# Impact of climate change on grassland productivity and forage quality in Austria





Poetsch E.M.<sup>1</sup>, A. Asel<sup>2</sup>, A. Schaumberger<sup>1</sup> and R. Resch<sup>1</sup> <sup>1</sup> Agricultural Research and Education Centre (AREC), Raumberg-Gumpenstein, A-8952 Irdning, Austria <sup>2</sup> University of Natural Resources and Live Sciences, Vienna

# About the background

Climate change scenarios assume an increase of temperatures and atmospheric CO<sub>2</sub>concentration for the next few decades and forecast less rainfall in the vegetation period for the alpine space. All these changes will affect grassland productivity concerning yield and forage quality

#### What we did

Field experiments were established on 27 different Austrian grassland sites

The experimental design included three cutting frequency levels (2, 3 and 4 cuts year<sup>-1</sup>) each with an appropriate intensity of fertilization (0.9, 1.4 and 2.0 LU ha<sup>-1</sup>)

The average yearly temperature of the sites varied from 6.4 - 11.1 °C with an annual precipitation of 548 - 1,440 mm

The sites (209 – 1,100 m a.s.l.) were clustered into four typical climate groups

### What we found out

**▼** Dry matter yield was significantly influenced by year, climate group and management intensity, explaining > 90% of the observed variation

Table 1. Yield data of Austrian grassland under varying climate conditions

|                                                   | Climate groups    |                   |                   |                   |  |
|---------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                   | humid/warm        | humid/cold        | arid/warm         | arid/cold         |  |
| 2002 - 2011                                       |                   |                   |                   |                   |  |
| DM-yield (t ha <sup>-1</sup> year <sup>-1</sup> ) | 8.10 <sup>a</sup> | 8.32 <sup>a</sup> | 6.82 <sup>b</sup> | 7.55 <sup>c</sup> |  |
| 2003                                              |                   |                   |                   |                   |  |
| DM-yield (t ha <sup>-1</sup> year <sup>-1</sup> ) | 8.14 <sup>a</sup> | 8.96 <sup>a</sup> | 4.83 <sup>b</sup> | 5.73 <sup>b</sup> |  |

a, b, c – indicate significant differences between climate groups (p<0.05)

**◄** Highest yields were overall achieved under humid conditions. Significantly lower yields were recorded under arid conditions with a strong decline of 29 % in arid/warm regions and of 24% in arid/cold regions in the dry year 2003

In contrast to the dry matter yield the **CP-content and the energy concentration** were not negatively affected by the dry conditions in 2003 ▶

the strong decline, yield considerable differences occurred for energy yield and crude protein yield under arid conditions >

Table 2. Forage quality of Austrian grassland under varying climate conditions

|                               | Climate groups     |                    |                     |                    |  |
|-------------------------------|--------------------|--------------------|---------------------|--------------------|--|
|                               | humid/warm         | humid/cold         | arid/warm           | arid/cold          |  |
| 2002 - 2011                   |                    |                    |                     |                    |  |
| CP (g kg DM <sup>-1</sup> )   | 115.2 <sup>a</sup> | 117.7 <sup>b</sup> | 118.6 <sup>bc</sup> | 120.8 <sup>c</sup> |  |
| MJ NEL (kg DM <sup>-1</sup> ) | 4.53 <sup>a</sup>  | 4.79 <sup>c</sup>  | 4.65 <sup>b</sup>   | 4.90 <sup>c</sup>  |  |
| 2003                          |                    |                    |                     |                    |  |
| CP (g kg DM <sup>-1</sup> )   | 135.2 <sup>a</sup> | 134.0 <sup>a</sup> | 145.7 <sup>b</sup>  | 131.9 <sup>a</sup> |  |
| MJ NEL (kg DM <sup>-1</sup> ) | 4.49 <sup>a</sup>  | 4.87 <sup>b</sup>  | 4.84 <sup>b</sup>   | 4.92 <sup>b</sup>  |  |

a, b, c - indicate significant differences between climate groups (p<0.05)

## What we conclude

- > There is a strong spatial variability in the impact of climate change on grassland yield
- > Forage quality is mainly affected by management intensity and to a less extent influenced by extraordinary weather conditions
  - > Climate change requires different and spatially adjusted strategies of adaptation