

Stallklima und Tiergesundheit im Rinderstall Mängel und Potenziale

St. Andräer Agrarwoche – 05.02.2015

E. Zentner

Gliederung

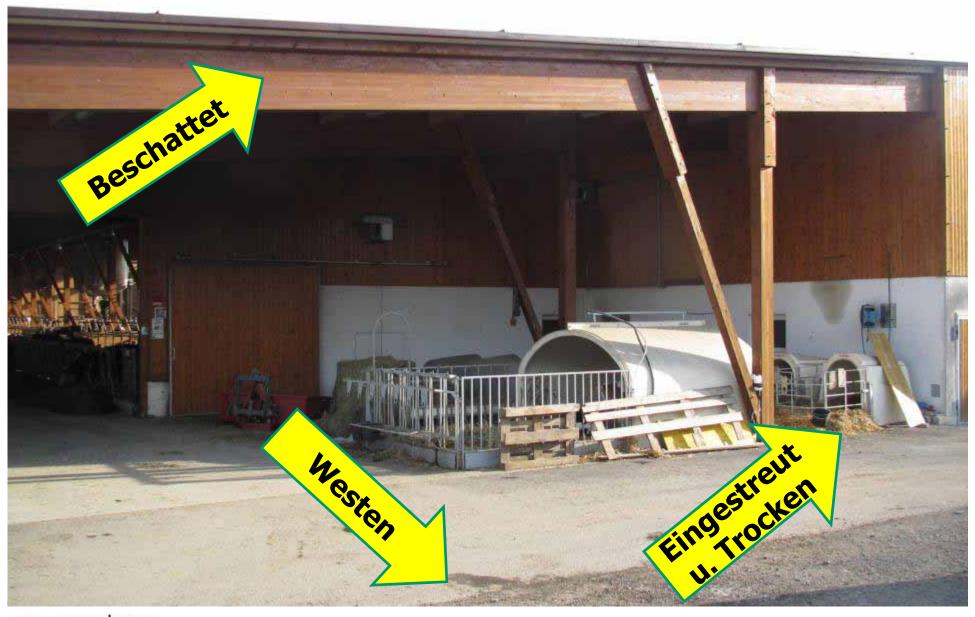
- Rechtliche Vorgaben Bundestierschutzgesetz 2005
- Stallklima Kälberhaltung Rinderstall
- Luft und entsprechende Qualitätsparameter (Licht, Schadgasgehalte, Hitzestress ...)
- Stallklima in der Rinderhaltung
 - 630.000 geborene Kälber/Jahr in Österreich
 - 15% = 95.000 überleben das 1. Jahr nicht!
 - Kälbersterblichkeit einzelner Betriebe > 60%
- Mängel und Probleme in der Praxis
- Zusammenfassung

Gesetzliche Grundlagen - Stallklima

- Rechtsnorm Bundestierschutzgesetz 2005:
- 1.ThVO, Anlage 2, 2.3.: In geschlossenen Ställen muss für einen dauernden und ausreichenden Luftwechsel gesorgt werden, ohne dass es im Tierbereich zu schädlichen Zuglufterscheinungen kommt.
- Staubgehalt der Luft, die Temperatur, die relative Luftfeuchtigkeit und die Gaskonzentration ()....) müssen in einem Bereich gehalten werden, der <u>für die Tiere unschädlich ist.</u>

Natürliches Ausreizen des genetischen Potenzials

- Die Kälber bringen bei der Geburt ein gewisses Potenzial mit!
- Nur bei entsprechenden Haltungsbedingungen werden sie dieses Potenzial ausschöpfen können!



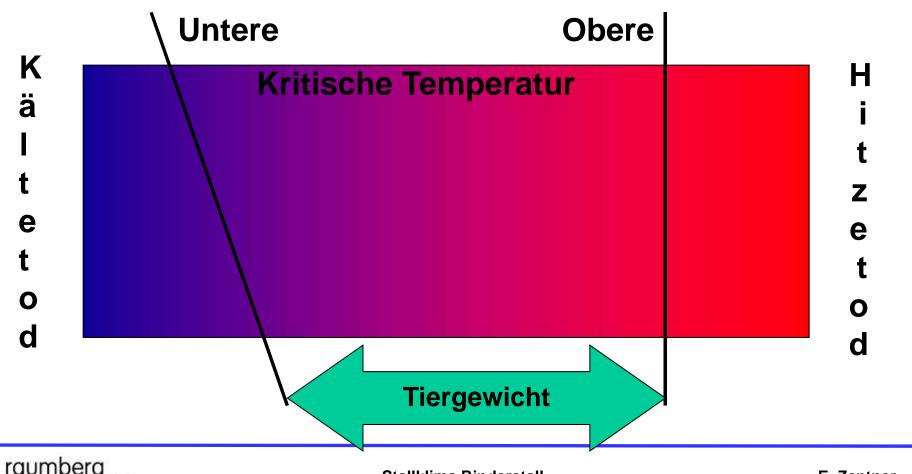
Kälberaufzucht

- Lichtstärke 10 Stunden mit 100 bis 200 Lux (40 Lux Min. lt. Tierschutz)
 - Weidehaltung > 25000 Lux
- Luftgeschwindigkeit im Liegebereich nicht über 0,2 m/sec
- Thermoregulation nach Geburt stark eingeschränkt!
- Unterschreiten der thermoneutralen Zone kann nicht durch Futteraufnahme (Energie) kompensiert werden!!
- Temperatur bis zum 10 Lebenstag nicht unter 10° Celsius
- Temperatur ab dem 10 Lebenstag nicht unter 5° Celsius
- Wärmeproduktion stark abhängig vom Gewicht und Wachstum
- Erkrankungen die länger als 5 Tage dauern reduzieren die Zunahmen im ersten Monat um 50%! (Steinhöfel 2000)
- Innere Körpertemperatur fällt ab Unterkühlung Husten Lungenentzündung, Abgang - Tod

Einzel- und Gruppeniglus

Kälber - Gruppenhaltung

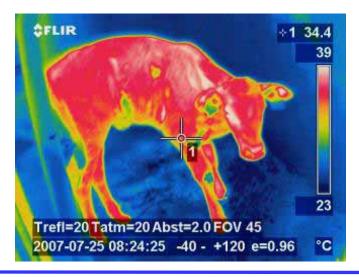
- Schlitz mit 80 x 2 cm am Fenster Doppelstegplatte
- Zulufttemperatur -10° Celius = perm. Wärmeentzug



Zuluft in den Warmstall über den Kälberschlupf?

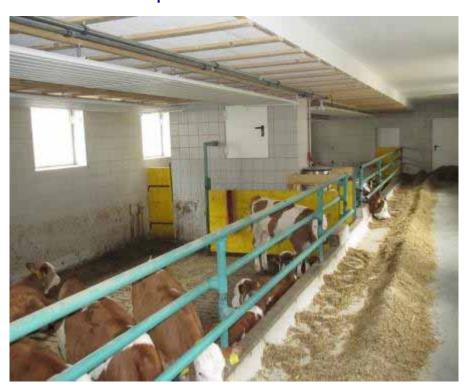
Thermoregulation nicht überfordern!!

- Permanente Wärmeabgabe führt zu Unterkühlung
- Optimalsituation, wenn Eigenwärme aus Stoffwechsel
 - = Summe der Wärmeverluste an die Umgebung


Beachte!

- Kälberhaltung abseits der Herde!
- Bei Zukauf Quarantänebereich einrichten!
- Besser kalt als warm!
- Besser trocken als feucht!
- Verringern des Infektionsdruckes!

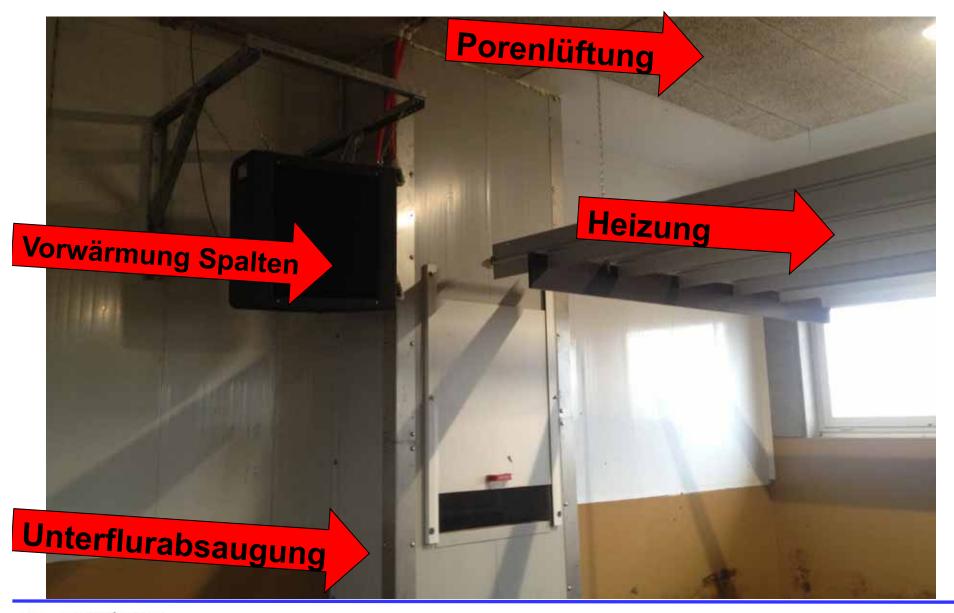
Untersuchung Indoor – Outdoor Tomkins et al.

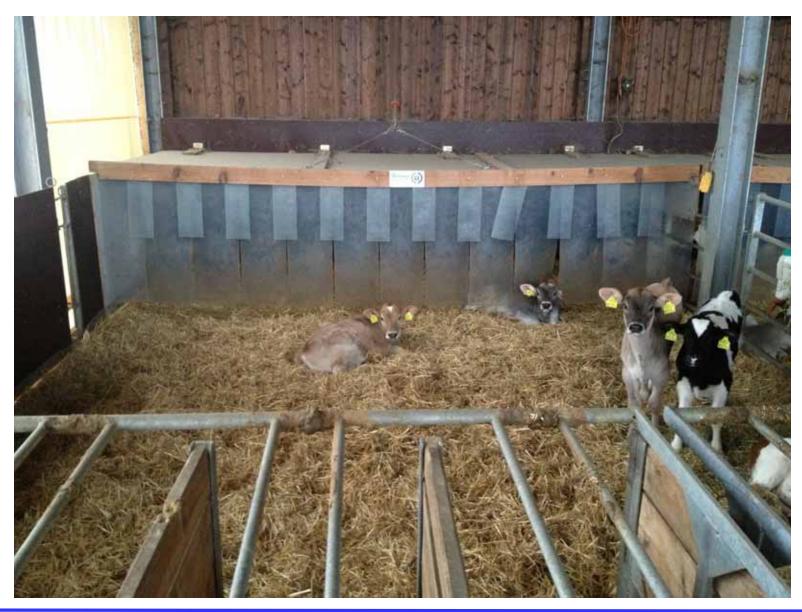

Haltung – 42 Tage	Indoor 20°	Outdoor – Iglus -18° +20°
Tiere	24	24
Zunahmen in g/Tag	340	509
Anzahl Behandlungen	6	2,6
Behandlungskosten in \$	10,98	1,49
Futterverwertung in %	0,36	0,45



Tendenzen in der Kälberaufzucht

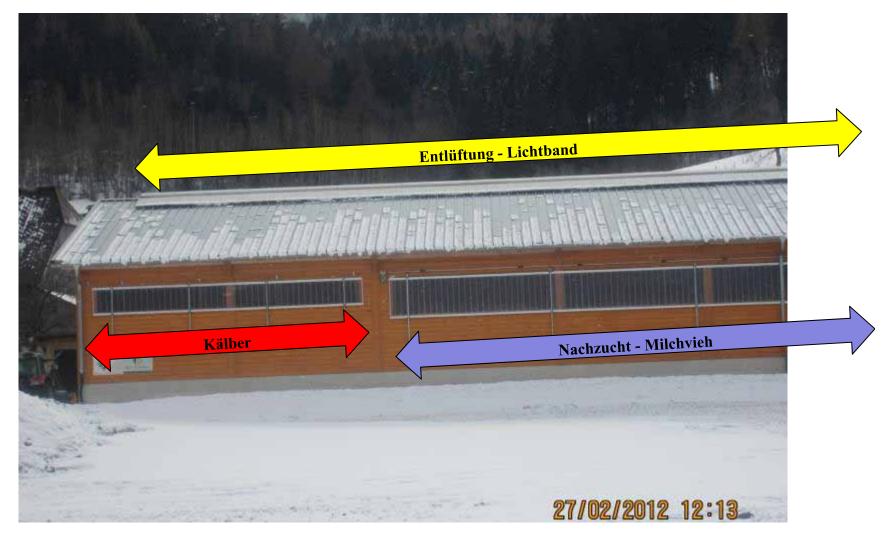
- Geschlossene und vollklimatisierte Abteile
 - Heizung, Lüftung Unterflurabsaugung, Hell und Wärmegedämmt
 - Bis zu 120 Kälber/Abteil
 - Solltemperatur 15° Celsius und < 50% rel. Feuchte</p>





Intention? Minimierung des Keimdruckes!!

Klimazonen im Außenbereich schaffen!!


Kälber auf Tieflauf, Zuluft über mech. regelbare Doppelstegplatten, 10 tote Kälber im 1. Jahr!!

Kälberbereich zuluftseitig unabhängig regeln!!

Bei tiefen Temperaturen schließen!

Neubau: Luft- Lichtfirst nicht zu kurz!!

Luft- Lichtfirst zu kurz – die Folge!

Luft- Lichtfirst zu kurz – die Folge!

Aufgabe der Stalllüftung

- Frischluftversorgung der Tiere
- Abtransport von:
 - Feuchtigkeit
 - Schadgasen, insbesondere
 - Kohlendioxid (max. 2000ppm)
 - Ammoniak (max 20 ppm)
 - Schwefelwasserstoff (max 5 ppm)
- Abführung der Tier- und Strahlungswärme im Sommer
- Ausgleich von großen Temperaturunterschieden bzw. Turbulenzen im Stall

Keim- Pilzbildung (Schimmel) nach 3 Jahren

Keim- Pilzbildung (Schimmel) nach 13 Jahren?

Stallklimafaktor Schadgase

- Schadgase nehmen mit sinkender Luftrate, mit steigender Stalltemperatur zu – alte Stallungen!!
- Sie führen in Kombination mit trockener Luft zur Reizung des Respirationstrakts (Atemwegsentzündung)
 - Schwächung des Immunsystems, Wegbereiter für Sekundärinfektionen
- Fazit hoher Konzentrationen: Leistung sinkt, Gesundheitsgefährdung, Bausubstanz leidet nachhaltig, insbesondere durch die Kombination Feuchte und Ammoniak
- Vorsicht bei allen Güllezusätzen: Ausgasung der Gülle im Stall kann zu enormen Problemen führen, Fließfähigkeit kontra Tiergesundheit
- Verlangen sie entsprechende Untersuchungsberichte von den Firmen!

Diplomarbeit Rinderstallklima 2011; M. Liebminger

- Rinder Maststall Gruppenhaltung
 - Regelbarer Lichtfirst Zuluft über temperaturgesteuerte Doppelstegplatten

Diplomarbeit Rinderstallklima 2011; M. Liebminger

Wärmeproduktion von Nutztieren

Tier	Körpergewicht (kg)	Wärmeabgabe (Watt/h)
Kalb	100	261
Jungrind	300	621
Mastbulle	400	766
Kuh	600	986
Mastschwein	60	139
Sau, tragend	150	269
Sau + 10 Ferkel	200	341

Quelle: TU MÜNCHEN, Skriptum Tierhygiene

Diplomarbeit Rinderstallklima 2011; M. Liebminger

- Außentemp.:- 1°
- Stalltemp.:+ 3°
- Zugluft 0,78 1,35 m/sec im Kälberbereich
- Falschluft in den Güllekeller!

Fallwirkung von kalter Zuluft

- NH3 überGülleoberfläche56 ppm
- Emission im Tierbereich plus 100%
- Krankheitsfördernde
 Bedingungen, insbesondere
 für Jungtiere

Schadgas Ammoniak - NH3

- Experimentelle Untersuchungen haben gezeigt, dass die Infektabwehr durch Ammoniakkonzentrationen von >50ppm (0,005 Vol.%) signifikant vermindert wird, wobei eine gestörte Zilienfunktion (staubpartikelreinigende Funktion < 5μm) vermehrt zu Atemwegserkrankungen durch Bakterien, Viren und Parasiten, führt.
- Bereits ab einem Ammoniakgehalt von 20ppm (0,002 Vol.%) werden klinische Symptome wie Reizhusten und gerötete Schleimhäute (Lidbindehäute, Nase) festgestellt. Ammoniak stellt für den Organismus in entsprechend hohen Konzentrationen ein starkes Zell- bzw. Atemgift dar.

Quelle: Prof. M. Schuh 2010

Ändern der Zuluftführung in der Wintersituation

- Frischluft am Futtertisch
- Keine Zugluft
- KeinenEintrag in denGüllebereich
- 6 ppm NH3 im Tierbereich
- Optimierte Luftverteilung

Betriebsbesuch Mutterkuh - Kärnten:

Betriebsbesuch Mutterkuhhaltung OÖ:

Betriebsbesuch Mutterkuhhaltung OÖ:

Betriebsbesuch Milchviehstall Vlbg

Stallklimafaktor Licht: Die Planung ist entscheidend! Neuer Rinder - Laufstall! Messung = 600 Lux

Faktor Licht – Beleuchtung ÖKL - MB 72 - 2013

Sowohl beim Menschen als auch bei Rindern wird Licht nicht nur zum Sehen, sondern auch für lebensnotwendige biologische Vorgänge genützt:

- Lichtaufnahme über die Körperoberfläche
 - (Vitamin A/Beta-Carotin, Vitamin D)
- Nervenreiz v.a. für den Melatoninhaushalt in der Zirbeldrüse (wichtig für Tag-Nacht-Rhythmus, Fruchtbarkeit, Wachstum, Immunsystem, Milchbildung)

Mindest-Lichtanforderungen im Stall						
Einflussgröße	1. Tierhaltungsverordnung	Gehobener Tiergerechtheitsstandard				
Ausmaß der Fenster und sonstiger transparenter Flächen (Architekturlichte)	3 % der Stallbodenfläche	5 % der Stallbodenfläche				
Beleuchtungsstärke	40 Lux (über mindestens 8 Stunden pro Tag)					

Faktor Licht - Tierspezifisch

- Rinder verfügen mit 330° über ein ausgeprägtes Sehfeld!
- Umschalten von Nah- auf Fernsicht stark eingeschränkt!
- Sehschärfe beträgt nur 1/12 bis 1/22 des Menschen!
- Konturensehen im Schatten und im Dunkeln stark eingeschränkt!
- Farbsehen: blau, gelb, grün = gut, rot = wenig bis gar nicht!
- Die Lichtintensität wird über das Gehirn zur Steuerung der biologischen Rhythmen verwendet!
- So zeigen die Ergebnisse bei Kalbinnen, die unter sogenannten Langtagbedingungen mit einem 16 Stunden Lichttag gehalten wurden, eine erhöhte Wachstumsrate und eine frühere Geschlechtsreife

Faktor Licht - Beleuchtung

- Allein durch zusätzliche und ausreichende Beleuchtung, bis 100 bis 300 Lux und bis zu 16 Stunden, ist eine Erhöhung der Milchleistung zwischen 4% und 11% nachgewiesen!! Trockensteher benötigen Kurztag mit 8 Stunden
 - Verbessert das Wohlbefinden im Stall
 - Verbesserte Aktivität und gesteigerte Futteraufnahme
 - Ausschöpfen des natürl. Leistungspotenzials
 - Frühere Geschlechtsreife bei Jungtieren
 - Notlampen in der Dunkelphase OK
 - Videobeobachtung Abkalbebucht
 - Nachtsituation nicht mehr als 10 Lux
 - Amortisation unmittelbar gegeben
 - Bei Weidehaltung > 25000 Lux

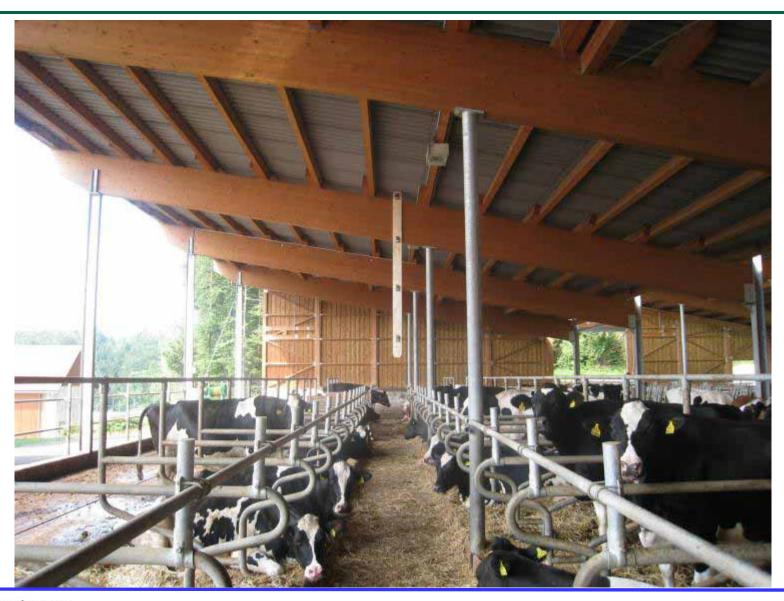
Licht – Stand der Technik

Derzeit Hauptaugenmerk auf LED Technik

Neser 2012

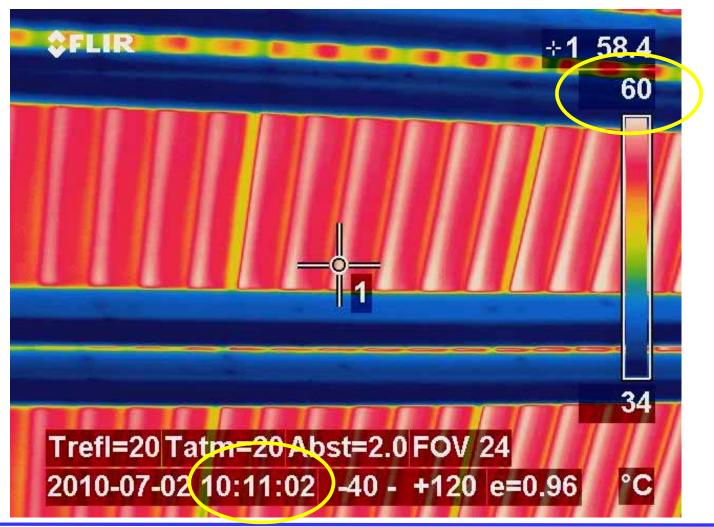
ÖKL-N	e n	
- 100	Auflage	3
(11.00)	2013	Ø
	Nr. 72	-

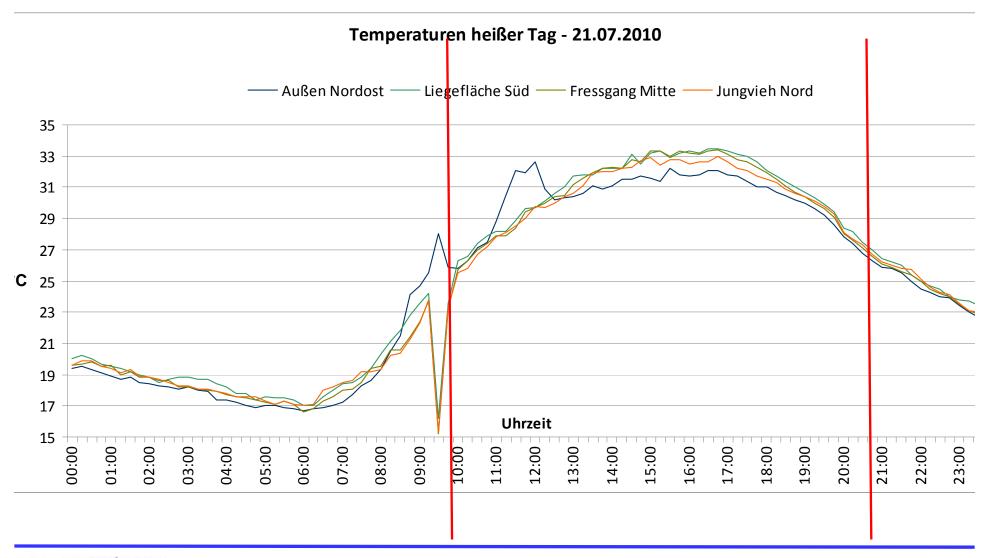
Licht im Rinderstall

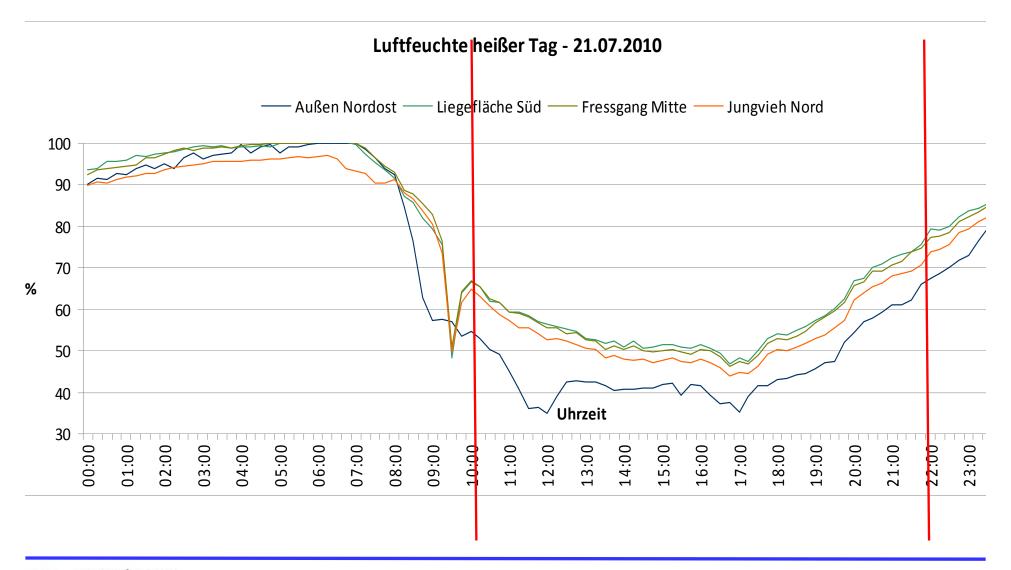

Die ÖRL-Merkbülder werden von den Abelsbäreben des Obterneichischer Kunzensuns Str. Landtechnischer Kunzensuns Str. Landtechnische Landschmischer Statistischer Statistischer Statistischer Statistischer Statistischer Abelsbülder Statistischer Abelsbülder Landschaftschaftforderung anzuwenden.

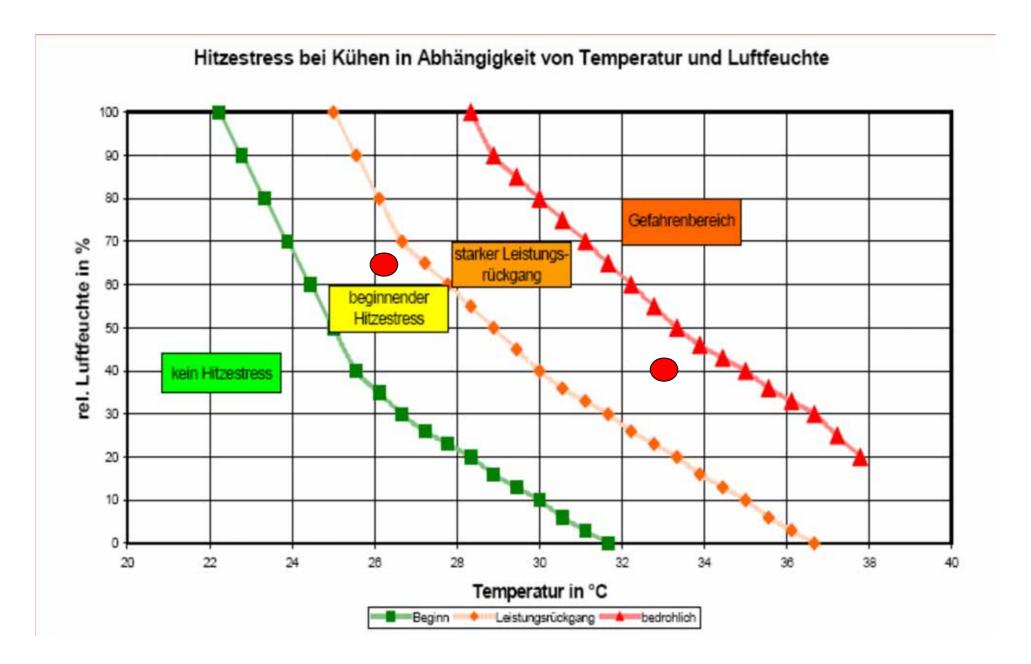
Eines BAR-NWLE 1-12089-940007 left)

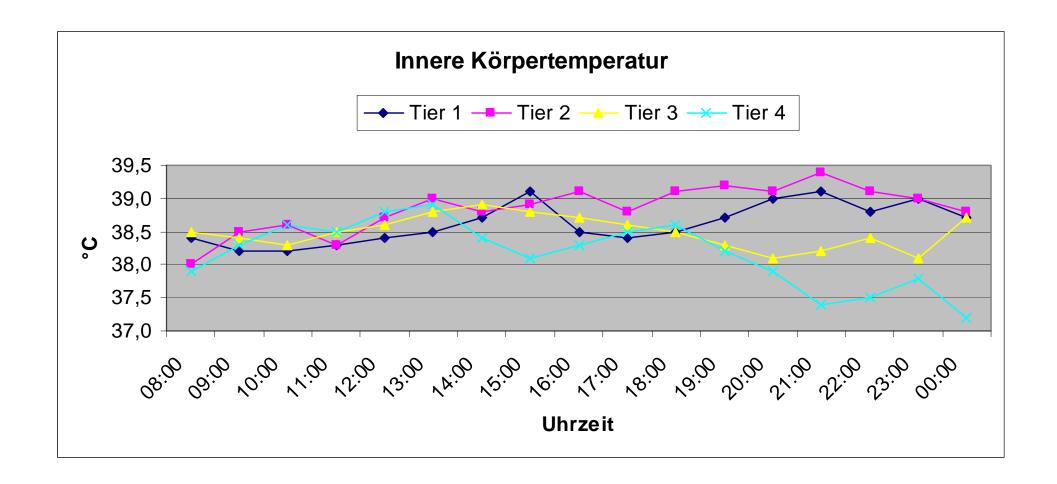
Diplomarbeit Hitzestress Sommer 2010






Rinder - Milchvieh - Außenklimastall



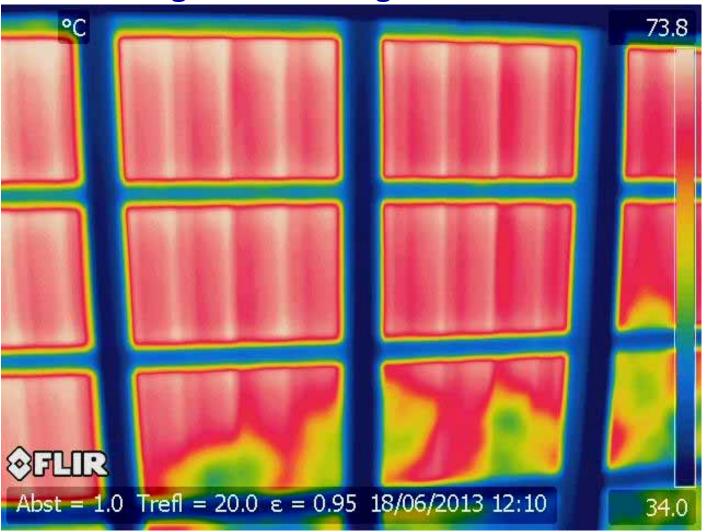


Quelle: Heidenreich

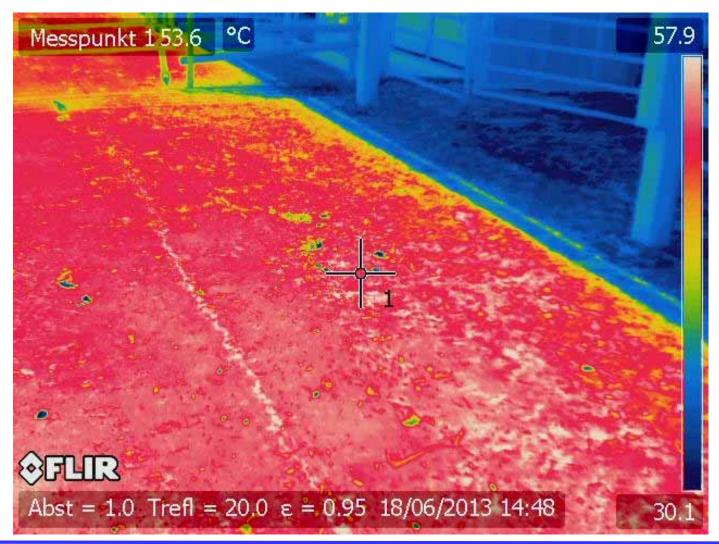
Wasserverrieselung – nicht unsere Empfehlung!

Nachträgliche Maßnahmen - Ventilatoren

Überdachter Auslauf


Enormer Eintrag an Strahlungswärme - Dach!!

Überdachter Auslauf


Enormer Eintrag an Strahlungswärme - Dach!!

Auslauf - Bodenabstrahlung

80 Grad vom Dach – 60 Grad vom Laufbereich?

Kühlwirkung der Luft in K durch Nutzung der Verdunstungskälte (Wind-Chill-Effekt)

Temperatur in °C	25		30		35		
rel. Feuchte in %	50	70	50	70	50	70	
Luftgeschwindigkeit in m/s	Kühlwirkung						
0,00	0,00	-1,60	0,00	-2,20	0,00	-3,30	
0,50	1,10	-0,50	2,80	-0,60	2,80	-0,50	
1,00	2,80	0,60	5,00	2,20	8,40	4,50	
1,50	3,90	1,70	6,60	3,90	10,60	6,20	
2,00	6,20	3,90	8,30	5,00	11,70	8,90	
2,50	7,30	5,10	9,40	6,10	12,80	10,60	

Quelle: Heidenreich 2009

Zusammenfassung Stallklima

- Enorme tiergesundheitliche Probleme, vor allem in der Kälber- bzw. Jungviehhaltung!
- Kälbersterblichkeit teilweise bis zu 60%, enorme wirtschaftliche Belastung der Betriebe!??
- Mängel führen zu unwiederbringbaren Einbußen!
- Ausführungs- und Planungsmängel insbesondere bei neuen Stallungen!?
- Verbessern Sie die Lichtintensität im Tierbereich!
- Reduzieren Sie die Schadgasgehalte im Tierbereich!
- Minimieren Sie den Hitzestress ab 22 Grad!

www.raumberg-gumpenstein.at

