

Dauergrünland in der Biologischen Landwirtschaft

Vorlesung Ökologische Landwirtschaft 12. Dezember 2016

Walter Starz, Bio-Institut, HBLFA Raumberg-Gumpenstein

Besonderheiten Bio-Grünland

- Dichte Grasnarbe hat für den Bio-Betrieb sehr hohen Stellenwert, da keine effizienten Maßnahmen zur Regulierung von Problempflanzen verfügbar sind
- Leguminosen werden gefördert, damit diese über die Biologische-Fixierung N in das System bringen
- Wirtschaftsdünger sind limitiert und machen eine Schlagbezogene Düngerplanung notwendig
- Daraus ergibt sich eine abgestufte Nutzung der Grünlandflächen
- Weidehaltung gehört zum System und ist verpflichtend

Bedeutung Bio-Grünland in AT

- ca. 60 % der Bio-Fläche in Österreich ist Dauergrünland
- ca. 16.000 Bio-Betriebe halten Wiederkäuer
- hauptsächlich in Ländern mit hohem Anteil an Alpen

Land	2007		2008		2009		2010		2011		2012	
	ha	%										
Deutschland	461.500	53	503.300	55	514.300	54	531.100	54	580.416	57	577.000	56
Österreich	323.938	67	329.622	67	342.191	66	343.163	63	338.307	62	336.544	63
Schweiz	95.241	82	95,674	82	93.065	82	95,783	80	97,707	79	99.001	79

Quelle: FIBL (2014)

Bi Institut

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Probleme im Pflanzenbestand

Bi Institut

Gemeine Rispe

Bio Institut

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

An welchen Schrauben kann ich drehen?

- Standortsvoraussetzungen berücksichtigen
- Kenntnis über die Kulturpflanzen Gräser
- Abgestufte Nutzung sinnvoll und bei geringen Tierbesätzen notwendig
- Düngung an die Nutzung abstimmen
- Bestände je nach Nutzung aufbauen und mit gezielten Übersaaten verbessern
- Weide optimal nutzen

Boden und Standort

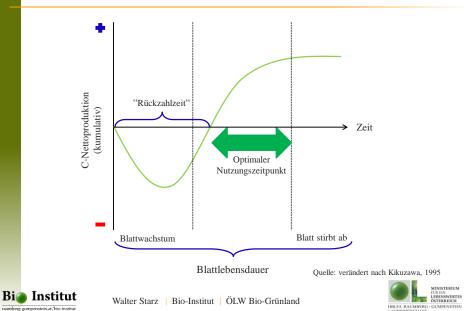
- Ausgeglichene und regelmäßige Wasserversorgung ist für optimales Graswachstum notwendig
- Für die Bildung von 1 kg TM werden ca. 600 l
 Wasser benötigt bzw. 2-3 l täglich je m²
- Unter optimalen Bedingungen wächst Gras bis zu 2 mm in der Stunde
- Bei Trockenheit wird das Wachstum sofort eingestellt

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Boden und Standort

frisch

Nutzung und Graswachstum


- Nutzung hat einen sehr großen Einfluss auf die Artenzusammensetzung und die Entwicklung von Dauergrünlandbeständen
- der Zeitpunkt des 1. Schnittes ist entscheidend, da er die Anzahl der weiteren Schnitte bestimmt
- ein früher erster Schnitt verhindert das Aussamen der Gräser
- Unterschiedliche Nutzungsintensitäten stellen auch unterschiedliche Grundfutterqualitäten zur Verfügung, je nach Leistungsstadium des Tieres

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Blattlebensdauer und Nutzung

Aufbau Graspflanze

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Triebbildung und Nutzungseinfluss

Englisch Raygras-Bestand

	Trieb- Trieb anzahl/m² Ähren		Trieb-gewichte in g TM/m ²	Trieb- länge in cm	LAI
Schnittnutzung					
1. Schnitt am 07. Juni	8.330	74	548	-	-
4 wöchentliche Schnittnutzung bis 07. Juni	12.097	69	388	-	-
Kurzrasenweide					
3 cm Aufwuchshöhe	43.464	14	44	1,3	1,6
6 cm Aufwuchshöhe	33.765	31	106	3,6	2,3
9 cm Aufwuchshöhe	20.132	47	202	7,1	3,8
12 cm Aufwuchshöhe	14.311	59	333	9,2	4,6

Quelle: verändert nach Johnson and Parson, 1985

Warum abgestufte Grünlandnutzung?

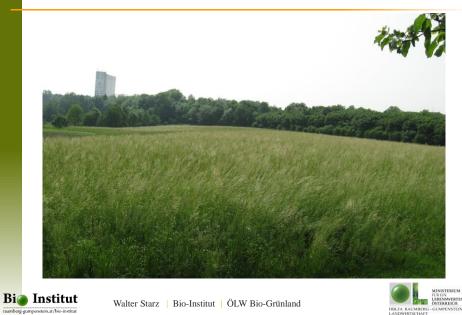
- Meist unterschiedlich tiefgründige Böden am Betrieb
 - ⇒ Anpassung der Bewirtschaftung an den natürlichen Standort
- Wegen der Viehbesätze in Bio (∅ 1,3 GVE/ha in Österreich)
 - ⇒ zu wenig Wirtschaftsdünger um alle Flächen intensiv zu nutzen und bedarfsgerecht zu versorgen
- Bereitstellung unterschiedlicher GF-Qualitäten
- Grünlandbetrieb fördert Artenvielfalt
 - ⇒ Grundsatz von Bio

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Extensive Wiesen

Intensive Wiesen

Walter Starz | Bio-Institut | ÖLW Bio-Grünland


Problemsituation im Dauergrünland

- viele Flächen liefern nicht jene Erträge, die sie liefern könnten
- oftmals sind die Bestände zu lückig und das ertragsbildende Grasgerüst ist zu schwach ausgebildet
- Lücken werden vielfach durch ertragsschwache, verfilzende Gräser eingewachsen oder von minderwertigen Kräutern dominiert
- durch Zukäufe von Grund- und Kraftfutter werden Defizite in den Grünlanderträgen und –qualitäten versucht auszugleichen

MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH

Glatthaferwiese vor 1. Schnitt

Glatthaferwiese nach 1. Schnitt

Intensivierte Glatthaferwiese ohne Übersaat

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Indirekter Lückennachweiß

- regelmäßiges absamen mit Flugschirmen
- weite Verbreitung und Keimung nur in Lücken möglich
- ständig neu auflaufende Pflanzen
- langfristige Verbesserung nur möglich wenn die Grasnarbe geschlossen wird

Bio Institut

Vermeintlich dichter Grasbestand

- Problem Gras Gemeine Rispe, da eine dichte Grasnarbe vorgetäuscht wird
- Futterwert beim ersten Schnitt gering, da sehr frühreif
- · ertragswirksam nur zum ersten Aufwuchs

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Wie geht es weiter?

- Suchen der Ursachen, die zum Ungleichgewicht geführt haben!
- Passen Nutzung und Gräser zusammen?
- Wird die Düngung der Nutzung entsprechend durchgeführt?
- Brauche ich für meine Nutzung andere Gräser, die übergesät werden müssen?
- Das Entfernen der ungewünschten Pflanzen löst nicht das Problem!

Bestandesverbesserung mit Übersaaten

- Übersäen = auf die Bodenoberfläche legen
- Nachfolgendes Anwalzen verbessert die Wasserversorgung und so die Keimung
- Bestandeslücken sind Notwendig
- Übersaat bringt moderne Zuchtsorten in das Grünland
- Übersaaten vor dem 1. Aufwuchs nur in sehr lückigen Beständen
- Entstehen Bestandeslücken muss sofort mit gezielten Übersaaten reagiert werden!

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Englisches Raygras (*Lolium perenne*)

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Wiesenrispengras (Poa pratensis)

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Weißklee (Trifolium repens)

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Wirtschaftsdünger-Versuch am Bio-Institut

- 2008-2012 WD-Versuch am Bio-Institut
- Umbruch und Neuansaat im Spätsommer 2006 mit einheitlicher Mischung (inklusive Kräuter)
- Versuchsannahme war ein Betrieb mit 1,2 GVE
- Kalkulation als Gülle-, Festmist- und Mistkompost-Betrieb
- zusätzlicher Faktor war Ausbringhäufigkeit als gute oder schlechte Verteilung
- in den Faktor Ausbringhäufigkeit wurde noch eine Behandlung mit Urgesteinsmehl gelegt

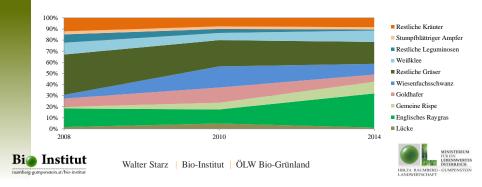
Walter Starz | Bio-Institut | ÖLW Bio-Grünland

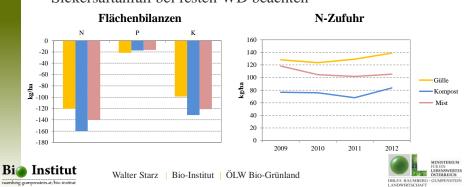
Kalkulation Düngermengen

- Werte für Milchkühe mit 6.000 kg Leistung laut Sachgerechter Düngung 6. Auflage 2006
- Lagerverluste f\u00fcr jedes WD-System aus abgeschlossenen Versuchen an der HBLFA Raumberg-Gumpenstein
- Urgesteinsmehl-Zusatz bei Gülle 30 kg/m³ und bei Mist und Kompost 40 kg in 4-5 m lange Miete

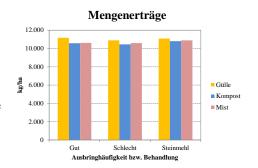
bei 1,2 GVE	Gülle 1:1 verdünnt	Stallmist	Mistkompost	
Einheit	m³/Jahr	kg TM/Jahr	kg TM/Jahr	
Düngeranfall	56,6	6241	6241	
Lagerungsverluste	2,20%1	33,30%2	$42,10\%^{2}$	
nach Abzug der Verluste	55,4	4163	3614	

^{1:} Buchgraber und Resch, 1996


²: Pöllinger, 2004


Entwicklung Pflanzenbestand

- kein Einfluss durch Düngerart oder Düngerbehandlung feststellbar
- Abnahme von Rotklee, Hornklee, W-Fuchsschwanz und Goldhafer
- Zunahme von Engl. Raygras und leicht Gemeine Rispe


Ausgebrachte N-Mengen und Bilanzen

- ausgebrachte N-Menge über das System Gülle am höchsten
- leichte Zufuhr am P über Stroh
- N- und K-Bilanz bei Gülle am geringsten Gülle g/kg FM 2,2 0,5
- K-Ausscheidung über Nieren
- Sickersaftanfall bei festen WD beachten

Erträge

- Mengenertrag im Schnitt in allen Gülle-Varianten mit 11.045 kg TM/ha am höchsten
- langfristige Abnahme der Erträge im Versuchszeitraum
- Grund: Veränderungen im Pflanzenbestand und geringere Düngernachlieferungen, vor allem bei festen Wirtschaftsdüngern

Parameter	Einheit	2008	2009	2010	2011	2012
Niederschlagssumme	mm	987	1.132	988	981	1.261
Niederschlag in der Vegetationszeit	mm	665	824	795	805	920
Temperaturmittel	°C	8,9	8,6	7,7	8,8	8,5
Gülle	kg/ha TM	10.522	11.776	11.968	10.155	10.802
Kompost	kg/ha TM	10.615	11.563	10.824	9.887	10.105
Mist	kg/ha TM	10.948	11.535	11.015	10.039	9.938

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Schlussfolgerung

- über welche Wirtschaftsdüngerform die Düngung erfolgt hat auf den Pflanzenbestand keinen Einfluss, sofern die Mengenzuteilung bedarfsgerecht erfolgt
- das Güllesystem zeigte die geringsten N-förmigen Verluste
- die Anzahl der Nutzungen pro Jahr ist die treibende Kraft in der Veränderung der Wiesenbestände
- langfristig solche Gräser in die Fläche übersäen, die an die Nutzungshäufigkeit angepasst sind
- Durch begrenzte Wirtschaftsdüngermengen am Bio-Betrieb ist eine abgestufte Nutzung der Flächen notwendig, um gerade die intensiven Flächen bedarfsgerecht versorgen zu können!

MINISTERIUM FOR EIN LEBENSWERTES ÖSTERREICH HBLFA RAUMBERG - GUMPENSTEIN

Basis für ein wertvolles Grünland

- Aufbau von grasreichen Bestände mit an die Nutzung angepassten Futtergräsern
- im Dauergrünland ist in erster Linie Gras die zu fördernde Kulturpflanze
- Gras ist im Dauergrünland für den Ertrag und die Energie verantwortlich
- eine geschlossene und dichte Narbe lässt sich mit wertvollen Futtergräsern verwirklichen
- Lücken müssen so bald wie möglich und so oft wie nötig mit Übersaaten geschlossen werden!

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Weidehaltung

MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH HANDWIPPSCHAFT

Kurzrasenweide

Die Futterqualität ist relativ gleich bleibend, da immer das neu gebildete Pflanzengewebe gefressen wird.

Die Fläche wird je nach Graswachstum angepasst und somit Fläche dazu oder weggezäunt.

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Koppelweide

Der Koppelbedarf ändert sich je nach Graswachstum, jedoch nicht die Besatzzeit je Koppel, die bei Milchvieh 5 Tage nicht überschreiten soll.

Je länger eine Koppel bestoßen wird, desto schwankender ist die Futterqualität während der gesamten Weideperiode.

Portionsweide

Bei der Portionsweide sollte nach längstens 4 Tagen die abgeweidete Fläche weggezäunt werden.

Die Portionsweide ist im Herbst ungünstig, da leicht Schäden an der Grasnarbe entstehen können.

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Pflanzenbestand

- seit 5 Millionen Jahren sind rinderartige Wiederkäuer an Weidegras angepasst
- aber auch das Gras passte sich an den Verbiss an
- nicht die Klaue führt in erster Linie zur Veränderung des Pflanzenbestandes sondern das Maul
- an das regelmäßige Entblättern können sich nicht alle Grünlandpflanzen gleich gut anpassen

Pflanzenbestand – Weide- und Schnittnutzung

- Veränderungen im Pflanzenbestand nach 4 Jahren intensiver Kurzrasenbeweidung
- Versuch am Bio-Institut von 2007-2010

		Kurzrasenweide	4-Schmitthutzung
Lücke	Flächen-%	1	2
Gräser	Flächen-%	68	78
Englisches Raygras	Flächen-%	20	11
Gemeine Rispe	Flächen-%	5	18
Goldhafer	Flächen-%	2	11
Knaulgras	Flächen-%	3	12
Wiesenrispengras	Flächen-%	22	7

Vunanacanyvaida

18

KräuterFlächen-%1213ArtenAnzahl2726

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Flächen-%

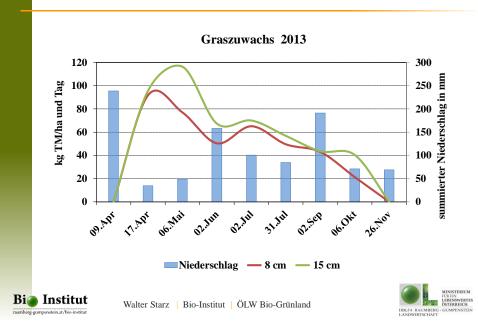
1 Cobnittoutouro

8

Übersaat

Leguminosen

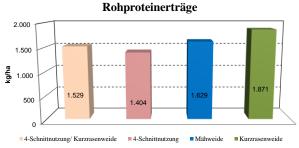
- wird begonnen eine Wiese zu beweiden, beginnt sich bereits im ersten Jahr der Bestand zu ändern
- entstehende Lücken sind optimal, um Übersaaten durchzuführen
- je oberflächlicher die Saat, desto schneller entwickeln sich die Sämlinge
- gerade Wiesenrispengras verträgt keine tiefe Saat
- durch Übersaaten werden auch moderne Sorten eingebracht
- je dichter die Weidenarbe, desto mehr Blätter nehmen die Tier pro Bissen auf



Aufwuchshöhe und Graswachstum

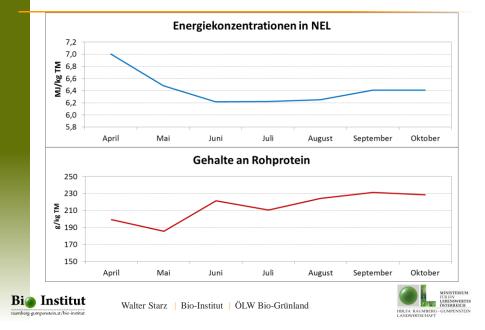
Aufwuchshöhe regelmäßig kontrollieren

Bio Institut


Instrumente zur Ermittlung der Wuchshöhe

Erträge Versuch Bio-Institut 2007-2012

 vier unterschiedliche Nutzungssysteme im Vergleich auf einer inneralpinen Dauergrünlandfläche (Nettoerträge)


	1	\mathcal{C}	`	0	<i>'</i>			
	Einheit	Variante						
Parameter		4-Schnittnutzung/ Kurzrasenweide	4-Schnittnutzung	Mähweide	Kurzrasenweide			
TM-Ertrag	kg/ha	8.432	9.389	8.732	8.832			
NEL-Ertrag	MJ/ha	52.301	55.176	53.734	56.870			
XP-Ertrag	kg/ha	1.529	1.404	1.629	1.871			

Bio Institut

NEL und XP im Weidefutter

Pflege und Düngung

- Ausgewachsene Geilstellen müssen abgemäht werden, damit wieder neue Blätter gebildet werden und im Anschluss die Flächengröße anpassen
- Damit ein gut entwickelter
 Weidebestand langfristig hohe Erträge
 und Qualitäten liefert, ist auf eine
 regelmäßige Düngung zu achten
- 15-20 m³/ha Rottemist im Herbst oder 10-15 m³/ha Gülle im Frühling und ein weiteres Mal während der Weidezeit fördern das Graswachstum und halten die Erträge stabil

Potential der Weide im Alpenraum

- Intensive Weidenutzung kann mit einer üblichen Schnittnutzung am Dauergrünland mithalten
- Rohproteinerträge sind in der Weide signifikant am höchsten
- Energiekonzentrationen auf der Weide entsprechen dem Silomais und die Rohproteinkonzentrationen der Körnererbse
- Unabhängig vom Standort stellt die Weide ein flächeneffizientes und tiergerechtes Nutzungssystem im Dauergrünland dar!

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

VX Grünland in der ÖLW

- Sommersemester 2017
- 3 Blöcke zu je 2 Tagen
- davon 1 Tag Exkursion auf einen Bio-Grünlandbetrieb in NÖ
- Inhalte:
 - Pflanzenwachstum im Grünland
 - Boden und Düngung
 - Grünlandnutzungsformen
 - Weidehaltung

SE Case Studies in Organic Grassland Management

- Sommersemester 2017
- 3 Blöcke in Summe 4 Tage
- davon 2 Tage Exkursion auf das Bio-Institut der HBLFA Raumberg-Gumpenstein
- Inhalte:
 - Interaktionen im alpinen Weidesystem
 - Pflanzenerkennung auf der Weide
 - Planungselemente effizienter Weidenutzung
 - nationale und internationale Weideversuche

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Danke für die Aufmerksamkeit!

