

Univ.-Doz. Dr. Erich M. Pötsch

N-Effizienz von Wirtschaftsdüngern auf Österreichischen Grünlandstandorten

Fachtagung der DLG-Ausschüsse Grünland & Futterbau sowie Futterkonservierung

LFZ Raumberg-Gumpenstein, Juni 2013

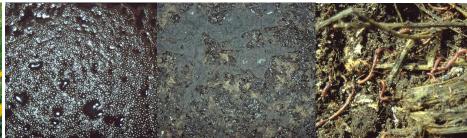
Bedeutung der Grünlandbewirtschaftung in Österreich

- Grünland als vorherrschende Kulturart (Ø 55% der LN, Vbg., Tirol, Sbg. > 95%) und Basis der Milchproduktion
- Grünland als unverzichtbarer Teil der Kulturlandschaft
- Stark ausgeprägte Multifunktionalität (Boden- und Erosionsschutz, Wasserqualität, Biodiversität, CO₂-Speicherung, O₂-Produktion, Freizeit- und Erholungsraum
- Überdurchschnittlich hohe ÖPUL-Akzeptanzen bei Grünlandbetrieben (Biologische Wirtschaftsweise, Verzicht auf ertragssteigernde Betriebsmittel, Naturschutzmaßnahmen ...)

Standortangepasste Grünlandbewirtschaftung

Mehr als nur die Einhaltung von einschlägigen Rechtsnormen,
Düngungsrichtlinien und spezifischen
Förderungsvoraussetzungen!

Das Bewirtschaftungsniveau orientiert sich an den gegebenen Standortsbedingungen und sichert langfristig leistungsfähige Pflanzenbestände für gute Erträge und hohe Futterqualität!



Optimale Nutzung der wirtschaftseigenen Dünger

Effiziente Nutzung der Wirtschaftsdünger

- wertvolles betriebseigenes Produktionsmittel
 - Hauptquelle für die Nährstoffversorgung von Wiesen & Weiden
 - zentrales Element der bäuerlichen Kreislaufwirtschaft
 - wichtiger Faktor in low input Systemen
- ► sach- und umweltgerechter Einsatz von Wirtschaftsdüngern erfordert solides Fachwissen und Kenntnis über deren:
 - Anfallsmengen
 - Nährstoffgehalt
 - Wirksamkeit

Aktualisierung der Anfallsmengen und Gehaltswerte

- Tabellenwerte für Anfallsmengen und Nährstoffgehalte von Wirtschaftsdüngern blieben seit Ende der 80-er Jahre +/- unverändert
- Anpassung der Ausscheidungswerte an die in diesem Zeitraum erreichte Leistungssteigerung
- Angleichung der bisher bestehenden Tabellenstruktur an die AMA-Tierliste
- Kritik der EK an den im EU-Vergleich niedrigen, österreichischen Exkretionswerten
- Akuter Handlungsbedarf durch die Umsetzung der EU-Nitratrichtlinie auf nationaler Ebene mittels des österr. Aktionsprogramms (Limitierung der N-Ausbringung aus Dung mit 170 kg/ha)

Quelle: BMLFUW, 2006

N- Exkretion von Milchkühen unter Berücksichtigung von unvermeidbaren Stall- und Lagerungsverlusten (=Nex Lager)

Naus Dung (kg/Kuh und Jahr)

Milchleistung je Laktation	bedarfsgerechte Fütterung	Praxisfütterung (= aktuelle Werte)		
3.000 kg	68,1	59,1		
4.000 kg	68,1	66,7		
5.000 kg	71,1	74,4		
6.000 kg	75 ,5	82,0		
7.000 kg	80,9	89,7		
8.000 kg	85,6	97,3		
9.000 kg	91,5	105,0		
10.000 kg	97,2	112,6		

Wirksamkeit des Wirtschaftsdüngerstickstoffs – BMLFUW (2006)

1) Nbrutto (= schwanzfallender Stickstoff) minus unvermeidbare N-Verluste (15-45%) im Stall und am Lager = Nex Lager

Aktionsprogramm − Nitratrichtlinie ✓

2) Nex Lager minus Ausbringungsverluste (9- $\frac{13}{6}$ %) = Nfeldfallend

Wasserrechtsgesetz ✓

3) National States N feldfallend x Jahreswirksamkeit (10-100%) = N pflanzenwirksam

Richtlinien f.d. sachgerechte Düngung ✓

Wirksamkeit des Wirtschaftsdüngerstickstoffs – BMLFUW (2006)

Kalkulationsbeispiel

(Milchkuh, Jahresmilchleistung: 6.000 kg, WD-Basis: Gülle)

Bezeichnung	Berechnung	kg N/Jahr	relevant für:	
N-Anfall brutto (schwanzfallend)		96,5		
N-Anfall nach Abzug der Stall- und Lagerverluste (=15%)	96,5 x 0,85 =	82,0	Obergrenze gemäß Aktionsprogramm (EU-Nitratrichtlinie)	
N-Anfall nach Abzug der Ausbringungsverluste (=13%)	82,0 x 0,87 =	71,3	Bewilligungsgrenze gemäß WRG	
Pflanzenwirksamer N- Anfall im Jahr der Anwendung (=70%)	71,3 x 0,70 =	49,9	Umsetzung der Düngeempfehlung (Richtlinie f. SGD)	

Wirkungsgefüge/Spannungsfeld Aktionsprogramm – Wasserrecht – Sachgerechte Düngung

Problematik:

- Nichtbeachtung einer standortsbezogenen Bewirtschaftung
- (zu) hohe Kuhzahlen resp. hochleistende Tiere in Ungunstlagen
- begrenztes (niedriges/mittleres) Leistungspotential des Grünlandes
- ⇒ Kompensation durch betriebsexternes (Kraft)futter
- ⇒ Anhebung des Nährstoffbudgets am Betrieb
- ⇒ Nährstoffüberschuss
- ⇒ Disharmonie zwischen Nährstoffanfall und Nährstoffempfehlung

Lösung:

⇒ kalkulatorische Reduktion des N-Anfalls!

Wirtschaftsdüngerversuche – LFZ Raumberg-Gumpenstein

3 Versuchsstandorte

Standort	Höhenlage in m	Ø Jahres- temperatur	Ø Jahresnieder- schlag
Kobenz	627	8,2 °C	856 mm
Winklhof	490	8,2 °C	1400 mm
Gumpenstein	710	6,8 °C	1010 mm

→ 7 Versuchsjahre: Anlage 2000, Hauptversuchsjahre 2001-2006

• 2 Hauptfaktoren: Nutzung (2): 3-Schnitt 4-Schnitt

Düngung (16): 9 Varianten 7 Varianten

Versuchsanlage: randomisierte Blockanlage mit vier Wiederholungen

Ergebnisse – Ertragsniveau (Ø 2001-2006)

Intensitätsstufen/Varianten	Anzahl Schnitte/ Jahr	Kobenz dt TM/ha	Winklhof dt TM/ha	Gumpen- stein dt TM/ha
NPK mineralisch	3	106,8a	113,9ª	94,0ª
Gülle 1:0,25	3	91,6 ^b	104,7 ^b	88,7ª
Gülle 1:1	3	91,3b	104,8 ^b	88,0ª
Rottemist + Jauche	3	92,8ab	109,9ab	95,2ª
Mistkompost + Jauche	3	97,4ab	110,6ab	98,7ª
NPK mineralisch	4	99,9ª	114,9ª	99,2ª
Gülle 1:0,25 + 50 kg N	4	96,1ª	117,7 ^a	97,8ª
Gülle 1:1 + 50 kg N	4	97,0ª	117,1 ^a	100,8ª
Rottemist + Jauche + 50 kg N	4	102,1ª	120,3ª	105,2ª
Mistkompost + Jauche + 50 kg N	4	98,7ª	117,6ª	105,5ª

- Signifikante Ertragsunterschiede nur im 3-Schnittblock (Kobenz und Winklhof)
- Keine signifikanten Ertragsunterschiede im 4-Schnittblock
- relativ geringe Ertragsdifferenzen zwischen 3-Schnitt- und 4-Schnittsystem trotz deutlich höherer N-Zufuhr ⇒ limitierendes Standortspotential
- insgesamt relativ geringe Differenzen zwischen den WD-Varianten und den jeweils korrespondierenden NPK-Varianten

Wirtschaftsdünger-N-Effizienz

- N-Effizienz
- Mineraldüngergleichwert
- Mineraldüngeräquivalent
- N-Ausnutzung
- N-Wirkungsgrad
- Wirkungsgrad von WD
- Systemeffizienz

⇒ Abbildung der Leistungsfähigkeit der Wirtschaftsdünger!

- TM-Ertrag je zugeführter N-Einheit
- N-Effizienz der NPK_{min}-Variante = 100
- Ermittlung des relativen Bezuges der WD-Varianten
- Gewichtung der Einzeldaten und Ermittlung einer
 Ø N-Effizienz nach Nutzungsfrequenz und Standort
- <u>Unterstellte Wirksamkeit:</u> ausgehend von Nex Lager

Ergebnisse – Wirtschaftsdüngereffizienz (Ø 2001 – 2006)

Intensitätsstufen/Varianten	Anzahl Schnitte/ Jahr	Kobenz %	Winklhof %	Gumpen- stein %	unterstellte Wirksamkeit %
NPK mineralisch	3	100	100	100	100
Gülle 1:0,25	3	85	91	94	61
7	3	83	89	90	61
 Unterstellte Wirksamkeit 	ex Låger	für G ülle:	87	89	38
	3	73	79	86	21
120/ Aabaila-a	407	100	100	100	100
13% Ausbringungsverluste	$e = U_7 87$	96	102	<mark>9</mark> 8	69
minus	4	97	101	<mark>1</mark> 00	69
30% Wirksamkeitsverluste	- 487	0 780- 0	,609 ⁰² 61	0/0 103	51
50 /0 Wil Radilikeitavei luate	- 407 X	91 - 0	7,55,5 ₆	97	36

- Die Wirksamkeit von Wirtschaftsdüngern unterliegt einer standortsbedingten Streuung
- Die tatsächlich erzielte Wirksamkeit der eingesetzten Wirtschaftsdünger war in jedem einzelnen Fall höher als die gemäß BMLFUW (2006) unterstellte Wirksamkeit!
- mit der aktuellen Vorgangsweise wird die Wirksamkeit der WD unterschätzt!

Wirkungsgefüge/Spannungsfeld Aktionsprogramm – Wasserrecht – Sachgerechte Düngung

Problematik:

- Nichtbeachtung einer standortsbezogenen Bewirtschaftung
- (zu) hohe Kuhzahlen resp. hochleistende Tiere in Ungunstlagen
- begrenztes (niedriges/mittleres) Leistungspotential des Grünlandes
- ⇒ Kompensation durch betriebsexternes (Kraft)futter
- ⇒ Anhebung des Nährstoffbudgets am Betrieb
- ⇒ Nährstoffüberschuss
- → Disharmonie zwischen N\u00e4hrstoffanfall und N\u00e4hrstoffempfehlung

"Schein Lösung":

⇒ kalkulatorische Reduktion des N-Anfalls!

Offene Fragen:

- wo bleibt der in Abzug gebrachte Stickstoff?
- was ist mit den mittel- und langfristigen Nachwirkungen?
- wie hoch ist die tatsächliche Wirksamkeit des Wirtschaftsdüngers (-N)?

Zusammenfassung und **S**chlussfolgerungen

- Wirtschaftsdünger sind wertvolle betriebseigene Produktionsmittel!
- Der sach- und umweltgerechte Einsatz von Wirtschaftsdüngern erfordert Kenntnis über deren Anfallsmengen, Nährsstoffgehalte und Wirksamkeit!
- N-Verluste im Stall und Lager sowie bei der Ausbringung sind unvermeidbar und werden mit dem aktuellen Kalkulationsmodus plausibel abgebildet
- Die Einbeziehung der Jahreswirksamkeit zur kalkulatorischen Reduktion des N-Anfalls muß für die Kulturart Grünland kritisch hinterfragt und diskutiert werden!
- Zur Vermeidung des Spannungs- und Problemfeldes "Nährstoffanfall versus Nährstoffempfehlung" ist ein standortsbezogener Viehbesatz unter Berücksichtigung des regionalen/lokalen Ertragsniveaus anzustreben!



"Intensivierung? Ja, aber nachhaltig!"

Univ.-Doz. Dr. Erich M. Pötsch

N-Effizienz von Wirtschaftsdüngern auf Österreichischen Grünlandstandorten

Fachtagung der DLG-Ausschüsse Grünland & Futterbau sowie Futterkonservierung

LFZ Raumberg-Gumpenstein, Juni 2013

