

Bundesministerium Nachhaltigkeit und Tourismus

Professionalisierung in der Weidehaltung

BodenpraktikerIn für das Grünland 04.07.2018 Oberndorf

Walter Starz, Bio-Institut – HBLFA Raumberg-Gumpenstein

Pflanzenbestand

- in weidebasierten Fütterungssystemen wird die Fläche zum Futtertisch
- je dichter der Bestand desto mehr Futter steht den Weidetieren zur Verfügung
- kontinuierliche Nutzung führt zu raschen Änderung in der Zusammensetzung des Grünlandbestandes
- damit die Veränderung gelenkt passiert, sind Übersaaten, mit an die Weide angepassten Gräsern, das Mittel der Wahl

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Pflanzenbestand

- seit 5 Millionen Jahren sind rinderartige Wiederkäuer an Weidegras angepasst
- aber auch das Gras passte sich an den Verbiss an
- nicht die Klaue führt in erster Linie zur Veränderung des Pflanzenbestandes sondern das Maul
- an das regelmäßige Entblättern können sich nicht alle Grünlandpflanzen gleich gut anpassen

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Bundesministerium Nachhaltigkeit und Tourismus

Pflanzenbestand - Weide- und Schnittnutzung

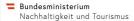
Veränderungen im Pflanzenbestand nach 4 Jahren intensiver Kurzrasenbeweidung

Versuch am Bio-Institut von 2007-2010

		Kurzrasenweide	4-Schnittnutzung
Lücke	Flächen-%	1	2
Gräser	Flächen-%	68	78
Englisches Raygras	Flächen-%	20	11
Gemeine Rispe	Flächen-%	5	18
Goldhafer	Flächen-%	2	11
Knaulgras	Flächen-%	3	12
Wiesenrispengras	Flächen-%	22	7
Leguminosen	Flächen-%	18	8
Kräuter	Flächen-%	12	13
Arten	Anzahl	27	26

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Wiesenrispe auf Wiese und Weide


in der Wiese

auf der Weide

abgeweidet

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Pflanzenbestand

- Nutzungsversuch am Bio-Institut 2007-2012
- Schnitt- und Weidesysteme im Vergleich
- Endbonitur im Frühling 2013 in Flächenprozent

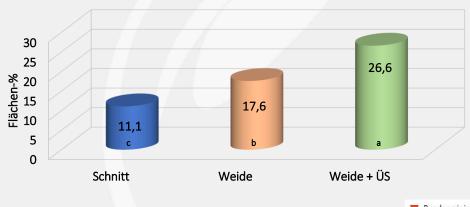
_	Variante										
Parameter	4-Schnittnutzung/ Kurzrasenweide	4-Schnittnutzung	Mähweide	Kurzrasenweide	SEM	p-Wert					
Englisches Raygras	21,3	21,5	24	21	1,9	0,4796					
Knaulgras	2,3 ^b	22,5ª	2,8 ^b	3 ^b	1,3	<0,0001					
Gemeine Rispe	6,5 b	18ª	6,3 ^b	4,5 ^b	1,4	0,0001					
Wiesenrispengras	13,9 ^b	7,6ª	15 ^b	16,4 ^b	1,5	0,0027					
Wiesenschwingel	19	15,8	16,5	15,8	1,4	0,3167					
Weißklee	12,7ª	1,5 b	9,5 ^{ab}	14,5ª	1,9	0,0020					

Bi Institut

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Übersaat

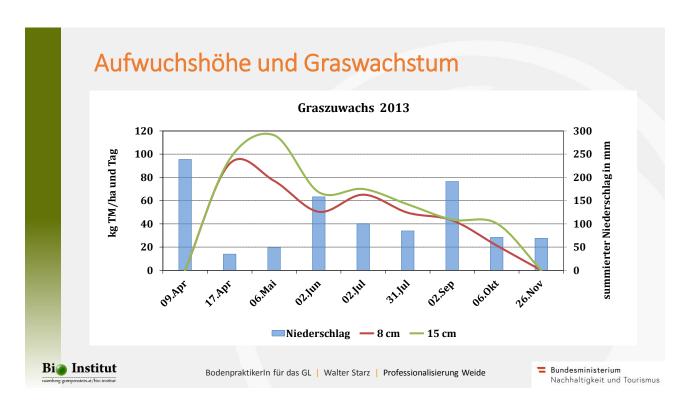
- wird begonnen eine Wiese zu beweiden, beginnt sich bereits im ersten Jahr der Bestand zu ändern
- entstehende **Lücken** sind **optimal**, um **Übersaaten** durchzuführen
- je **oberflächlicher** die **Saat**, desto **schneller entwickeln** sich die **Sämlinge**
- gerade Wiesenrispengras verträgt keine tiefe Saat
- durch Übersaaten werden auch moderne Sorten eingebracht
- je dichter die Weidenarbe, desto mehr Blätter nehmen die Tier pro Bissen auf


BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Bundesministerium Nachhaltigkeit und Tourismus

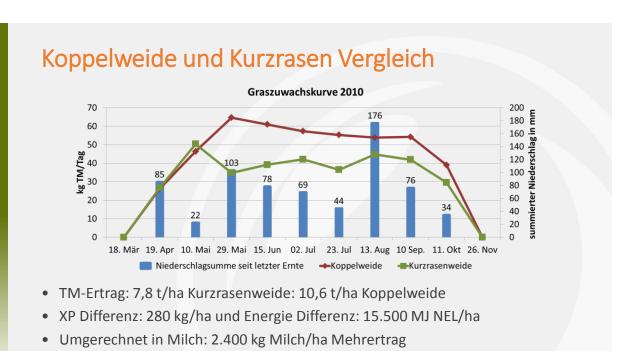
Pflanzenbestand nach Übersaat

• Übersaat zu drei Terminen mit je 10 kg/ha in Kombination mit intensiver Kurzrasenweide durch Jungvieh (Bio-Institut 2008-2011)


Anteile Wiesenrispengras

Bio Institut

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide



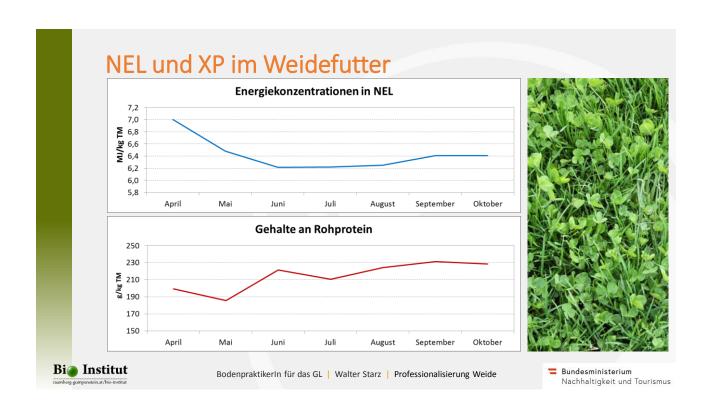
Aufwuchshöhe regelmäßig kontrollieren | The state | Professionalisierung Weide | Bundesministerium | Nachhaltigkeit und Tourismus | Professionalisierung Weide | Bundesministerium | Nachhaltigkeit und Tourismus | Professionalisierung Weide | Professionalisierung | Professio

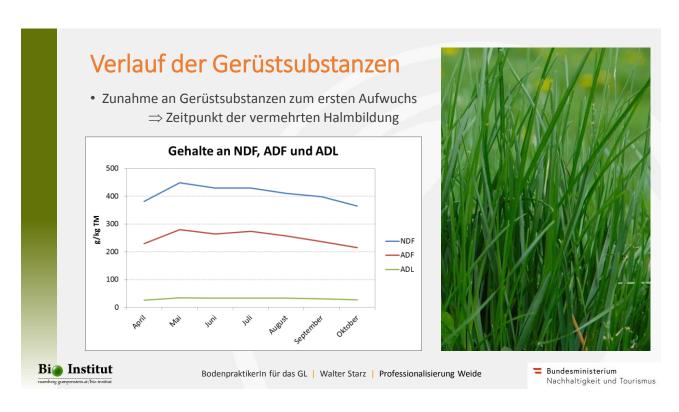
Bundesministerium

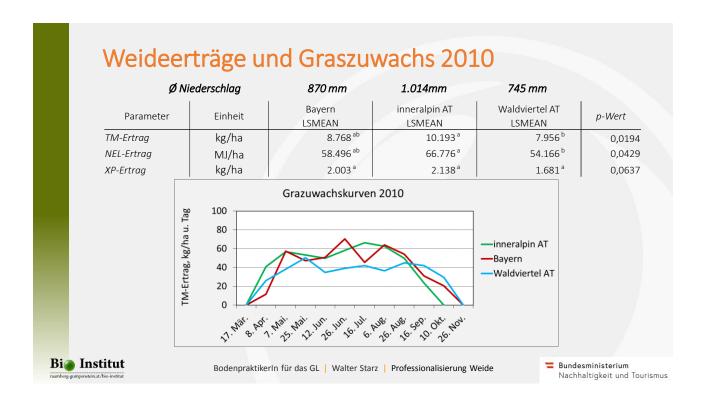
Nachhaltigkeit und Tourismus

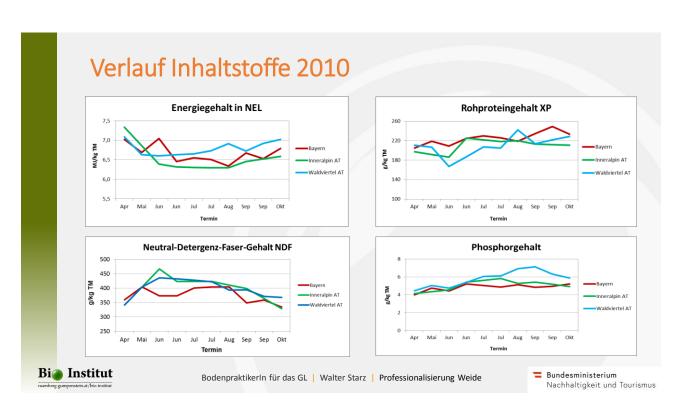
Erträge Versuch Bio-Institut 2007-2012

• vier unterschiedliche Nutzungssysteme im Vergleich auf einer inneralpinen Dauergrünlandfläche (Nettoerträge)


BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide


		Variante					
Parameter Einheit		4-Schnittnutzung/ Kurzrasenweide	4-Schnittnutzung	Mähweide	Kurzrasenweide		
TM-Ertrag	kg/ha	8.432	9.389	8.732	8.832		
NEL-Ertrag	MJ/ha	52.301	55.176	53.734	56.870		
XP-Ertrag	kg/ha	1.529	1.404	1.629	1.871		
Rohproteinerträge							



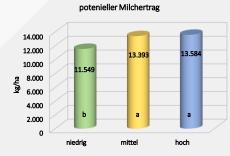


Bi Institut

Weidesystem

- Versuch 2013: Unterschiedliche Weideaufwuchshöhen
- Versuch am Bio-Institut (680 m, 1.014 mm): Einfluss unterschiedlicher Eintriebshöhen
- Höhe niedrig 8 cm, mittel 10 cm und hoch 12 cm

	simu	simulierte Kurzrasenweide sim			ulierte Koppelweide			
Parameter	Einheit	niedrig	SEM	Futterhöhe mittel	SEM	hoch	\ SEM	p-Wert
TM-Ertrag	kg/ha	10.343 ^b	341	12.119ª	341	12.581ª	346	0,0007
NEL-Ertrag	MJ/ha	66.426 ^b	2.069	77.031ª	2.068	78.131ª	2.102	0,001
XP-Ertrag	kg/ha	2.129ª	82	2.255ª	82	2.326ª	83	0,1238
SEM: Standardfehl	er; p-Wert: Signifika	nzniveau						



BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Bundesministerium Nachhaltigkeit und Tourismus

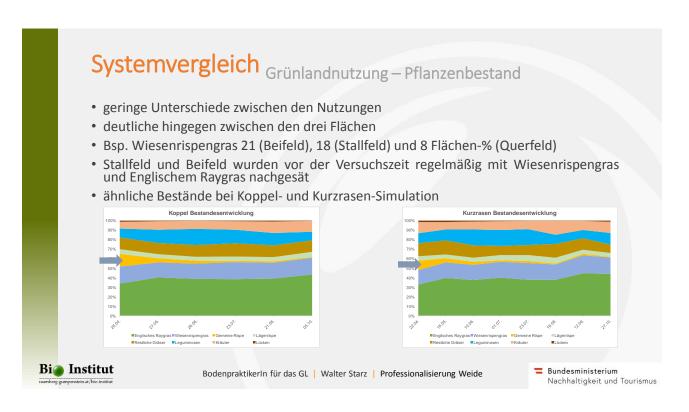
Weidesystem

- Berechnung im Rahmen einer Masterarbeit (BOKU Weißenbach, 2016)
- höchste Energie- und Rohproteinerträge in Wuchshöhe mittel und hoch und daher auch in diesen der höchste potenzielle Milchertrag
- auch in Gebieten mit höheren Niederschlags-summen erreicht das Koppelsystem höhere Erträge, bei entsprechendem Management

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Pflege und Düngung

- Ausgewachsene Geilstellen müssen abgemäht werden, damit wieder neue Blätter gebildet werden und im Anschluss die Flächengröße anpassen
- Damit ein gut entwickelter Weidebestand langfristig hohe Erträge und Qualitäten liefert, ist auf eine regelmäßige Düngung zu achten
- 15-20 m³/ha Rottemist im Herbst oder 10-15 m³/ha Gülle im Frühling und ein weiteres Mal während der Weidezeit fördern das Graswachstum und halten die Erträge stabil

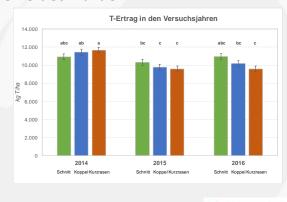


BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Systemvergleich Grünlandnutzung – Erträge

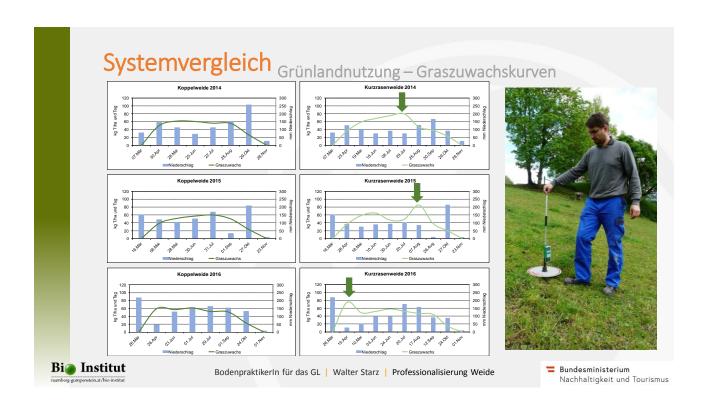
- Ertragsunterschiede bei den Nutzungen nur beim XP-Ertrag
- · Querfeld hatte die signifikant geringsten Mengen- und Qualitätserträge
- regelmäßige Übersaat auf Stallfeld und Beifeld in den 10 Jahren (80-100 kg/ha Saatgut) vor Versuchsbeginn dürfte Grund dafür sein

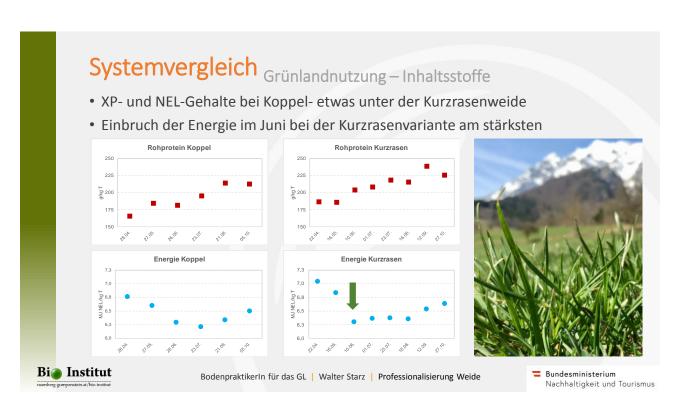
Parameter	Einheit heit		Nutzung	1		
	neit	Schnitt	Koppel	Kurzrasen	SEM	P-Wert
T-Ertrag	kg/ha	10.729	10.482	10.273	219	0,234
XP-Ertrag	kg/ha	1.744 ^c	2.012 ^b	2.156ª	54	<0,001
NEL-Ertrag	MJ NEL/ha	67.095 67.597		67.299	1.459	0,958
Parameter	Einheit		Fläche			
	heit	Beifeld	Querfeld	Stallfeld	SEM	P-Wert
T-Ertrag	kg/ha	11.121 ^a	9.134 ^b	11.228ª	210	<0,001
XP-Ertrag	kg/ha	2.093 ^a	1.599 ^b	2.221 ^a	52	<0,001
				'		
NEL-Ertrag	MJ NEL/ha	71.205 ^a	58.476 ^b	72.310 ^a	1.403	<0,001



BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Bundesministerium Nachhaltigkeit und Tourismus


Systemvergleich Grünlandnutzung – Erträge


- Unterschiede zwischen den Nutzungen und Jahren
- Einfluss dürfte auch versuchsbedingt sein, da jedes Jahr eine im Vorjahr geschnittene Fläche beweidet wurde
- Graszuwächse schwankten stark in Kurzrasen-Variante und waren bei Koppel gleichmäßiger

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

Potential der Weide im Alpenraum

- Intensive Weidenutzung kann mit einer üblichen Schnittnutzung am Dauergrünland mithalten
- Rohproteinerträge auf Dauerweiden sind höher als bei Körnerleguminosen am Acker
- Energiekonzentrationen auf der Weide entsprechen dem Silomais und die Rohproteinkonzentrationen der Körnererbse
- Unabhängig vom Standort stellt die Weide ein flächeneffizientes und tiergerechtes Nutzungssystem im Dauergrünland dar!

BodenpraktikerIn für das GL | Walter Starz | Professionalisierung Weide

