbereiter kürzere Feldzeiten

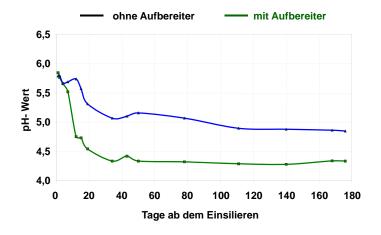


Kurzschnittladewagen

8. Eifeler Futterbautag, 27. November 2013



Rotorfördersystem




Feldhäcksler

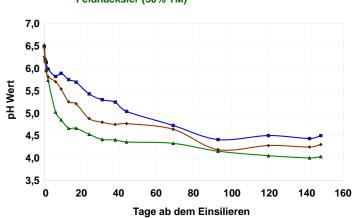
Beschleunigung der Gärung

# Verlauf des pH-Wertes im Silierversuch S-39/1999

(PÖTSCH E.M. 2003)



R. Resch


8. Eifeler Futterbautag, 27. November 2013 LFZ-Ref. Futterkonservierung und Futterbewertung

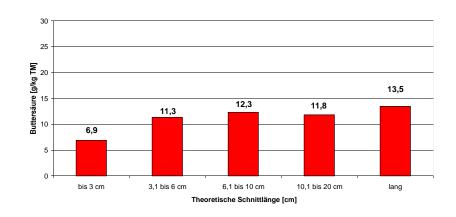
# Verlauf des pH-Wertes im Silierversuch S-41/2000

(PÖTSCH E.M. 2003)

Ladewagen (30% TM) Kurzschnittlw. (30% TM)

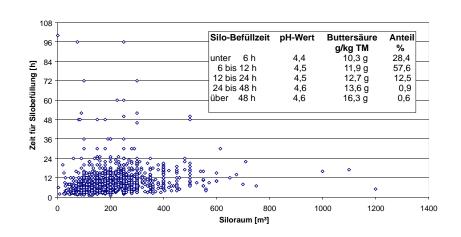
Feldhäcksler (30% TM)




R. Resch

8. Eifeler Futterbautag, 27. November 2013

LFZ-Ref. Futterkonservierung und Futterbewertung

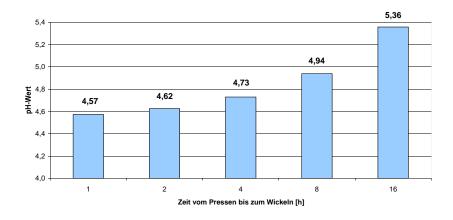

# Signifikanter Einfluss der theor. Schnittlänge auf den Buttersäuregehalt von Grassilagen

(Datenquelle: Silageprojekt 2003/05/07)



# Silokubatur und Befüllungszeit bei Grassilagen in Österreich

(LK-Silageprojekt 2003/2005/2007/2009)




LFZ-Ref. Futterkonservierung und Futterbewertung

LFZ-Ref. Futterkonservierung und Futterbewertung

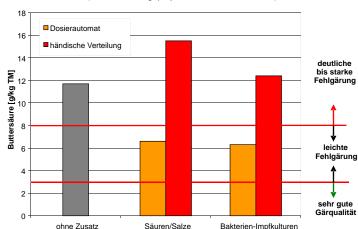
# Einfluss von Zeit Pressen/Wickeln auf den pH-Wert von Rundballen-Grassilagen

(Daten: LK-Silageprojekt 2003/05/07/09)



R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung


# Futterstockererwärmung zu Beginn des Konservierungsprozesses

- Ursachen
- Heiße Wetterlage
- Zu langsame Silierung in Kombination mit kurz gehäckseltem bzw. gequetschtem Erntegut
- Probleme bei Futtertemperaturen über 30 °C
- Hoher Zuckerverbrauch durch aerobe Bakterien
- Temperaturoptimum für Clostridien, Hefen u. Schimmelpilze
- Fehlgärung, Fermentation
- Veränderung der Proteinlöslichkeit im Pansen (UDP1)
- Maillard-Reaktion (Protein u. Zucker werden teils unlöslich)

R. Resch LFZ-Ref. Futterkonservierung und Futterbewertung

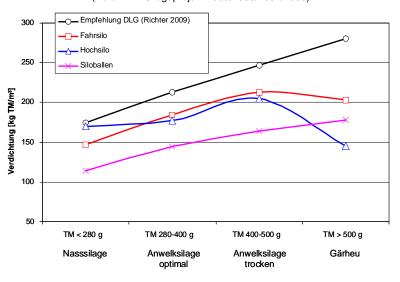
### Einfluss der Siliermittelverteilung auf den Buttersäuregehalt in Grassilage

(Daten: LK-Silageprojekt 2003/2005/2007/2009)



8. Eifeler Futterbautag, 27. November 2013

# DLG-Gütezeichen von Silierhilfsmitteln Einteilung nach Wirkungsrichtungen


(DLG, Stand 1, Februar 2012, 63 Produkte)

- Gruppe 1: Mittel zur Verbesserung des Gärverlaufes
  - a schwer silierbares Futter (7 Produkte)
  - b mittelschwer silierbares Futter TM < 35 % (45 Produkte)
  - c mittelschwer silierbares Futter TM > 35 % (35 Produkte)
- Gruppe 2: Mittel zur Verbesserung der aeroben Stabilität Anwelkgut > 35 % TM, Silomais oder GPS (19 Produkte)

- Gruppe 4: Mittel zur Verbesserung von Futterwert und Leistung
  - a Verbesserung der Futteraufnahme (29 Produkte)
  - b Verbesserung der Verdaulichkeit (32 Produkte)
  - c Verbesserung der Leistung beim Rind (23 Milch; 15 Mast)
- Gruppe 5: Zusätzliche Wirkung

Anwelkgut > 35 % TM, Silomais oder GPS (5 Produkte)

#### Verdichtung von Grassilagen in Abhängigkeit von Siliersystem und TM-Gehalt (Daten: LK-Silageprojekt 2003/2005/2007/2009)



R. Resch

8. Eifeler Futterbautag, 27. November 2013 LFZ-Ref. Futterkonservierung und Futterbewertung

# Nacherwärmung – Aerobe Stabilität

• Ursachen von Nacherwärmungen?

Zu trocken einsiliert (TM-Gehalt Gs. > 40 %, Ms. > 35 %) Zu geringe Verdichtung (altes, grobstängeliges oder langes Futter)

Zu langsame Befüllung

Zu späte Abdeckung oder Ballenwickelung

Undichtheit der Schutzfolie (Sauerstoff kommt an die Silage)

Zu geringe Entnahmemenge

Wer ist für die Nacherwärmung verantwortlich?

Hauptsächlich Hefen und Schimmelpilze, welche nach Luftzutritt den verfügbaren Zucker durch deren Stoffwechsel verheizen

Gegenmaßnahmen?

Ausreichende Entnahme aus Hoch- und Flachsilo

Im Ernstfall Entnahme der erhitzten Futterschicht und ausreichende Behandlung der darunter liegenden Schicht mit Propionsäure (diese hemmt die Vermehrung der Hefen und Schimmelpilze)

R. Resch

8. Eifeler Futterbautag, 27. November 2013

LFZ-Ref. Futterkonservierung und Futterbewertung

# Probleme durch zu geringen Vorschub!



#### LFZ-Ref. Futterkonservierung und Futterbewertung

# Nacherwärmung vs. Vorschub

(LK-Fragebogenerhebung Maissilage 2012/13)



# Raufutter

# Wo liegen die Potenziale?



R. Resch

8. Eifeler Futterbautag, 27. November 2013

LFZ-Ref. Futterkonservierung und Futterbewertung

# Schonende Feldtechnik ist notwendig

Problemstellung in der Praxis:

- Schnell rotierende Zett-, Schwadtechnik
- über 5 % wertvolle Blattmasse gehen durch Abbröckelung verloren



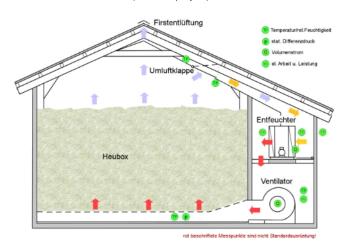




| Futterbasis | Gräser | Kleearten | Kräuter |
|-------------|--------|-----------|---------|
| Grünfutter  | 50 %   | 15 %      | 35 %    |
| Heu         | 84 %   | 7 %       | 9 %     |

Konsequenz: Fahrgeschwindigkeit 6 bis 8 km/h

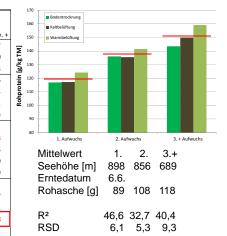
Zapfwellendrehzahl unter 450 U/min


R. Resch

8. Eifeler Futterbautag, 27. November 2013

LFZ-Ref. Futterkonservierung und Futterbewertung

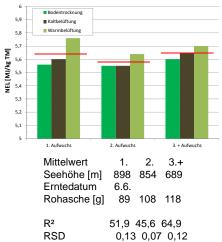
# Qualitätsverbesserung durch Installation energieeffizienter Heutrocknungsanlagen


(LFZ-Heuprojekt)



### Rohprotein-Gehalt in Raufutter Zusammenhang mit dem Trocknungsverfahren (LK-Heuprojekt 2010/12)

|                                      | Rohprotein |          |            |
|--------------------------------------|------------|----------|------------|
| Inhaltsstoff                         | [g/kg TM]  |          |            |
|                                      | 1. Aufw.   | 2. Aufw. | 3. Aufw. + |
| Anzahl Futteranalysen                | 460        | 381      | 157        |
| Gehaltswert - Mittelwert             | 119,5      | 137,7    | 150,9      |
| Gehaltswert - Standardabweichung     | 20,8       | 18,4     | 23,8       |
| Gehaltswert - Minimum                | 59         | 72       | 76         |
| Gehaltswert - unteres Quartil (25 %) | 95         | 120      | 134        |
| Gehaltswert - oberes Quartil (75 %)  | 119        | 142      | 162        |
| Gehaltswert - Maximum                | 206        | 215      | 249        |
| Signifikanter Umweltfaktor           | P-Wert     |          |            |
| Bundesland                           | 0,005      | 0,001    | 0,043      |
| Hangneigung                          | 0,290      | 0,201    | 0,045      |
| Seehöhe                              | 0,000      | 0,957    | 0,389      |
| Rohasche                             | 0,002      | 0,057    | 0,639      |
| Signifikanter Managementfaktor       |            | P-Wert   |            |
| Wirtschaftsweise                     | 0,005      | 0,000    | 0,007      |
| Mähgerät                             | 0,047      | 0,809    | 0,971      |
| Trocknungsverfahren                  | 0,001      | 0,014    | 0,008      |
| Erntedatum                           | 0,000      |          |            |


P-Wert bei 95 % Konfidenzniveau: < 0,01 hoch signifikant, < 0,05 signifikant



# **Nettoenergie-Gehalt in Raufutter** Zusammenhang mit dem Trocknungsverfahren

(LK-Heuprojekt 2010/12)

| Energie                              | Nettoenergie-Laktation<br>[MJ/kg TM] |        |                 |
|--------------------------------------|--------------------------------------|--------|-----------------|
| Lifeigle                             | 1. Aufw.                             |        | J<br>3. Aufw. + |
| Anzahl Futteranalysen                | 459                                  | 381    | 157             |
| Gehaltswert - Mittelwert             | 5,64                                 | 5,58   | 5,65            |
| Gehaltswert - Standardabweichung     | 0,47                                 | 0,3    | 0,31            |
| Gehaltswert - Minimum                | 4,31                                 | 4,62   | 4,73            |
| Gehaltswert - unteres Quartil (25 %) | 5,37                                 | 5,33   | 5,49            |
| Gehaltswert - oberes Quartil (75 %)  | 6,02                                 | 5,72   | 5,87            |
| Gehaltswert - Maximum                | 7,23                                 | 6,28   | 6,84            |
| Signifikanter Umweltfaktor           |                                      | P-Wert |                 |
| Jahr                                 | 0,000                                | 0,250  | 0,555           |
| Bundesland                           | 0,003                                | 0,000  | 0,000           |
| Hangneigung                          | 0,058                                | 0,048  | 0,036           |
| Seehöhe                              | 0,005                                | 0,000  | 0,000           |
| Signifikanter Managementfaktor       |                                      | P-Wert |                 |
| Wirtschaftsweise                     | 0,000                                | 0,161  | 0,166           |
| Siloverzicht (HKT)                   | 0,016                                | 0,008  | 0,035           |
| Mähzeitpunkt                         | 0,652                                | 0,720  | 0,030           |
| Zetthäufigkeit                       | 0,768                                | 0,537  | 0,019           |
| Dauer der Feldphase                  | 0,001                                | 0,792  | 0,333           |
| Trocknungsverfahren                  | 0,000                                | 0,013  | 0,374           |
| Erntedatum                           | 0,000                                |        |                 |



R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

# **Grundfutter** bewerten

Chemische Analyse im Labor



Sinnenprüfung auf dem Betrieb



Punktebewertung von:

- Geruch
- Gefüge
- Farbe
- Verunreinigung

R. Resch

8. Eifeler Futterbautag, 27. November 2013

LFZ-Ref. Futterkonservierung und Futterbewertung

# Sinnenbewertung mit dem DLG-Schlüssel

Gesamtheitliche Probenbeurteilung auf dem eigenen Hof

Ergebnis der Beurteilung sofort verfügbar

Sensorische Bewertung berücksichtigt:

Botanische Zusammensetzung

Trockenmasse

Futterstruktur- und Futterkonsistenz

Geruch und Farbe

Verunreinigung (Erde, Mistreste, Laub, etc.)

Mikrobiologie (visuell und geruchsmäßig)

Keine Kosten

# **Zusammenfassung und Ausblick**



# Schwachstellen im System sind die größten Potentiale

- Ungünstiger Pflanzenbestand
- Suboptimale Düngung sorgt für wuchsschwache Bestände und geringe Nitrat- bzw. P-gehalte im Futter
- Erdhaufen von Wühlmäusen und Maulwürfen
- Erntezeitpunkt

8. Eifeler Futterbautag, 27. November 2013

- Dauer der Feldphase
- Suboptimale Silierkette (Anlieferung-Verteilung-Verdichtung)
- Unprofessionelle Siliermittelanwendung
- Fehlgärungen, Nacherwärmung vom Silo
- Nachschwitzen von Heustock oder Ballen
- Fehler bei der Unterdachtrocknung

R. Resch

LFZ-Ref. Futterkonservierung und Futterbewertung

# **Qualitätsmanagement Grundfutter**

- Betriebsinterne Definition von Zielwerten f
   ür Pflanzenbestand Anzahl der Nutzungen/Jahr, Düngungsintensität, Ansprüche an Futterinhaltsstoffe, Mineralstoffe
- Beobachtung Wiesenbestand und Tiere Pflanzen, Narbendichte, Schädlingsbefall, Krankheiten Futteraufnahme, Futterreste, Tiergesundheit
- Optimierung der Konservierungstechnik
- Optimierung der Lagerungs-, Entnahme- und Vorlagetechnik
- Bewertung der Futterqualität (Analyse, Sinnenprüfung)
- Vergleich Zielwerte für Pflanzenbestand mit Analysendaten und Leistungsdaten der Nutztiere

R. Resch

8. Eifeler Futterbautag, 27. November 2013 LFZ-Ref. Futterkonservierung und Futterbewertung

### Verweis auf aktuelle Fachliteratur

Bücher



Sonderdrucke



Internet: www.raumberg-gumpenstein.at www.oeag-gruenland.at www.dlg.org

Kontakt:

Ing. Reinhard Resch +43 (0)3682 / 22451-320 reinhard.resch@raumberg-gumpenstein.at www.raumberg-gumpenstein.at



# Danke für die Aufmerksamkeit!