

Nährstoffkreisläufe am Gemischtbetrieb und Förderung der Bodenfruchtbarkeit

AckerAktiv-Treffen Maschinenring Lungau

Walter Starz Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere Abteilung für Bio Grünland und Viehwirtschaft Tamsweg, 15. März 2022

Nährstoffkreisläufe und Bodenfruchtbarkeit

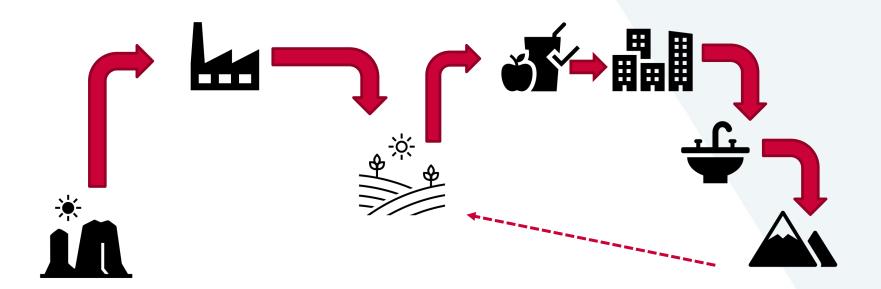
- nur ausgeglichene Nährstoffkreisläufe stellen langfristig die Bodenfruchtbarkeit sicher
- hierbei bilden der Einsatz von Düngemitteln sowie die Gestaltung der Fruchtfolge die zwei tragenden Säulen
- gerade der Gemischtbetrieb muss die Nährstoffabtransporte im Auge behalten
- Begriff der Nachlieferung aus dem Boden wird vielfach falsch interpretiert und führt zu falschen Schlüssen

Nährstoffdenken in der Landwirtschaft

- am Grünlandbetrieb hat es wenig Tradition an Einzelnährstoffe zu denken
- gerade die Wirtschaftsdünger sind wertvolle Volldünger und verfügen über alle wesentlichen Nährstoffe und Spurenelemente
- diese sind sowohl f
 ür das Bodenleben als auch f
 ür die Pflanzen die optimalen Nahrungsgrundlagen
- Kalkulation von Hoftorbilanzen wäre ein zentrales und wichtiges Instrument zur überblicksmäßigen Erfassung der Nährstoffsituation des Betriebes

Natürlichen Nährstoffkreisläufe

- natürliche Stoffkreisläufe sind 100 % Recycling-Systeme
- diese über Jahrmillionen evolutionär entwickelten und optimierten Kreisläufe basieren auf Stoffab- und Stoffaufbau
- organische "Abfälle" werden von Kleinstlebewesen und Mikroorganismen so weit abgebaut, dass aus den Molekülen wieder neue Stoffe aufgebaut werden
- dieser natürliche "Abbau" ist aus der Sicht der landwirtschaftlichen Produktion teilweise negativ und durch unterschiedlichste Maßnahmen wird versucht diese Prozesse zu verlangsamen



Woher stammen die Nährstoffe

- der Naturzustand ist ein Gleichgewicht und es befinden sich mehr oder weniger die benötigten Stoffe im Gleichgewicht - Ab- und Aufbau halten sich die Waage
- will die Landwirtschaft etwas ernten, muss die Nährstoffkonzentration in den Böden erhöht werden
- erst dieses Mehr führt zu einem Ertrag und kann als solcher entzogen werden
- bei einer ausgeglichenen Nährstoffbilanz sind die Wirtschaftsdünger kein zusätzlicher Dünger sondern werden im Betriebskreislauf gehalten

Beispiel: Weg des Phosphors

Beispiele Stoffbilanzen für Gemischten Betrieb

- 20 ha große Betrieb mit 20 Milchkühen und Nachzucht
- pro Jahr 130.000 kg verkaufte Milch
- 20 Stück Kälber und Jungtiere als Verkaufstiere
- Kalkulation von 3 Varianten
 - Variante 1: gesamtes Kraftfutter (ca. 800 kg/Kuh und Jahr) und Stroh wird zugekauft
 - Variante 2: halbe Kraftfuttermenge (ca. 400 kg/ Kuh und Jahr) und Stroh wird zukauft
 - Variante 3: von den 20 ha werden 3 ha als Ackerflächen genutzt, von denen Stroh und Kraftfutter genutzt werden

Kalkulation der 3 Varianten

nach Steinwidder A. Bio-Institut

Parameter	Einheit	Variante 1	Variante 2	Variante 3
Zukauf				
Kraftfutter	kg	18.000	9.000	0
Mineralstoffmischungen	kg	400	400	400
Stroh	kg	25.000	25.000	
Grünlandsaatgut	kg	100	100	100
Saatgut Ackerbau	kg	0	0	300
Nährstoff-Import				
Stickstoff	kg/Betrieb	579	359	10
Phosphor	kg/Betrieb	134	101	39
Nährstoff-Export				
Stickstoff	kg/Betrieb	829	829	829
Phosphor	kg/Betrieb	168	168	168
Nährstoffbilanz (ohne Legum. N)				
Stickstoff	kg/Betrieb	-212	-432	-814
Stickstoff	kg/ha	-11	-22	-41
Phosphor	kg/Betrieb	-27	-60	-123
Phosphor	kg/ha	-1	-3	-6

Nährstoffexporte vom Grünlandbetrieb

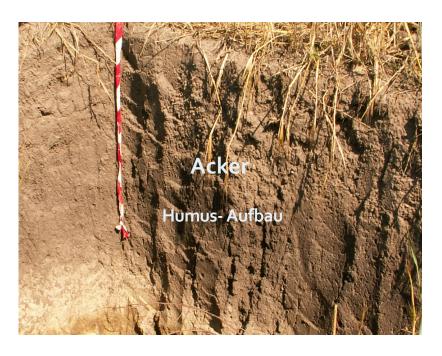
Nährstoffexporte über Milch und Tiere

pro 1 kg Milch			pro 1 kg LG-Rind				
N	g/l	5,45	N	g/kg LG	24		
Р	g/l	0,95	Р	g/kg LG	8,6		
S	g/l	0,3	S	g/kg LG	1,3		
K	g/l	1,5	K	g/kg LG	1,7		

Quelle: D.C. Whitehead (2000): Nutrient elements in grassland. Soil-plant-animal relations. CAB International 2000, CABI Publishing, 369 S.

Ackerboden

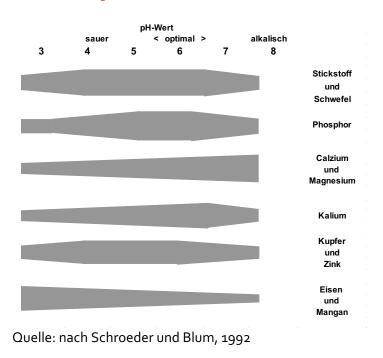
- Unterschiede in den lebenden Prozessen von Acker- und Grünlandböden hat auch Konsequenzen für die Bewirtschaftung
- beim Ackerboden ist Humusaufbau ein entscheidender Schlüssel für einen fruchtbaren Boden, wofür Stroh, Wirtschaftsdünger und Pflanzenreste aus der Fruchtfolge wichtig sind
- durch die Bodenbearbeitung werden die Pflanzenteile schnell vom Bodenleben umgesetzt
- einarbeiten von organischer Substanz ist notwendig, um das aufgebaute Humusniveau zu halten



Grünlandboden

- Dauergrünland besitzt bereits eine über Jahrzehnte aufgebaute hohe Humusmenge
- Humusgehalte befinden sich je nach Standort und Bodentyp auf einem optimalen Niveau und reichen von 5 bis über 30 %
- das Dauergrünland selbst liefert jährlich mehr organische Substanz als über die Wirtschaftsdünger ausgebracht werden kann
- daher ist das Ziel im Dauergrünland den vorhandenen Humus zu aktivieren
- Humusaufbau in den oberen 10 cm Boden sind aktuell kaum mehr möglich!

Konsequenzen in der Humusbetrachtung


Nährstoffe und Bodenanalysen

- Bodenanalysen sind wichtige Informationen über den aktuellen Zustand
- stellen aber immer nur eine Momentaufnahme dar
- erst über die Zeit können Trends abgeleitet werden
- wichtig ist aber die korrekte Interpretation der Ergebnisse
- dabei muss der Kontext zur Bewirtschaftung und der jeweiligen Kultur immer beachtet und hergestellt werden

Boden pH und Nährstoffe

- optimaler pH-Wert in landwirtschaftlichen Böden liegt um 6
- optimaler pH-Wert ist auch für das Bodenleben günstig und erhöht deren Aktivität
- idealerweise sollte das Verhältnis Ca: Mg im Mittel bei 6: 1 liegen bzw. Ca 60-90 % und Mg max. 20 % am Sorptionskomplex ausmachen

Interpretation Bodenanalyse 1

- erster Blick auf Standard-Parameter vermittelt perfekten Boden
- optimaler pH-Wert, hohe P- und Ksowie Humus-Gehalte
- Blick auf die KAK (Kationen-Austausch-Kapazität) zeigt, zu wenig
 Ca und zu viel Mg
- Empfehlung wäre eine Kalkung

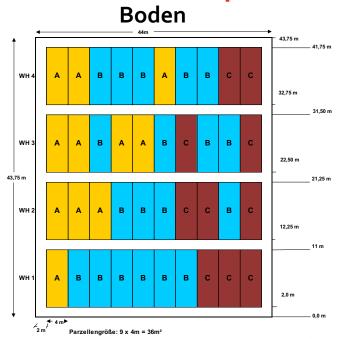
Parameter		Einheit		Boden	Boden	Boden
- arameter		Lillieit	1	2	3	4
pH-Wert			6,63	6,84	6,79	6,4
PCAL		mg/kg	38	35	48	63
Kcal		mg/kg	157	285	217	250
Humus		%	12,2	10,8	11,9	14,5
Ton		%	22	24	24	34
KAK	Ideale Ve	erhältnisse				
Ca-Sättigung	75-90 %	%	74,1	68,4	69,6	70,2
Mg-Sättigung	5-15%	%	24,6	29,1	28,7	28,0
K-Sättigung	2-5%	%	1,13	2,38	1,55	1,58
Na-Sättigung	<1%	%	0,12	0,06	0,08	0,05
Al+Fe+Mn-Sättigung	<10 %	%	0,10	0,03	0,13	0,16
Al-Sättigung	0	%	-0,02	-0,01	-0,01	-0,01
·						

Interpretation Bodenanalyse 2

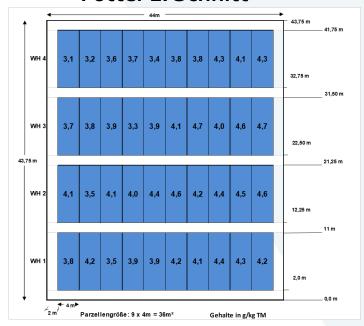
- die Standardanalysen zeigen schon, dass pH-Werte niedrig sind
- die KAK zeigt optimale Verhältnisse, jedoch ist bereits freies Al messbar
- dies wird unter pH 5 frei und wirkt toxsich auf die Kulturpflanzen
- Empfehlung wäre ebenfalls eine Kalkung

Parameter		Einheit		Boden	Boden
				2	3
pH-Wert			4,94	5,21	5,83
Pcal		mg/kg	12	14	15
Kcal		mg/kg	103	160	250
Humus		%	9,6	8,4	9,1
Ton		%	22	22	24
KAK	Ideale Ve	rhältnisse	V		
Ca-Sättigung	75-90 %	%	81,1	74,8	78,9
Mg-Sättigung	5-15%	%	11,3	19,7	16,7
K-Sättigung	2-5%	%	2,09	2,79	3,11
Na-Sättigung	<1%	%	0,16	0,16	0,17
Al+Fe+Mn-Sättigung	<10 %	%	5,33	2,51	1,05
Al-Sättigung	0	%	0,50	0,14	-0,01

Interpretation Bodenanalyse 3


- erster Blick auf Standard-Parameter vermitteln guten Boden
- optimaler pH-Wert, hohe K- und Humus-Gehalte
- niedrige P-Gehalte aber KAK ist optimal
- Empfehlung wäre P-Dünung im Auge behalten

	Einheit	Boden	Boden Boden Boden			
Lillieit		1	2	3	4	
		6,18	6,22	6,73	6,36	
	mg/kg	16	14	7	9	
	mg/kg	112	145	174	160	
	%	11,3	11,9	5,9	7,3	
	%	16	8	20	12	
Ideale Ver	hältnisse					
75-90 %	%	82,8	90,4	91,9	89,3	
5-15%	%	15,6	7,16	5,50	7,35	
2-5%	%	0,82	1,30	2,01	2,02	
<1%	%	0,16	0,23	0,12	0,21	
<10 %	%	0,68	0,91	0,44	1,12	
0	%	-0,01	-0,01	-0,01	-0,01	
	75-90 % 5-15 % 2-5 % < 1 % <10 %	mg/kg mg/kg % % Ideale Verhältnisse 75-90 % % 5-15 % % 2-5 % % < 1 % %	1 6,18 16 16 12	1 2 mg/kg 16 14 mg/kg 112 145 % 11,3 11,9 % 16 8 Ideale Verhältnisse 75-90 % % 82,8 90,4 5-15 % % 15,6 7,16 2-5 % % 0,82 1,30 < 1 % % 0,16 0,23 < 10 % % 0,68 0,91	1 2 3	



Variation bei Phosphat-Gehalten

Futter 1. Schnitt

P-Festlegung in Phytomasse & P-Konzentration im Boden

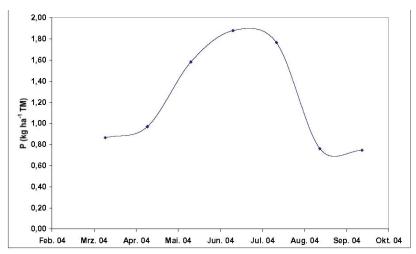


Abbildung 1: Phosphor-Festlegung (kg ha⁻¹) in der unterirdischen Phytomasse im Jahresverlauf

Quelle: Bohner, 2008

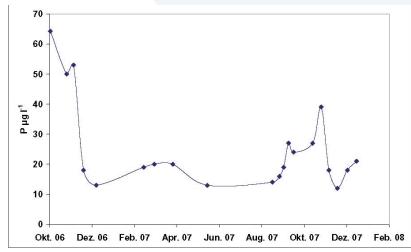


Abbildung 4: Phosphor-Konzentration im Bodenwasser (10-15 cm Bodentiefe) im Jahresverlauf

Quelle: Bohner, 2008

Phosphor im Grünland

- Verfügbarkeit hängt vielfach von Humusaktivität ab
- je **umsetzungsaktiver** ein **Boden** ist, desto **mehr Phosphor** kann von den Pflanzen aufgenommen werden
- neben der Bodenanalyse muss die Hoftor- und Schlagbilanz berücksichtig werden sowie die Bestände beobachtet werden
- mittelfristig braucht es Lösungen, um Phosphor zu rezyklieren da aktuell die höchsten Vorräte in den Abfallstoffen zu finden sind

Komplexer Prozess der N-Bindung bei Leguminosen

- P stellt die Energie für Bakterien bereit
- S ist für die Bildung von Enzymen in den Knöllchen ein wichtiger Nährstoff
- Leghämoglobin benötigt Fe und färbt die Knöllchen rot
- nur rote Knöllchen fixieren Luft-N
- Weiter Spurenelemente sind f
 ür die Fixierung notwendig: Co, Mo, B und Ni

Komplexer Prozess der N-Bindung bei Leguminosen

- Rhizobien benötigen als Energie ATP von der Leguminose, daher ist die P-Versorgung im Boden sehr bedeutend
- in den **Rhizobien** haben **3-Mal höhere P-Konzentration** als das umliegende Wurzelwerk bzw. der grüne Spross
- Rhizobien bilden Enzym Nitrogenase, welches in der Gegenwart von O₂ inaktiv
 ist
- S, Fe und Mo werden zur Bildung der Nitrogenase benötigt
- **S** ist neben der Nitrogenase in zahlreichen anderen Enzymen im Rahmen der N-Fixierung **essentiell**

Komplexer Prozess der N-Bindung bei Leguminosen

- Rhizobien regen Leguminose an, Leghämoglobin (ähnlich dem Hämoglobin) zu bilden, welches für die rötliche Färbung der Rhizobien verantwortlich ist
- je **intensiver die Rotfärbung** im Inneren der Knöllchen, **desto höher** ist die **N- Fixierung**
- Leghämoglobin bindet O₂ und senkt dadurch die Konzentration in der Zelle, dadurch können sowohl die Rhizobien überleben und die Nitrogenase arbeiten
- weiteres wichtiges Element des Leghämoglobins ist Co
- hohe Ca-Gehalte in der Bodenlösung begünstigen die Ansiedlung der Rhizobien in der Leguminosenwurzel

Kleegras in der Fruchtfolge

- Kleegras am Acker soll in erster Linie N fixieren, den Boden lockern und krümeln sowie organische Substanz für das Bodenleben bereitstellen
- Die Futternutzung stellt einen positiven Nebeneffekt dar
- Wirtschaftsdünger sollten im Kleegras sparsam verwendet werden, damit die N-Fixierung hoch ist und der Dünger auf den übrigen Flächen besser ausgebracht werden kann
- Phosphor, Schwefel und Kalk können bei der Anlage miteingebracht werden, um die Bedingungen für die Leguminosen zu verbessern

Kreisläufe beachten und Lücken schließen

- Hoftorbilanzen geben einen ersten guten Eindruck, wo meine betrieblichen
 Schwachstellen sind
- tieferer Blick auf Bodenanalysen macht Sinn, um Maßnahmen zielgerichteter setzen zu können
- optimale Planung der Düngerverteilung zwischen Acker und Grünland ist wichtig
- Fruchtfolge hat auch die Aufgabe die Folgekulturen zu düngen und Futter für Bodenlebewesen bereitzustellen

Danke für Ihre Aufmerksamkeit!

DI Dr. Walter Starz
Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere
Abteilung für Bio Grünland und Viehwirtschaft
walter.starz@raumberg-gumpenstein.at