

Dauergrünland in der Biologischen Landwirtschaft

Vorlesung Ökologische Landwirtschaft 15. Dezember 2014

Walter Starz, Bio-Institut, HBLFA Raumberg-Gumpenstein

www.raumberg-gumpenstein.at

Besonderheiten Bio-Grünland

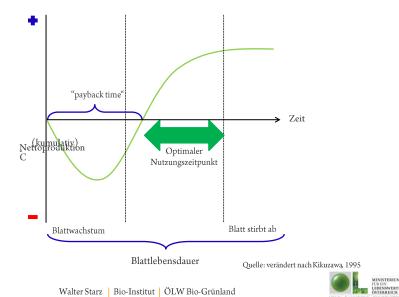
- Dichte Grasnarbe hat für den Bio-Betrieb sehr hohen Stellenwert, da keine effizienten Maßnahmen zur Regulierung von Problempflanzen verfügbar sind
- Leguminosen werden gefördert, damit diese über die Biologische-Fixierung N in das System bringen
- Wirtschaftsdünger sind limitiert und machen eine Schlagbezogene Düngerplanung notwendig
- Daraus ergibt sich eine abgestufte Nutzung der Grünlandflächen
- Weidehaltung gehört zum System und ist verpflichtend

Bedeutung Bio-Grünland in AT

- ca. 60 % der Bio-Fläche in Österreich ist Dauergrünland
- ca. 16.000 Bio-Betriebe halten Wiederkäuer
- hauptsächlich in Ländern mit hohem Anteil an Alpen

	Burgen- land	Kärnten	Nieder- österreich	Ober- österreich	Salzburg	Steier- mark	Tirol	Vorarl- berg	Wien	Österreich
Anteil Bio-Grünland an der gesamten Bio-Fläche in AT	7%	76%	30%	62%	97%	84%	98%	98%	1%	62%
Anteil Bio-Grünlandbetreibe in AT	7%	77%	35%	52%	96%	76%	95%	90%	6%	66%

Walter Starz | Bio-Institut | ÖLW Bio-Grünland



Nutzung und Graswachstum

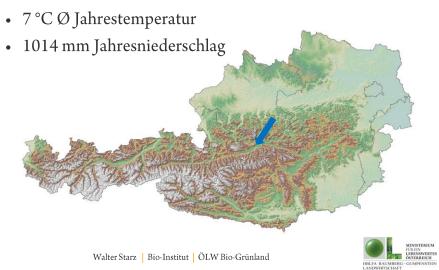
- Nutzung hat einen sehr großen Einfluss auf die Artenzusammensetzung und die Entwicklung von Dauergrünlandbeständen
- der Zeitpunkt des 1. Schnittes ist entscheidend, da er die Anzahl der weiteren Schnitte bestimmt
- ein früher erster Schnitt verhindert das Aussamen der Gräser
- Unterschiedliche Nutzungsintensitäten stellen auch unterschiedliche Grundfutterqualitäten zur Verfügung, je nach Leistungsstadium des Tieres

MINISTERIUM FOR EIN LEBENSWERTES ÖSTERREICH HBLFA RAUMBERG - GUMPENSTEIN LANDWIRTSCHAFT

Blattlebensdauer und Nutzung

Extensive Wiesen

Walter Starz | Bio-Institut | ÖLW Bio-Grünland


MINISTERIUM FUR IIN LEBENSWERTES SOTTERREICH HBLFA RAUMBERG - GUMPENSTEIN

Intensive Wiesen

Standort des Bio-Instituts in Trautenfels

• 680 m Seehöhe

Bio-Versuchsbetrieb in Trautenfels

- Zertifizierter Bio-Betrieb seit 01.07.2006
- Mitglied bei Bio-Austria
- 34 ha Dauergrünland und 2,8 ha Ackerfläche
- 30 Stück Milchvieh (HF, FV) inkl. weibl. Nachzucht
- 5.700 kg Milch/Kuh mit ca. 500 kg/Kuh und Jahr (4,05 % Fett und 3,20 % Eiweiß)
- Vollweidehaltung
- 10 Zuchtsauen, 1 Eber, 60 Mastschweine
- 40 Stück Legehennen

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Obergras- oder Untergrasbestand

- Versuch am Bio-Institut des LFZ Raumberg-Gumpenstein von 2008 bis 2011
- Ziel war den Anteil von Wiesenrispengras durch mehrmalige Übersaaten zu erhöhen, da winterhärter als Englisches Raygras
- Reduzierung der Konkurrenz des übrigen Bestandes für die Sämlinge
- Umsetzung einer intensiven Kurzrasenweide als kostengünstige und im Betriebskreislauf der Biologischen Landwirtschaft passende Methode in Kombination mit einer Übersaat
- 2008 und 2009 Nutzung als Kurzrasenweide
- 2010 und 2011 Rückführung in 3-Schnittnutzung

Übersaat

MINISTERIUM FOR EIN LEBENSWERTI OSTERREICH HBLFA RAUMBERG-GUMPENSTE

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Pflanzenbestand

Parameter		Variante							
	Ein- heit	Schnitt	Weide	Weide ÜS	SEM	p-Wert	s_e		
	neit	LSMEAN	LSMEAN	LSMEAN	SEIVI	p-vv eri			
Gräser	%	73,5	67,9	70,8	1,6	0,0840	1,4		
Knaulgras	%	15,2 a	7,4 b	8,0 b	2,0	0,0200	4,4		
Englisches Raygras	%	5,6	7,1	6,6	0,6	0,1671	4,6		
Gemeine Rispe	%	16,3 a	6,4 b	5,1 ^b	1,5	0,0003	5,3		
Wiesenrispe	%	11,1 °	17,6 b	26,6 a	1,5	<0,0001	1,9		
Leguminosen	%	3,5 b	15,2 a	13,9°	1,6	0,0002	4,3		
Kräuter	%	18,0 ª	13,5 b	11,8 ^b	0,7	<0,0001	4,3		

- Weißkleeanteil in beweideten Variante höher und der Krautanteil niedriger
- Knaulgras und Gemeine Rispe wurden durch Beweidung zurückgedrängt
- Wiesenrispengras breitete sich am stärksten in der Übersaatvariante aus

Pflanzenbestand

ohne Übersaat

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

MINISTERIUM FOR FIN LEBENSWERTES OSTERRECH HBLFA RAUMPINCHAFT

Ertrag und Futterqualität

		77		v	ariante				
Parameter	Ein- heit	Schnitt	Weide	Weide ÜS	SEM	p-Wert	Se		
		, inch	LSMEAN	LSMEAN	LSMEAN	SEAVI	p-vveri		
	TM Ertrag	kg/ha	10110	9879	10416	249	0,3413	705	
	XP Ertrag	kg/ha	1335 b	1328 b	1475 a	40	0,0394	114	
	NEL Ertrag	MJ/ha	56627	56862	59525	1380	0,2907	3903	
	XP Gehalt	g/kg TM	132 b	144 ^a	144 ^a	2	<0,0001	8	
	NEL Gehalt	MJ/kg TM	5,75 ^b	5,86ª	5,85ª	0,02	0,0021	0,11	
	LONGANT LC M CENT	C+ 1 1C 11	D -1 1 - 1 1	1 . 1					

LSMEAN: Least SquareMeans; SEM: Standardfehler; se: Residualstandardabweichung

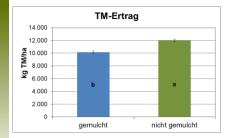
- Zwischen den Varianten gab es keine TM-Ertragsunterschiede
- XP-Ertrag war in der Übersaatvariante am höchsten
- Konzentration an Energie und XP war in den beweideten Varianten höher als in der klassischen 3-Schnittnutzung

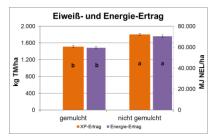
Schlussfolgerungen aus Übersaat-Versuch

- Wiesenrispengras-Übersaat in Kombination mit einer Kurzrasenweide ist eine kostengünstige Maßnahme zur Bestandesverbesserung
- Wiesenrispengras-Bestände bilden eine dichte und stabile Narbe und beugen einer Verkrautung vor
- Ertrag und Qualität können mit traditionellen Schnittwiesen mithalten und übertreffen diese teilweise

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Versuchsergebnisse Mulchung von Wiesen


Optimierung der Gülledüngung durch Einbringung von Grünland-Mulch


- Durch Mulchung des letzten Aufwuchses sollen zusätzliche organische Stoffe dem Bodenleben bereitgestellt werden
- Das mehr an organischen Düngerstoffen soll zu einer Erhöhung der Erträge in den folgenden Jahren führen

MINISTERIUM FOR EN LEBENSWERTES OSTERREICH HBLFA RAUMBERG - GUMPENSTEIN

Erträge

Parameter	Einheit	Variante						Faktor Mulch			
		3SMB	3SM	4SB	4S	SEM	p	mit	ohne	SEM	p
Ertrag	kg TM/ha	10.447	9.820	11.916	12.063	261	0,087	10.133	11.990	213	<0,0001
XP-Ertrag	kg/ha	1.551	1.477	1.794	1.814	34	0,122	1.514	1.804	27	<0,0001
Energie- Ertrag	MJ NEL/ha	60.995	57.634	69.869	71.018	1.477	0,074	59.315	70.444	1.213	<0,0001

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Mulchgut

		Faktor Güllebehandlung Jahr					r			
Paramenter	Einheit	mit SM	ohne SM	SEM	р	2009	2010	2011	SEM	p
Mulchmenge	kg/ha	1235	1274	82	0,6486	532	1415	1816	83	<0,0001
N aus Mulch	kg/ha	34,5	34,7	3,2	0,9382	17,5	40,7	45,6	3,1	<0,0001
P aus Mulch	kg/ha	5,9	6,2	0,3	0,4118	2,8	6,8	8,5	0,3	<0,0001
K aus Mulch	kg/ha	24,3	22,3	1,7	0,3238	9,7	28,9	31,3	1,8	<0,0001

MINISTERIUM FOR EIN LEBENSWERTES ÖSTERREICH HBLFA RAUMBERG - GUMPENSTEIN LANDWIRTSCHAFT

Schlussfolgerungen aus Mulchversuch

- Obwohl über das Mulchgut große NST-Mengen eingebracht wurden, führte dies zu keinem Mehrertrag in den Folgejahren
- Die hohen Erträge auf dem Standort und die hohen Humusgehalte im Dauergrünland dürften eine weitere Ertragssteigerung kaum möglich machen
- Ökologisch und Ökonomisch wäre es sinnvoller den letzten Aufwuchs als Herbstweide über die Wiederkäuer zu nutzen

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Effiziente Weidenutzung

Kurzrasenweide

 $\label{thm:prop} Die Futterqualität ist relativ gleich bleibend, da immer das neu gebildete Pflanzengewebe gefressen wird.$

Die Fläche wird je nach Graswachstum angepasst und somit Fläche dazu oder weg gezäunt.

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Koppelweide

Der Koppelbedarf ändert sich je nach Graswachstum, jedoch nicht die Besatzzeit je Koppel, die bei Milchvieh 5 Tage nicht überschreiten soll.

Je länger eine Koppel bestoßen wird, desto schwankender ist die Futterqualität während der gesamten Weideperiode.

Portionsweide

Bei der Protionsweide sollte nach längstens 4 Tagen die abgeweidete Fläche weggezäunt werden.

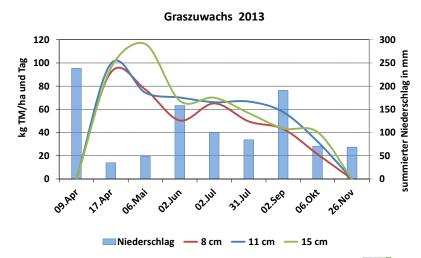
Die Protionsweide ist im Herbst ungünstig, da leicht Schäden an der Grasnarbe entstehen können.

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Weide

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Pflanzenbestand


Veränderung bei Umstellung von Schnitt- auf Weidenutzung

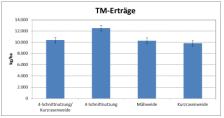
Parameter	Einheit	Weide	Schnitt
Lücke	%	1	2
Gräser	%	68	78
Englisches Raygras	%	19	10
Gemeine Rispe	%	5	19
Goldhafer	%	2	11
Knaulgras	%	3	13
Lägerrispe	%	4	0
Wiesenrispengras	%	21	7
Leguminosen	%	18	7
Kräuter	%	13	12
Arten	Anzahl	27	26

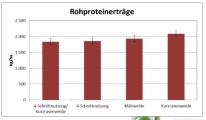
Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Aufwuchshöhe und Graswachstum

Optimale Weidebestände

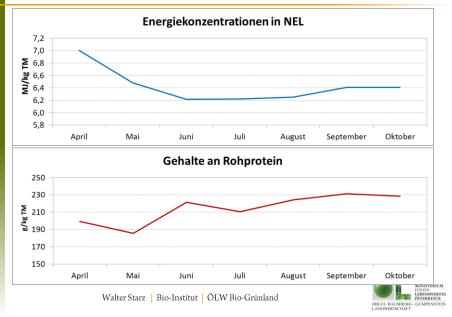
Walter Starz | Bio-Institut | ÖLW Bio-Grünland




Erträge 2007-2012

- Erträge sind versuchsbedingt praktisch verlustfrei erhobene Ernteerträge
 - -> muss bei Weidesystemen berücksichtigt werden

	Einheit	Variante								
Parameter		4-Schnitt- nutzung/Kurz- rasenweide	4-Schnitt- nutzung	Mähweide	Kurzrasen- weide			s _e		
		LSMEAN	LSMEAN	LSMEAN	LSMEAN	SEM	р			
TM-Ertrag	kg/ha	10.385 b	12.518 ^a	10.273 b	9.813 ^b	459	<0,0001	1.086		
NEL-Ertrag	MJ/ha	64.112 ^b	73.524 ^a	63.254 b	63.226 ^b	2.916	<0,0001	6.807		
XP-Ertrag	kg/ha	1.840 ^b	1.855 ^b	1.933 ^{ab}	2.092 ^a	98	0,0014	222		


 $LSMEAN: Least \, Square \, Means; SEM: \, Standard fehler; p-Wert: \, Signifikanz niveau; s_e. \, Residual standard abweichung and the standard abweichung abweich$

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

NEL und XP im Weidefutter

VX Grünland in der ÖLW 933113

- Sommersemester 2014
- 3 Blöcke zu je 2 Tagen
- davon 1 Tag Exkursion auf einen Bio-Grünlandbetrieb in NÖ
- Inhalte:
 - Pflanzenwachstum im Grünland
 - Boden und Düngung
 - Grünlandnutzungsformen
 - Weidehaltung

MINISTERIUM FOR EN LEBENSWERTES ÖSTERREICH HBLFA RAUMBERG - GUMPENSTEIN

SE Case Studies in Organic Grassland Management 933326

- Sommersemester 2015
- 3 Blöcke in Summe 4 Tage
- davon 2 Tage Exkursion auf das Bio-Institut der HBLFA Raumberg-Gumpenstein
- Inhalte:
 - Interaktionen im alpinen Weidesystem
 - Pflanzenerkennung auf der Weide
 - Planungselemente effizienter Weidenutzung
 - national e und internationale Weideversuche

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

Danke für die Aufmerksamkeit!

Walter Starz | Bio-Institut | ÖLW Bio-Grünland

