Energiebewertung von Wiesenfutter aus Dauergrünland in Österreich auf der Basis von Verdauungskoeffizienten aus Futterwert-Tabellen bzw. mit Hilfe der *in vitro*-Verdaulichkeitsmethoden HFT und ELOS

- L. Gruber^{1, 2}, S. Gappmaier¹, T. Guggenberger¹,
- G. Terler¹, G. Stögmüller³
- ¹ HBLFA Raumberg-Gumpenstein, Inst. für Nutztierforschung, Irdning
- ² Universität für Bodenkultur, Institut für Nutztierwissenschaften, Wien

1 Einleitung

Die Energiebewertung im Futtermittellabor Rosenau, einer Serviceeinrichtung der Landwirtschaftskammer Niederösterreich in Wieselburg, erfolgte seit seiner Gründung im Jahr 1978 nach den Vorgaben des seinerzeit neu eingeführten NEL-Systems (Van Es, 1978) bzw. der GEH (1986) und GfE (2001), wobei in den ersten Jahren die Verdauungskoeffizienten des DDR-Futterbewertungssystems (1977) angewendet wurden und ab 1991 jene der DLG-Futterwerttabellen für Wiederkäuer (6. Auflage 1991, 7. Auflage 1997). Um zwischen den in den Tabellen angeführten Vegetationsstadien interpolieren zu können und auch eine EDV-gestützte Verarbeitung der Daten zu ermöglichen, haben Gruber et al. (1991, 1997) lineare Gleichungen aus den Tabellenangaben erstellt, getrennt nach botanischer Zusammensetzung (z. B. Grünland grasreich vs. klee- und kräuterreich, Rotklee, Luzerne etc.), Konservierungsform (Grünfutter, Silage, Heu) und Aufwuchs (1. Aufwuchs, Folgeaufwüchse). Diese Gleichungen verwenden den Gehalt an Rohfaser (XF) als unabhängige Variable zur Beschreibung des Vegetationsstadiums. Doch es stellt sich die Frage, inwieweit Tabellenwerte aus anderen Ländern für das Grünland in Österreich mit seinen spezifischen Wachstumsbedingungen im Alpenraum zutreffen. Diese führen auf Grund der hohen Standortvielfalt (engräumiger Gesteinswechsel sowie Wechsel der Geländeformen und Bodentypen) zu einer Vielzahl von Vegetationstypen mit charakteristischer Artenzusammensetzung, welche somit auch Nährstoffgehalt und Verdaulichkeit beeinflussen und in den angeführten Futterwerttabellen sehr wahrscheinlich nicht abgebildet bzw. enthalten sind. Zusätzlich führt besonders die Variabilität der botanischen Zusammensetzung zu Unterschieden im Gehalt an Gerüstsubstanzen,

³ Futtermittellabor Rosenau, Landwirtschaftskammer NÖ, Wieselburg

die mit "Rohfaser" nicht erfasst werden können, weil bei deren Analyse Hemizellulose vollständig und Lignin teilweise gelöst wird (Van Soest, 1994). Gruber et al. (2022) haben daher auf Basis einer Meta-Analyse umfangreicher und spezifischer Verdauungsversuche (in vivo) zum Futterwert von Grünlandfutter an der HBLFA Raumberg-Gumpenstein aus vier Jahrzehnten (n = 331, etwa 1980-2020) Berechnungsmodelle für Verdaulichkeit (dOM, %) und Energiekonzentration (ME, MJ/kg TM) erstellt (R² = im Mittel 83,4 %, Spannweite 79,8-87,4 %, rel. RMSE = im Mittel 4,4 %, Spannweite 3,8-4,9 %), wobei Rohnährstoffe (XP, XL, XA), Gerüstsubstanzen (NDF, ADF, ADL) und in vitro-Verdaulichkeitsparameter (HFT, ELOS) Eingang in die Formel fanden. Darüber hinaus hat bei diesem Datenmaterial ein Vergleich der mit den in vivo-Verdauungskoeffizienten errechneten Energiekonzentration mit jener aus Tabellenwerten (DDR, 1977; DLG, 1997) eine signifikante Abweichung ergeben, und zwar eine Überschätzung im Bereich niedriger Energiekonzentration und eine Unterschätzung des ME-Gehaltes bei hoher Energiekonzentration (Gruber et al., 2022). An einem repräsentativen Probenmaterial über vier Jahre (n = 801) aus ganz Österreich wurden daher die mit dem neuen Bewertungsmodell (Gruber et al., 2022) errechneten ME-Gehalte mit jenen verglichen, die mit Verdauungskoeffizienten aus der DLG- bzw. DDR-Futterwerttabelle oder mit den Berechnungsformeln der GfE (1998, 2008) ermittelt wurden.

2 Material und Methoden

In Zusammenarbeit der HBLFA Raumberg-Gumpenstein mit dem Futtermittellabor Rosenau der NÖ Landwirtschaftskammer und den Fütterungsreferenten der Bundesländer wurden über 4 Erntejahre (2014-2017) repräsentative Proben von Grünlandfutter in Landwirtschaftsbetrieben des gesamten Bundesgebietes (die für das Grünlandfutter wichtigsten Bundesländer NÖ, OÖ, Stmk, Ktn, Sbg, Tirol, Vbg) bzw. Produktionsgebiete (Hochalpen, Voralpen, Alpenvorland, Wald- und Mühlviertel etc.) gezogen. In Summe sollten diese Proben einen weiten Bereich an Gerüstsubstanzen bzw. Verdaulichkeit abdecken, um kausale, biologische Zusammenhänge des Futterwertes im weiteren Sinn statistisch analysieren zu können. Dabei wurden auch die Faktoren "Konservierungsform" (Grünfutter, Silage, Heu) und "Aufwuchs" (1. Aufwuchs, Folgeaufwüchse) im Probenplan berücksichtigt und auf eine entsprechende bzw. aliquote Anzahl geachtet (Tab. 1).

Tab. 1: Deskriptive Statistik für NDF (g/kg TM) in den Untergruppen

	Bundesland						Hauptproduktionsgebiet ¹⁾						
	NÖ	OÖ	Stmk		Sbg	Tirol	Vbg	HA	VA	ΑV	AO	WM	KNS
Grünt	futter,	1. Au	fwuch	s									
Anz.	18	20	41	4	22	-	4	43	9	41	3	9	4
Mw.	479	460	433	552	478	-	496	438	489	470	441	473	552
± s	57	63	50	51	63	-	39	51	41	66	51	62	51
Vk.	11,9	13,8	11,5	9,3	13,2	-	7,8	11,7	8,3	14,0	11,5	13,2	9,3
Min.	311	357	352	478	366	-	457	352	430	311	395	363	478
Max.	574	575	562	586	604	-	533	562	574	604	495	553	586
Grünt	futter,	Folge	eaufwü	chse									
Anz.	5	10	36	-	17	-	-	36	3	29	-	-	-
Mw.	459	444	441	-	395	-	-	441	429	419	-	-	-
± s	61	50	37	-	44	-	-	37	18	57	-	-	-
Vk.	13,4	11,2	8,4	-	11,2	-	-	8,4	4,2	13,6	-	-	-
Min.	412	374	365	-	295	-	-	365	412	295	-	-	-
Max.	566	547	504	-	471	-	-	504	448	566	-	-	
Silage	e, 1. A		chs										
Anz.	39	58	27	45	7	9	2	41	11	25	31	57	22
Mw.	436	436	454	447	460	439	391	460	454	418	436	445	429
± s	52	47	45	57	47	55	36	48	65	32	49	49	63
Vk.	11,9	10,8	9,9	12,8	10,2	12,6	9,2	10,4	14,4	7,6	11,2	10,9	14,7
Min.	356	353	387	289	392	378	365	365	353	360	289	358	323
Max.	553	574	544	611	537	528	416	544	542	476	520	574	611
			wüchs										
Anz.	26	29	13	39	10	9	1	27	10	20	22	32	16
Mw.	433	444	444	466	457	450	386	450	411	444	459	451	464
± s	51	47	51	53	43	42	-	51	61	39	40	45	69
Vk.	11,7	10,5	11,5	11,3	9,4	9,4	-	11,2	14,8	8,8	8,7	10,0	14,8
Min.	296	334	349	355	363	409	386	349	296	366	397	348	355
Max.	498	544	547	628	499	541	386	547	485	499	544	544	628
	1. Auf												
Anz.	11	14	16	12	23	50	24	82	19	29	8	10	2
Mw.	542	609	564	601	494	539	468	548	501	485	574	605	555
± s	53	60	42	55	78	38	56	48	63	89	47	64	34
Vk.	9,7	9,9	7,5	9,2	15,8	7,1	11,9	8,8	12,6	18,3	8,3	10,6	6,1
Min.	466	478	475	504	349	445	335	445	335	349	504	478	531
Max.	633	695	635	693	603	602	578	693	633	695	647	682	579
	Folge												
Anz.	14	15	17	13	30	61	10	93	16	29	7	8	7
Mw.	535	523	524	552	502	494	489	504	489	514	552	509	567
± s	69	38	51	58	53	38	58	44	61	55	47	43	66
Vk.	12,9	7,3	9,7	10,5	10,5	7,7	11,9	8,8	12,4	10,7	8,6	8,4	11,7
Min.	388	444	455	431	344	378	402	378	388	344	487	444	487
Max.	631	583	680	630	574	564	571	630	617	588	631	578	680

¹⁾ HA Hochalpen, VA Voralpen, AV Alpenvorland, AO Alpenostrand, WM Wald- und Mühlviertel, KNS Sonstige

Tab. 2: Deskriptive Statistik zum Nährstoffgehalt (Konservierung)

	Grünf.	Silage	Heu	Mittelw.	± s	Vk.	Min.	Max.
Anzahl	177	314	310	801	-	-	-	-
TM	191	372	918	543	310	57,1	124	946
XP	152	151	131	144	28	19,5	60	237
XL	28	33	28	30	5	15,8	16	40
XF	238	258	278	261	37	14,0	161	395
XX	498	456	465	469	35	7,4	354	568
XA	84	102	97	96	20	20,7	51	170
NDF	450	445	522	476	68	14,2	289	695
ADF	281	298	330	307	43	14,1	182	443
ADL	39	40	49	43	12	27,6	15	80
NFC	286	269	222	254	51	20,0	93	403
Zu	115	66	136	104	52	50,0	3	264
GbHFT	39,9	35,9	35,5	36,7	3,4	9,2	26,1	46,6
ELOS	697	671	630	661	55	8,3	455	811
dOM.dlg97	74,8	71,7	68,6	71,2	4,8	6,7	52,1	86,3
ME.dlg97	10,51	9,95	9,56	9,93	0,75	7,5	7,04	12,36
ME.hft08	9,69	9,15	8,68	9,09	0,79	8,7	6,33	11,19
ME.elos08	10,41	10,22	9,65	10,04	0,72	7,2	7,43	11,85
ME.hft22	10,76	9,41	8,89	9,51	1,08	11,3	6,33	12,50
ME.elos22	11,12	9,71	9,38	9,90	1,01	10,2	6,61	12,58

TM: Trockenmasse (g/kg Frischmasse)

XP, XL, XF, XX, XA: Rohprotein, Rohfett, Rohfaser, N-freie Extraktstoffe, Rohasche (g/kg TM) NDF, ADF, ADL, NFC, Zu: Neutral-Detergenzien-Faser, Säure-Detergenzien-Faser, Säure-Detergenzien-Lignin, Nichtfaser-Kohlenhydrate, Zucker (g/kg TM)

GbHFT: Gasbildung HFT (ml/200 mg TM), ELOS: Enzymlösliche organ. Substanz (g/kg TM) dOM.dlg97, ME.dlg97: Verdaulichkeit OM (%) bzw. ME (MJ/kg TM) nach DLG-Tabelle (1997) ME.hft08, ME.elos08: ME (MJ/kg TM) berechnet nach GfE (2008) für HFT bzw. ELOS ME.hft22, ME.elos22: ME (MJ/kg TM) berechnet nach Gruber et al. (2022) für HFT bzw. ELOS Mittelw., ± s, Vk., Min., Max. Mittelwert, Streuung, Variationskoeffizient, Minimum, Maximum

Die Angaben in Tabelle 1 zeigen, dass alle Konservierungsformen und Aufwüchse sowohl in den Bundesländern als auch in den Produktionsgebieten vertreten sind (Ausnahme Grünfutter wegen zu großer Entfernung zum Labor), wobei Unterschiede in der Probenanzahl durch die Größe und Bedeutung des Bundeslandes bzw. Produktionsgebietes für die Milchproduktion bedingt sind. In Tabelle 2 werden die Inhaltsstoffe des Grünlandfutters für das Gesamtmaterial und getrennt nach Konservierungsform mit einer deskriptiven Statistik angeführt.

Wie beabsichtigt zeichnen sich die Ergebnisse der Analysedaten durch eine große Streuung in den für den Futterwert bestimmenden Kriterien aus (Faser, Protein, *in vitro*-Verdaulichkeitsparameter, Tab. 2). Der Variationskoeffizient betrug für Rohprotein etwa 20 %, für NDF 14 %, für NFC 20 %, für GbHFT und ELOS etwa 9 % und folglich auch für die unterschiedlich berechneten ME-Gehalte 8-11 %. Im Durchschnitt ergaben sich folgende Gehalte (Mittelwerte ± Standardabweichung): 144 ± 28 g XP, 261 ± 37 g XF, 476 ± 68 g NDF, 254 ± 51 g NFC, 661 ± 55 g ELOS, 71.2 ± 4.8 % dOM, 9.9 ± 0.8 MJ ME (n. DLG 1997).

Die Gehalte an Rohprotein (XP; Methode 4.1.1), Rohfett (XL; Methode 5.1.1), Rohfaser (XF; Methode 6.1.1), Rohasche (XA; Methode 8.1), Neutral-Detergenzien-Faser nach Amylasebehandlung und Veraschung (aNDFom; Methode 6.5.1), Säure-Detergenzien-Faser nach Veraschung (ADFom; Methode 6.5.2) sowie Säure-Detergenzien-Lignin (ADL; Methode 6.5.3) wurden nach den Methoden des VDLUFA (2012) ermittelt. Die Bestimmung der Gasbildung (Hohenheimer Futterwerttest, HFT) nach Methode 25.1 sowie der Enzymlöslichkeit (ELOS) nach Methode 6.6.1 erfolgte ebenfalls nach VDLUFA (2012). Die bei der Trocknung entstehenden Stoffverluste im Zuge der Bestimmung des Trockenmassegehaltes von Silagen und Grünfutter wurden nach den Vorgaben von Weißbach und Kuhla (1995) berücksichtigt. Die Literaturguellen für die Berechnung der ME auf Basis der in vitro-Verdaulichkeitsmethoden HFT und ELOS nach GfE (1998, 2008) sowie nach Gruber et al. (2022) finden sich in den Fußnoten der Tabelle 3, ebenso die Quellen für die Futterwerttabellen als Grundlage der Verdauungskoeffizienten, die für die Berechnung der ME nach GfE (2001) erforderlich sind. Die statistische Auswertung wurde mit dem Programm Statgraphics 18 (2017) durchgeführt. Für die einzelnen Aufgaben wurden die Prozeduren "Plot", "Describe", "Compare" und "Relate" herangezogen. Die Daten für Tabelle 3 wurden nach einem GLM-Modell mit den fixen Effekten "Konservierung", "Aufwuchs" sowie der Interaktion "Konservierung × Aufwuchs" ausgewertet, der multiple Mittelwertsvergleich erfolgte nach der Methode Tukey HSD (Confidence level 95,0%). Der Vergleich der verschiedenen ME-Berechnungen (Verdaulichkeit aus Futterwerttabellen bzw. Verwendung von Regressionsgleichungen mit in vitro-Parametern, siehe Fußnoten in Tab. 3) wurde mit einer einfachen linearen Regression durchgeführt (Ergebnisse siehe Abb. 1 und 2). Für die Auftrennung der Streuungsursachen (in Bias, Regression, Disturbance) beim Vergleich "Observed vs. Predicted" wurde den Vorschlägen von Bibby und Toutenbourg (1977) gefolgt.

3 Ergebnisse und Diskussion

In Tabelle 3 sind die Ergebnisse für den Gehalt an Inhaltsstoffen sowie für die nach verschiedenen Methoden berechneten Energiegehalte angeführt. Der Faktor Konservierung führte bei allen Kriterien zu hoch signifikanten Unterschieden (P < 0,001). Großteils gilt dies auch für den Faktor Aufwuchs. Auch die Interaktion Konservierung × Aufwuchs zeigte großteils signifikante Effekte. Wie in praktischen Betrieben vielfach üblich, weist Heu gegenüber Grünfutter und auch Silage einen höheren Gehalt an Gerüstsubstanzen und weniger Rohprotein auf. Dies ist einerseits auf ein späteres Erntedatum zurückzuführen, andererseits jedoch auch auf Bröckelverluste (Gruber et al., 2015; Kiendler et al., 2019). Die Werte für Silage liegen zwischen denen von Grünfutter und Heu, was ebenfalls den Bedingungen der Praxis entspricht. Der Gehalt an ELOS beträgt 692, 669 bzw. 631 g in Grünfutter, Silage und Heu. Die Unterschiede im Futterwert sind eine Folge der Abbauprozesse und Verluste im Zuge der Konservierung, von der vor allem leicht lösliche Kohlenhydrate und Proteine betroffen sind (Woolford,1984; McDonald et al., 1991; Gruber et al., 2015; Kiendler et al., 2019). Eine zusammenfassende Auswertung von relevanten Futterwert-Tabellen (DLG, 1997; DDR, 2004; INRA, 1989; RAP, 1999; ÖAG, 2017; Rosenau, 2001) ergibt für Grünfutter, Silage und Heu mittlere Energiegehalte von 9,73, 9,61 und 9,26 MJ ME/kg TM, wenn der Gehalt an Rohfaser als Kovariable konstant gehalten wird, d. h. der Einfluss des Vegetationsstadiums ausgeschaltet wird (Gruber et al., 2022). Daraus sind gegenüber Grünfutter gewisse Konservierungsverluste zu erkennen, die natürlich stark vom Produktionsmanagement und damit vom Konservierungserfolg abhängen.

Sehr häufig weisen Folgeaufwüchse einen geringeren Fasergehalt auf als der 1. Aufwuchs, wie auch aus verschiedenen Futterwert-Tabellen hervorgeht. Dies führt zu höherer Verdaulichkeit und Energiekonzentration. Allerdings sind im vorliegenden Fall die Unterschiede zwischen den Aufwüchsen im Fasergehalt – obwohl signifikant – relativ gering (261 vs. 254 g XF/kg TM). Daher weisen die *in vitro*-Verdaulichkeitsparameter (GbHFT, ELOS) und die nach verschiedenen Methoden berechneten ME-Gehalte fast durchweg geringere Werte für die Folgeaufwüchse auf, was Van Soest (1994) mit höherer Lignifizierung erklärt und auch den vorliegenden Ergebnissen entspricht (39 vs. 48 g ADL). Werden die in den zitierten Futterwert-Tabellen angeführten Energiegehalte auf gleichen Fasergehalt korrigiert, ergeben sich ebenfalls höhere ME-Werte für den ersten Aufwuchs (Gruber et al. 2022).

Tab. 3: Gehalt an Nährstoffen und *in vitro*-Verdaulichkeit sowie ME-Gehalt berechnet (1) auf Basis publizierter Gleichungen (GfE 1998 und 2008, Gruber et al. 2022) bzw. (2) unter Verwendung von Verdauungskoeffizienten aus Futterwerttabellen (D, F, CH, Ö) (LS-Means für die Haupteffekte "Konservierung" und "Aufwuchs")

	Kon	servier	ung	Aufw	uchs	Statistische Parameter				
	Grünf.	Silage	Heu	1. Aufw	2. Aufw	RMSE	Kons.	Aufw.	K×A	R²
Gehalt an	Nährst	offen, G	erüst	substanz	en (g/k	g TM) ເ	und <i>in</i> v	∕itro-V€	erdaulic	hkeit
TM	191ª	375 ^b	918 ^c	490a	499 ^b	52	<0,001	0,021	<0,001	97,2
XP	155 ^a	152ª	131 ^b	137ª	155 ^b	25	<0,001	<0,001	<0,001	23,4
XL	28ª	33 ^b	28 ^a	29ª	30 ^b	3,9	<0,001	0,019	<0,001	33,3
XF	236ª	258 ^b	278°	261ª	254 ^b	33	<0,001	0,007	0,019	18,8
XX	494 ^a	454 ^b	466 ^c	484ª	459 ^b	28	<0,001	<0,001	0,012	34,3
XA	86ª	103 ^b	97 ^c	89ª	102 ^b	18	<0,001	<0,001	0,269	21,2
NDF	446 ^a	446ª	522 ^b	480ª	464 ^b	56	<0,001	<0,001	<0,001	31,7
ADF	282ª	290 ^b	330^{c}	301	306	39	<0,001	0,077	0,156	20,0
ADL	40a	41 ^a	49 ^b	39ª	48 ^b	10	<0,001	<0,001	<0,001	27,8
GbHFT	41,2ª	$35,7^{b}$	$35,9^{b}$	39,2ª	36,0 ^b	5,7	<0,001	<0,001	0,305	19,4
ELOS	692ª	669 ^b	631°	670ª	657 ^b	58	<0,001	0,003	<0,001	17,6
Energiege	halt (M	J ME/kg	g TM) a	auf Basis	von R	egress	ionsgle	ichung	jen ¹⁾	
ME.hft98	9,61ª	8,36 ^b	8,89c	9,01a	8,89 ^b	0,58	<0,001	0,003	0,004	40,0
ME.elos98	10,30 ^a	10,16 ^b	9,83 ^c	10,19 ^a	10,00 ^b	0,54	<0,001	<0,001	<0,001	17,4
ME.hft08	9,66ª	$9,12^{b}$	8,68c	9,26a	$9,05^{b}$	0,68	<0,001	<0,001	0,111	24,8
ME.elos08	10,39ª	10,18 ^b	9,65c	10,16ª	$9,99^{b}$	0,63	<0,001	<0,001	<0,001	22,5
ME.hft22	10,72ª	$9,35^{b}$	8,90°	9,84ª	9,47 ^b	0,79	<0,001	<0,001	0,007	46,1
ME.elos22	11,05ª	$9,65^{b}$	$9,39^{c}$	10,28ª	$9,78^{b}$	0,71	<0,001	<0,001	0,003	50,1
Energiege	halt (M	J ME/ko	g TM) a	auf Basis	von V	erdauli	chkeite	n aus T	Fabeller	1 ²⁾
ME.dlg97	10,42a	9,89 ^b	9,44c	10,18 ^a	9,65 ^b	0,55	<0,001	<0,001	0,060	42,6
ME.ddr04	10,34ª	$9,49^{b}$	9,03c	9,72a	9,51 ^b	0,68	<0,001	<0,001	0,392	35,8
ME.inra89	10,56ª	10,02 ^b	9,26c	10,03ª	9,86 ^b	0,76	<0,001	0,003	0,014	32,4
ME.rap99	10,13ª	9,71 ^b	9,03c	9,58a	9,66 ^b	0,45	<0,001	0,017	0,026	48,1
ME.öag17	9,74ª	9,74ª	$9,15^{b}$	9,68 ^b	9,41 ^b	0,45	<0,001	<0,001	<0,001	37,2
ME.ros01	10,22a	9,81 ^b	9,31c	10,04ª	9,51 ^b	0,43	<0,001	<0,001	<0,001	53,5

ME.hft98, ME.elos98; ME.hft08, ME.elos08; ME.hft22, ME.elos22: Berechnung der ME nach GfE (1998, 2008) bzw. nach Gruber et al. (2022) auf Basis HFT oder ELOS

²⁾ ME.dlg97, ME.ddr04, ME.inra89, ME.rap99, ME.öag17, ME.ros01: ME berechnet nach GfE (2001) auf Basis der Verdauungskoeffizienten aus den Futterwerttabellen DLG (1997), DDR (2004), INRA (1989), RAP (1999), ÖAG (2017), Rosenau (2001)

Tab. 4: Mittelwerte des ME-Gehalts (MJ/kg TM) nach verschiedenen Berechnungsmethoden (Abkürzungen siehe Tabelle 3)

Regressionsgleichunger	n ME.hft98	ME.elos98	ME.hft08	ME.elos08	ME.hft22	ME.elos22
Durchschnittl. ME-Gehalt	8,85	10,08	9,09	10,04	9,51	9,90
Futterwert-Tabellen	ME.dlg97	ME.ddr04	ME.inra89	ME.rap99	ME.öag17	ME.ros01

In Tabelle 3 sind die nach verschiedenen Berechnungsmethoden (auf Basis Regressionsgleichungen bzw. auf Basis Futterwert-Tabellen) erhaltenen ME-Gehalte für die Faktoren "Konservierung" und "Aufwuchs" angeführt, in Tabelle 4 deren Gesamtmittelwerte. Es zeigen sich deutliche Unterschiede zwischen den Methoden (Mittelwert der Regressionsgleichungen: 9,58; von 8,85 bis 10,08 MJ ME/kg TM bzw. Mittelwert der Futterwert-Tabellen: 9,68; von 9,51 bis 9,87 MJ ME/kg TM bzw. Gesamtmittel: 9,63; von 8,85 bis 10,08 MJ ME/kg TM). Es fällt auf, dass HFT und ELOS innerhalb einer Publikation (8,85 vs. 10.08 MJ ME bei GfE 1998 bzw. 9.09 vs. 10.04 MJ ME GfE 2008) relativ unterschiedliche ME-Gehalte liefern, obwohl sie am gleichen Datenmaterial (n = 801) angewendet wurden. Dieser Unterschied ist auch bei Gruber et al. (2022) gegeben, allerdings in kleinerem Ausmaß (9,51 vs. 9,90 MJ ME). Im Mittel aller drei Formeln ergab die HFT-Methode 9,15 und die ELOS-Methode 10,01 MJ ME/kg TM. Hinsichtlich der auf Basis der Verdaulichkeiten aus Futterwert-Tabellen errechneten ME-Gehalte ergaben DLG (1997), INRA (1989) und Rosenau (2001) höhere ME-Werte (9,87, 9,86, 9,74 MJ ME) als DDR (2004), RAP (1999) und ÖAG (2017), nämlich 9,51, 9,54, 9,54 MJ ME.

Allerdings sagen diese auf Basis der Mittelwerte der verschiedenen Methoden angestellten Vergleiche wenig aus über die für den gesamten ME-Bereich erhaltenen Ergebnisse. So kann eine Überschätzung im niedrigen ME-Bereich bei gleichzeitiger Unterschätzung im hohen Energiebereich im Mittel zu einer guten Übereinstimmung zweier Methoden führen, die in Wirklichkeit jedoch zu einer erheblichen Fehleinschätzung führt, und zwar umso mehr, je weiter die Daten vom Mittelwert entfernt liegen. Aus diesem Grund wurden die Daten nicht nur auf Basis ihrer Mittelwerte verglichen, sondern auf dem Weg einer einfachen linearen Regression, wobei als unabhängige Variable in einem ersten Schritt der ADF-Gehalt gewählt wurde, um ein Kriterium für das Vegetationsstadium zur Verfügung zu haben. In einer umfangreichen Meta-Analyse spezifischer *in vivo*-

Verdauungsversuche mit Wiesenfutter aus österreichischem Dauergrünland (n = 331) haben Gruber et al. (2022) eine engere Beziehung zwischen Verdaulichkeit (dOM) und ADF gefunden (R² = 51,2 %, RSD = 5,0 % dOM) als zwischen dOM und NDF (R² = 42,5 %, RSD = 5,5 % dOM). Die Beziehung zwischen dOM und Rohfaser ergab ein R² von 61,4 % und eine RSD von 4,5 % dOM, dies soll aber wegen der höheren Aussagekraft der Detergenzien-Analyse nach Van Soest (1994) hinsichtlich der Aufteilung der Kohlenhydrate in Faser- und Nichtfaser-Anteile nicht weiterverfolgt werden.

In Abbildung 1 sind diese Ergebnisse auf der linken Seite für die Regressionsgleichungen auf Basis von HFT und auf der rechten Seite auf der Grundlage von ELOS dargestellt (GfE, 1998 und 2008; Gruber et al., 2022), und zwar aus Gründen der Vergleichbarkeit bei gleicher Skalierung. Die GfE-Formeln (1998, 2008) führen bei Verwendung von HFT gegenüber von ELOS zu niedrigeren ME-Werten. Auch die Regressionsgleichungen ermöglichen aufschlussreiche Interpretationen. Die Formeln von GfE (1998) ergeben die niedrigsten Regressionskoeffizienten (-0,0079 bzw. -0,0086 MJ ME, Veränderung der Energiekonzentration pro g ADF), während die Formeln von GfE (2008) fast doppelt so hohe Werte ausweisen (-0,0149 bzw. -0,0138 MJ ME/g ADF). Noch höhere Regressionskoeffizienten für ADF (-0,0207 bzw. -0,0177 MJ ME/g ADF) ergeben sich bei Anwendung der Formeln von Gruber et al. (2022), wobei HFT- und ELOS-Formel im Bereich niedriger bis mittlerer ADF-Gehalte ähnliche Werte erbringen, bei hohem ADF-Gehalt die ELOS-Formel jedoch höhere Werte liefert. Die im Vergleich zu ausländischen Daten stärkere Abhängigkeit der Verdaulichkeit und Energiekonzentration vom Fasergehalt des Wiesenfutters aus österreichischem Dauergrünland hat auch die oben angesprochene Meta-Analyse von 331 in vivo-Verdauungsversuchen der HBLFA gezeigt, aus denen in der Folge die in dieser Arbeit angewendeten Regressionsformeln abgeleitet wurden.

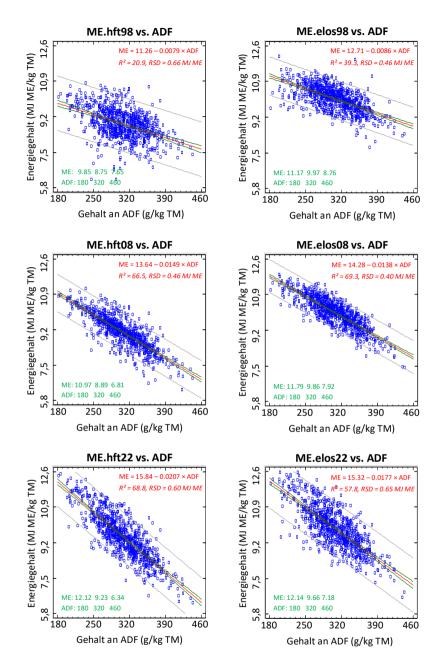


Abb. 1: Beziehungen zwischen dem Gehalt an ADF (g/kg TM) und dem nach verschiedenen Methoden berechneten ME-Gehalt (MJ ME/kg TM) (GfE, 1998 und 2008; Gruber et al., 2022)

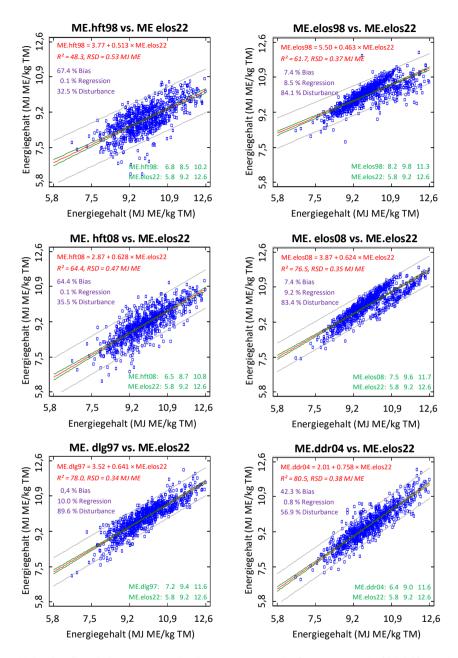


Abb. 2: Beziehungen zwischen dem nach Gruber et al. (2022) und nach GfE (1998, 2008) sowie nach DLG (1997) und DDR (2004) berechneten Energiegehalt (MJ ME/kg TM)

In Abbildung 2 ist der Vergleich dieser Formeln (links auf Basis HFT, rechts auf Basis ELOS) mit den Formeln von GfE (1998 und 2008) sowie mit den Futterwert-Tabellen DLG (1997) bzw. DDR (2004) dargestellt (ebenfalls mit gleicher Skalierung). Zur Interpretation der Ergebnisse werden die Regressionsgleichungen und die Aufteilung der Varianz in Bias, Regression und Disturbance nach Bibby und Toutenbourg (1977) herangezogen. Die Unterschiede der Berechnungsmethoden werden auch sehr gut sichtbar in der Anwendung dieser linearen Beziehungen, wobei als unabhängige Variable (x-Achse, "Observed") der mit der Formel von Gruber et al. (2022, Basis ELOS) errechnete ME-Gehalt gewählt wurde und als abhängige Variable (y-Achse, "Predicted") die nach den verschiedenen, in dieser Arbeit diskutierten Methoden. Die aus Gruber et al. (2022) ausgewählte Formel hat die beste Anpassung an die in vivo-Ergebnisse aus den Verdauungsversuchen der Meta-Analyse ergeben (R² = 86,0 %, RSD = 0,36 MJ ME bzw. 4,0 %). Außerdem ist davon auszugehen, dass die Futterqualität und die botanische Zusammensetzung des Futters aus den Verdauungsversuchen jenem Futter am ähnlichsten waren, das die Fütterungsreferenten in vier Jahren aus dem gesamten Bundesgebiet Österreichs für diese Untersuchung als Validierungsdatenmaterial gesammelt haben, wenn man diese Situation mit der Datengrundlage der GfE-Formeln sowie der DLG- und DDR-Futterwert-Tabellen vergleicht. In Tabelle 5 werden daher wesentliche Kriterien der Datei für die Schätzung (Verdauungsversuche der HBLFA Raumberg-Gumpenstein, n = 331; Gruber et al., 2022) und der Datei für die Evaluierung (Datenerhebung der Fütterungsreferenten in Österreich, n = 801; vorliegende Arbeit) gegenübergestellt. In vielen Kriterien (XP, XF, NDF, ELOS, ME etc.) besteht weitgehende Übereinstimmung zwischen beiden Dateien, sowohl hinsichtlich des Mittelwertes als auch des Streuungsbereiches.

Tab. 5: Gegenüberstellung wesentlicher Kriterien aus den Dateien "Schätzung" und "Evaluierung" (in der TM, Abk. siehe Tab. 3)

	Date	i für Sc	hätzung	Datei für Evaluierung			
	Mittelw.	± s	Min - Max	Mittelw.	± s	Min - Max	
Rohprotein (g)	141	32	77-230	144	28	60-237	
Rohfett (g)	22	4	12-41	30	5	16-40	
Rohfaser (g)	283	41	150-388	261	37	161-395	
Rohasche (g)	107	20	54-211	96	20	51-170	
NDF (g)	536	73	323-706	476	68	289-695	
ADF (g)	322	44	170-428	307	43	182-443	
ADL (g)	39	9	15-72	43	12	15-80	
NFC (g)	194	55	41-375	254	51	93-403	
GbHFT (ml/200 mg)	40,6	5,0	24,8-52,0	37,2	6,3	13,5-57,2	
ELOS (g)	579	70	415-771	661	64	434-823	
ME.hft08 (MJ)	9,01	0,77	7,23-11,45	9,09	0,79	6,33-11,19	
ME.elos08 (MJ)	9,05	0,75	7,34-11,41	10,04	0,72	7,43-11,85	
ME.hft22 (MJ)	8,97	0,96	6,66-11,34	9,51	1,08	6,33-12,50	
ME.elos22 (MJ)	8,97	0,96	6,66-11,34	9,90	1,01	6,61-12,58	
ME.dlg97 (MJ)	9,25	0,76	7,40-11,66	9,87	0,73	7,07-12,18	
ME.ddr04 (MJ)	8,84	0,75	7,03-11,13	9,51	0,85	6,87-12,22	

Alle sechs dargestellten Formeln ergeben einen Regressionskoeffizienten von deutlich unter 1 und ein Intercept von weit über Null. (Das wären die Bedingungen einer idealen Anpassung). Dies führt immer zu einer Überschätzung im niedrigen und zu einer Unterschätzung im hohen Bereich des Energiegehaltes. Davon sind besonders die Formeln GfE (1998 und 2008, ELOS) sowie DLG (1997) betroffen. Dagegen führen besonders die Formeln GfE (1998 und 2008, HFT) zu einer deutlichen Unterschätzung des ME-Gehaltes im Bereich hoher Energiekonzentration. Diese Unterschätzung ist bei Anwendung der Futterwert-Tabellen nicht so stark ausgeprägt. Wie oben bereits ausgeführt, sind im mittleren Energiebereich (siehe ME.elos22 = 9,2 MJ ME) die Unterschiede zwischen den verschiedenen Methoden deutlich weniger ausgeprägt und Vergleiche auf Basis der Mittelwerte nicht sehr aussagekräftig.

Zusammenfassend ist festzuhalten, dass – gemessen am vorliegenden Datenmaterial – die Formeln von GfE (1998) sowohl hinsichtlich der individuellen Streuung als auch der systematischen Abweichung den Energiegehalt am wenigsten genau beschreiben. Das dürfte einerseits am Test-Datenmaterial liegen, andererseits auch

durch die Auswertungsmethodik bedingt sein (verstärkte Verwendung von Produkten und Quadraten der unabhängigen Variablen, die geringe Abweichungen überproportional verstärken. Die Formeln der Generation GfE (2008), besonders jene auf Basis ELOS, sind durch deutlich geringere individuelle Streuungen charakterisiert, weisen allerdings doch erhebliche Abweichungen im Bereich niedriger Energiekonzentration auf (im Falle von ELOS) bzw. bei hohen ME-Gehalten (auf Basis von HFT). Die Anwendung der Verdauungskoeffizienten aus den Futterwert-Tabellen (DLG, 1997; DDR, 2004) führt zu einem ähnlichen Schätzfehler (durch vergleichbare individuelle Streuung), allerdings ist die Überschätzung des ME-Gehaltes im niedrigen Bereich der Energiekonzentration bei DLG (1997) stärker ausgeprägt. Eine zufriedenstellende Vorhersagegenauigkeit von Schätzmodellen ist vor allem dann zu erwarten, wenn das Datenmaterial zur Ableitung des Modells (Testdaten) jenem der Anwendung (Validierungsdaten) weitgehend entspricht.

7 Literaturangaben

- Autorenkollektiv (Beyer, M., Chudy, A., Hoffmann, L., Jentsch, W., Laube, W., Nehring, K., Schiemann, R.), 1977: DDR-Futter-bewertungssystem. Kennzahlen des Futterwertes und Futterbedarfes für Fütterung und Futterplanung. 4. Auflage, VEB Deutscher Landwirtschaftsverlag, Berlin, 255 S.
- Autorenkollektiv (Jentsch, W., Chudy, A., Beyer, M.), 2004: Rostocker Futterbewertungssystem. Kennzahlen des Futterwertes und Futterbedarfes auf Basis von Nettoenergie. Copyright Die Autoren, Printed by printmix24 Druckerei, Bad Doberan (D), 392 S.
- Bibby, J., Toutenburg, H., 1977: Prediction and Improved Estimation in Linear Models. John Wiley & Sons, 188 S.
- De Boever, J.L., Cottyn, B.G., Andries, J.I., Buysse, F.X., Vanacker, J.M., 1988. The use of a cellulase technique to predict digestibility, metabolizable and net energy of forages. Anim. Feed Sci. Technol. 19, 247-260.
- Bohner, A., Sobotik, M., 2000: Das Wirtschaftsgrünland im Mittleren Steirischen Ennstal aus vegetationsökologischer Sicht. MAB-Forschungsbericht: Landschaft und Landwirtschaft im Wandel, 15-50.

- Bohner, A., 2007: Phytodiversität im Wirtschafts- und Extensivgrünland der Tallagen. Biodiversität in Österreich. Bericht HBLFA Raumberg-Gumpenstein, 29-36.
- GEH (Gesellschaft für Ernährungsphysiologie der Haustiere Ausschuss für Bedarfsnormen), 1986. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. Nr. 3 Milchkühe und Aufzuchtrinder. DLG-Verlag, Frankfurt am Main (Deutschland), 92 S.
- GfE (Gesellschaft für Ernährungsphysiologie Ausschuss für Bedarfsnormen), 1998: Formeln zur Schätzung des Gehaltes an Umsetzbarer Energie in Futtermitteln aus Aufwüchsen des Dauergrünlandes und Mais-Ganzpflanzen. Proc. Soc. Nutr. Physiol. 7, 141-150.
- GfE (Gesellschaft für Ernährungsphysiologie Ausschuss für Bedarfsnormen), 2001. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. Nr. 8. DLG-Verlag, Frankfurt am Main (Deutschland), 135 S.
- GfE (Gesellschaft für Ernährungsphysiologie Ausschuss für Bedarfsnormen), 2008: New equations for predicting metabolisable energy of grass and maize products for ruminants. Proc. Soc. Nutr. Physiol. 17, 191-198.
- Gruber, L., Steinwidder, A., Guggenberger, T., Wiedner, G., 1991 und 1997: Interpolation der Verdauungskoeffizienten von Grundfuttermitteln der DLG-Futterwerttabellen für Wiederkäuer. Internes Arbeitspapier der ÖAG-Fachgruppe Fütterung über die Grundlagen zur Berechnung der Verdaulichkeit auf der Basis der DLG-Futterwerttabellen für Wiederkäuer (6. Auflage 1991 und 7. Auflage 1997).
- Gruber, L., Resch, R., Schauer, A., Steiner, B., Fasching, C., 2015: Einfluss verschiedener Heutrocknungsverfahren auf den Futterwert von Wiesenfutter im Vergleich zur Silierung. 42. Viehwirtschaftliche Fachtagung, 25.-26. März 2015, Bericht HBLFA Raumberg-Gumpenstein 2015, 57-66.
- Gruber, L., Guggenberger, T., Gappmaier, S., Terler, G., Schauer, A., Wöber, J., 2022: Untersuchungen zur Aktualisierung der Futterbewertung im Futtermittellabor Rosenau. Teil 2: Ergebnisse zur Verdaulichkeit und Energiebewertung von Wiesenfutter auf Basis einer Meta-Analyse spezifischer Verdauungsversuche an der HBLFA Raumberg-Gumpenstein. 49. Viehwirtschaftliche Fachtagung, 06.-07. April 2022, Bericht HBLFA Raumberg-Gumpenstein 2022, 107-142.

- INRA (Institut National de la Recherche Agronomique), 1989: Ruminant Nutrition. Recommended Allowances and Feed Tables (Ed. R. Jarrige). John Libbey Eurotext (London, Paris, Rome), 389 S.
- Kiendler, S., Gruber, L., Terler, G., Velik, M., Eingang, D., Schauer, A.,
 Royer, M., 2019: Einfluss des Konservierungsverfahrens von Wiesenfutter auf Futterwert, Futteraufnahme und Milchleistung.
 46. Viehwirtschaftliche Fachtagung, 10.-11.04.2019, Bericht HBLFA Raumberg-Gumpenstein, 97-109.
- McDonald, P., Henderson, A.R., Heron, S.J.E., 1991: The Biochemistry of Silage. Chalchombe Publications, 2nd Edition, Aberystwyth (UK), 340 S.
- Menke, K.-H., Steingaß, H., 1987: Schätzung des energetischen Futterwertes aus der *in vitro* mit Pansensaft bestimmten Gasbildung und der chemischen Analyse. II: Regressionsgleichungen. Übers. Tierernährg. 15, 59-94.
- ÖAG Futterwerttabellen für das Grundfutter im Alpenraum (Resch, R., Guggenberger, T., Gruber, L., Ringdorfer, F., Buchgraber, K., Wiedner, G., Kasal, A., Wurm, K.), 2017. ÖAG-Info 10/2017, 20 S.
- RAP, 1999: Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. 4. Auflage, Zollikofen, Landwirtschaftliche Lehrmittelzentrale. 327 S.
- Steingaß, H., Menke, K.-H., 1986: Schätzung des energetischen Futterwertes aus der *in vitro* mit Pansensaft bestimmten Gasbildung und der chemischen Analyse. 1. Untersuchungen zur Methode. Übers. Tierernährg. 14, 251-270.
- Universität Hohenheim Dokumentationsstelle, 1991. DLG-Futterwerttabellen für Wiederkäuer, 6. Auflage, DLG-Verlag, Frankfurt am Main (Deutschland), 112 S.
- Universität Hohenheim Dokumentationsstelle, 1997. DLG-Futterwerttabellen Wiederkäuer, 7. Auflage, DLG-Verlag, Frankfurt am Main (Deutschland), 212 S.
- Van Es, A.J.H., 1978: Feed evaluation for ruminants. I. The systems in use from May 1977 onwards in The Netherlands. Livest. Prod. Sci. 5, 331-345.
- Van Soest, P.J., 1994: Nutritional Ecology of the Ruminant. 2nd Edition, Cornell University Press, Ithaca, New York (USA) and London (UK), 476 S.

- Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (Hrsg.), 2012: Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Bd. III. Die chemische Untersuchung von Futtermitteln, VDLUFA-Verlag, Darmstadt.
- Weißbach, F., Kuhla, S., 1995: Stoffverluste bei der Bestimmung des Trockenmassegehaltes von Silagen und Grünfutter: Entstehende Fehler und Möglichkeiten der Korrektur. Übers. Tierernährg. 23, 189-214.
- Wiedner, G., Guggenberger, T., Fachberger, H., 2001: Futterwert-tabelle der österreichischen Grundfuttermittel. Niederösterreichische Landeslandwirtschaftskammer. Eigenverlag, 125 S.
- Woolford, M.K., 1984: The Silage Fermentation. Marcel Dekker Inc., New York and Basel, 350 S.