
Lebensmitteleffizienz in der Tierhaltung

Bedeutung der grünlandbasierten Wiederkäuerfütterung

Priv.-Doz. Dr. Andreas Steinwidder HBLFA Raumberg-Gumpenstein Institut für Biologische Landwirtschaft und Nutztier-Biodiversität Irdning-Donnersbachtal, 15. Jänner 2020

Landwirtschaft

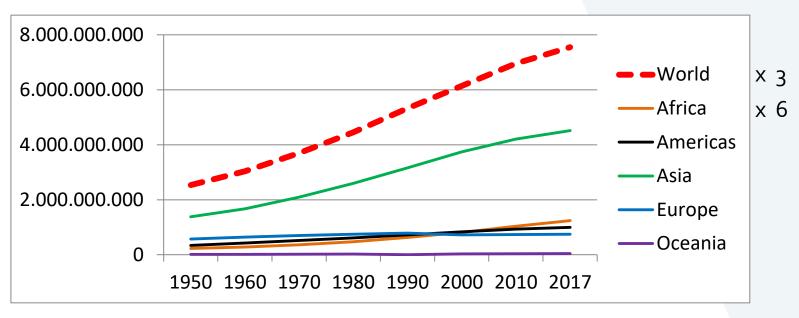
Nachrichten Meinung

Die Kuh, das große "Klima-Schwein"

Umwelt. Eine einzige Kuh belastet die Umwelt genauso stark mit Treibhausgasen wie ein Kleinwagen, der 18.000 Kilometer zurücklegt. Und das mit kräftiger finanzieller Unterstützung der Steuerzahler.

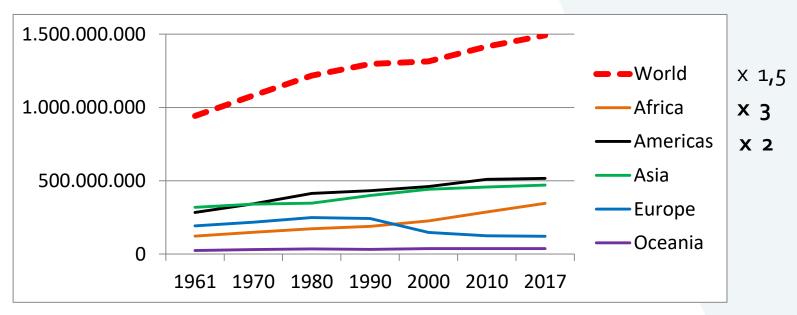
https://www.diepresse.com/343735/die-kuh-dasgrosse-bdquoklima-schweinldquo

Fleischkonsum und Klimawandel Was hat Fleisch mit dem Klimawandel zu tun? Auf den ersten Blick nicht viel. Doch Was hat Fleisch mit dem Klimawandel zu tun? Auf den ersten Blick nicht viel Doch Gewicht, Fleisch, Käse und Butter sind in der Herstellung und Floduktion was viele nicht wissen: Tierische Lebensmittel fallen bei der persönlichen Klimabilanz eind verursachen damit deutlich mehr Der deutsche Pro-Kopf-Verbrauch von Fleisch lag im Jahr 2017 bei rund 87.8 Kilogramm - 60 Kilo davon landeten ale Fleischwäre diekt auf den Tellem, der Zum einen entstehen direkt durch die Viehhaltung Emissionen, vor allem Methan und des Zum einen entstehen direkt durch die Viehhaltung Emissionen, vor allem Methan und Schwein) zur Lachgas durch Rinderhaltung. Zum anderen trägt der Fleischkonsum aufgrund der Zerstörung von Ökosystemen und natürlichen hohen Bedarfs an Soja als Futtermittel (vor allem für Geflügel und Schwein) zu oroßen Stil bei was ebenfalls zum vermehrten und natürlichen Rodung von Unwäldern und der Zerstörung von Okosystemen und naturlicher schreitet die dlobale Erderwärmung schneller Ressourcen im großen Still bei, was ebenfalls zum vermehrten Ausstoß von Mit Studie: Klimaschutz auf dem Teller 12 Informiert umfassend über der Vermehrten Ausstoß von Die WWF-Studie: Kilmaschutz auf dem Teller LS unformiert & unformiert LS und Kilmi Klimawandel: Welche Rolle spielt die Art des Fleisches? https://www.cozonline.de/klimahttps://www.co2online.de/klima-schuetzen/nachhaltiger-konsum/fleisch-klimawandel/


Eine Einrichtung des Bundesministeriums für

Landwirtschaft, Tourismus und Regionen

http://blog.porcella.at/2015/02/17/rotes-vsweises-fleisch/


Weltbevölkerung FAO 2019

http://www.fao.org/faostat

Österreich 6.936.439 7.723.949 8.819.901 X 1,3

Rinderbestand lebend, FAO 2019

http://www.fao.org/faostat

Rinder/Person

Schweine/Person

Hühner/Person

	2004	2017	Dif. %
World	0,21	0,20	-7
Europe	0,18	0,16	-11

	2004	2017	Dif. %
World	0,14	0,13	-5
Europe	0,26	0,25	-5

	2004	2017	Dif. %
World	2,6	3,0	17
Europe	2,5	3,0	21

Weltweit entfallen im Mittel auf 10 Menschen etwa:

2 Rinder

1,6 Schafe

1,4 Ziegen

1,3 Schweine

30 Hühner

o,6 Truthühner

Pro Kopf Mensch stieg von 2004 bis 2017 die Zahl der Hühner deutlich und der Ziegen leicht an, ansonsten leichter Rückgang pro Kopf

Eiweißversorgung g XP/Mensch u. Tag

Tierisches Eiweiß g XP/Mensch u. Tag

	2000	2040	2047
	2000	2010	2017
World	115	118	122
Africa	102	107	112
Northern America	145	142	147
South America	119	126	126
Asia	111	115	120
Europe	128	133	135
Oceania	117	121	123

	2000	2010	% v. Protein ₂₀₁₀
World	27	30	25 📛
Africa	12	14	13 🦶
Northern America	71	69	47
South America	39	44	35
Asia	20	25	21
Europe	54	57	42
Oceania	50	51	41

http://www.fao.org/faostat

"Sojaflächenimport EU28"

Import in Mil. Tonnen			"Flächeni	mport (ha)"	
	D	EU 28	Ertragsfaktor	D	EU 28
Sojabohnen	3.500.000	14.400.000	2,80	1.250.000	5.142.857
Sojaschrot	2.700.000	20.800.000	2,24	1.205.357	9.285.714
Summe				2.455.357	14.428.571

	ha	% Import-Sojafläche an Ackerfläche D
D Ackerfläche	11.700.000	21

EU 28 importieren über Soja etwa jene Fläche die Deutschland über Ackerbau derzeit gesamt nutzt!

Eigene Berechnungen, auf Basiszahlen 2017

Herausforderung – nachhaltige Lebensmittelversorgung

- ➤ Stark wachsende Weltbevölkerung ↑ ↑ ↑
- ➤ Geänderte Konsumgewohnheiten → tierische Lebensmittel ↑
- > Schlechte Lebensmittelverteilung, Lebensmittelverschwendung und ungünstiger Lebensmittelkonsum
- ➤ Flächenkonkurrenz → Bodenversiegelung, Energieerzeugung, ... Ackerflächen knapper
- ➤ Global "Bildungsmanko in Schwellenländern zur LW" → ineffiziente Produktion
- "Flächenimport" für Eiweißfutter
- ➤ Intensivierung stößt an Grenzen → Bodenfruchtbarkeit, Erosion, Nährstoffverfrachtung, Einfalt statt Vielfalt, Krankheitsanfälligkeit, ...Monopole
- ➤ Klimawandel → Ertragsschwankungen
- **>** ...

Globale Landflächennutzung (Raschka et al. 2012)

Landfläche	Milliarden ha	% der Landfläche
Infrastruktur	0,2	1
"Unland" (Wüsten, Berge)	4,3	32
Wälder	3,9	29
Agrarfläche	5,0	37
Summe Landfläche	13,4	

Globale Landflächennutzung (Raschka et al. 2012)

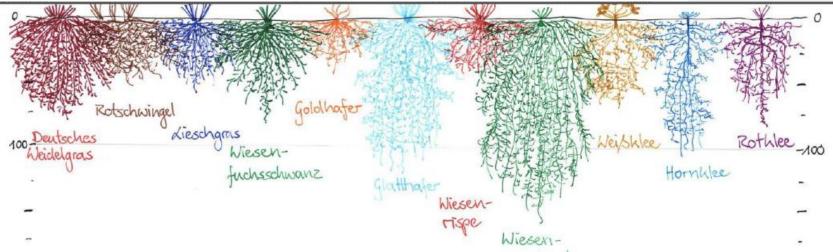
Landfläche	Milliarden ha	% der Landfläche
Infrastruktur	0,2	1
"Unland" (Wüsten, Berge)	4,3	32
Wälder	3,9	29
Agrarfläche	5,0	37
Summe Landfläche	13,4	

	Milliarden	% der	% der
Agrarfläche	ha	Agrarfläche	Landfläche
Ackerfläche	1,45	29	11
Grünlandfläche/Grasland	3,55	71	26

Globale Landflächennutzung (Raschka et al. 2012)

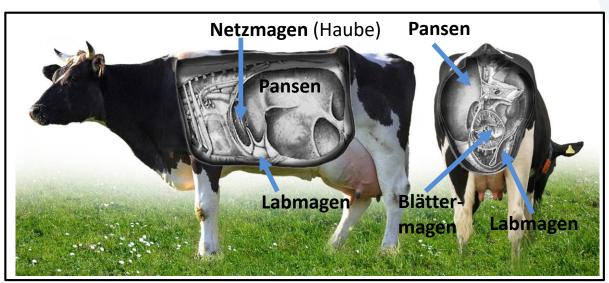
	Milliarden	% der
Landfläche	ha	Landfläche
Infrastruktur	0,2	1
"Unland" (Wüsten, Berge)	4,3	32
Wälder	3,9	29
Agrarfläche	5,0	37
Summe Landfläche	13,4	

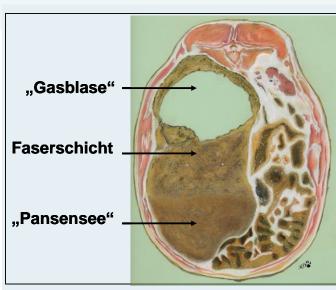
	Milliarden	% der	% der
Agrarfläche	ha	Agrarfläche	Landfläche
Ackerfläche	1,45	29	11
Grünlandfläche/Grasland	3,55	71	26

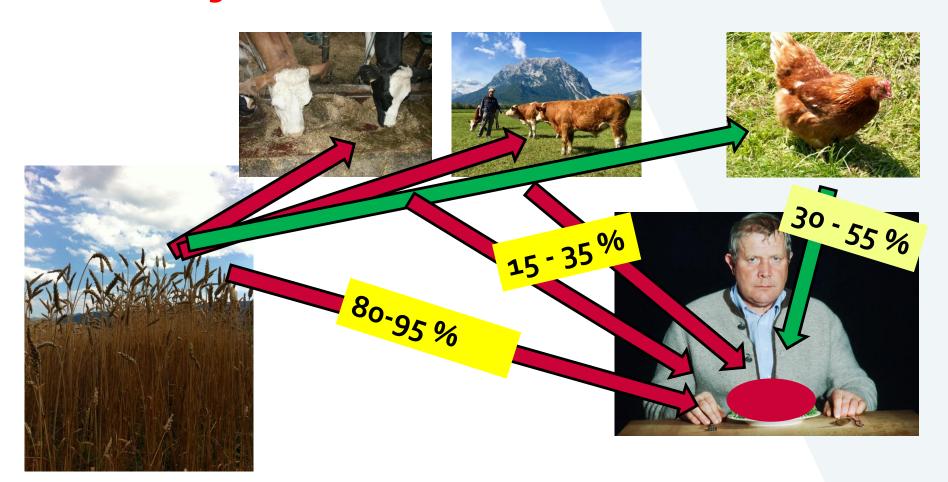

	Milliarden	% der	% der	% der
Ackerfläche	ha	Ackerfläche	Agrarfläche	Landfläche
direkt für Lebensmittel	0,26	18	5	2
für Futtermittel	1,03	71	21	8
für Bioenergie	0,06	4	1	0,4
für Stoffliche Nutzung	0,10	7	2	1

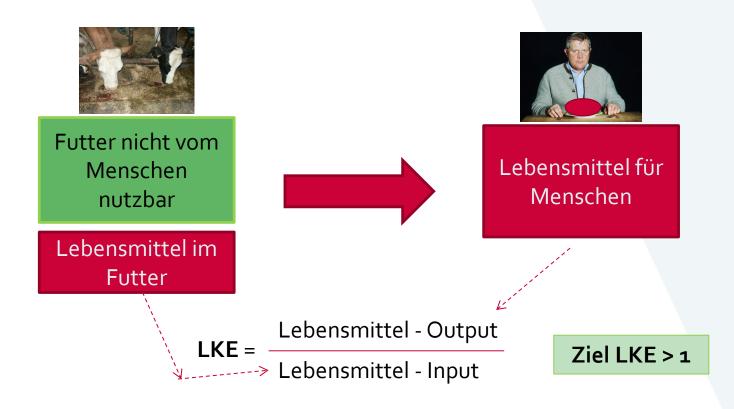
Lebensmitteleffizienz in der Tierhaltung

Steinwidder Andreas


HBLFA
Raumberg-Gumpenstein
Landwirtschaft




Vormägen – Pansenmikroben schließen faserreiches Futter auf


		Verdaulichkeit der organischen Masse, %			
Beispiel	Rohfaser,	Rind	Pferd	Schwein	Geflügel
	g/kg T				
Körnermais	26	86	86	89	87
Weizen	29	89	87	89	85
Grünfutter	262	74	65	48	35

Tierernährung - Lebensmittel im Futter – unvermeidbare Verluste

Lebensmitteleffizienz und Tierernährung LKE

Lebensmittel-Konvertierungs-Effizienz - LKE

Lebensmitteleffizienz in der Tierernährung LKE

Lebensmittel-Konvertierungs-Effizienz - LKE

	Protein Qualität	Energie
Rinder	2,8	1,1
Milchkühe	3,8	1,4
Maststiere	0,7	0,3

Die Bodenkultur: Journal of Land Management, Food and Environment Volume 67, Issue 2, 91–103, 2016. DOI: 10.1515/boku-2016-0009 ISSN: 0006-5471 online, © De Gruyter, www.degruyter.com/view/j/boku

Research Article

Net food production of different livestock: A national analysis for Austria including relative occupation of different land categories

Netto-Lebensmittelproduktion der Nutztierhaltung: Eine nationale Analyse für Österreich inklusive relativer Flächenbeanspruchung

Paul Ertl¹⁷, Andreas Steinwidder², Magdalena Schönauer¹², Kurt Krimberger², Wilhelm Knaus¹, Werner Zollitsch¹

University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Sustainable Agricultural Sytems, Division of Livestock Sciences, 1180 Vienna, Austria

² Agricultural Research and Education Centre Raumberg-Gumpenstein, Institute of Organic Farming and Farm Animal Biodiversity, 8951 Trau-

Lebensmitteleffizienz in der Tierernährung LKE

Lebensmittel-Konvertierungs-Effizienz - LKE

	Protein Qualität	Energie
Rinder	2,8	1,1
Milchkühe	3,8	1,4
Maststiere	0,7	0,3
Schweine	0,6	0,4
Legehennen	1,0	0,3
Masthühner	0,8	0,3
Truthühner	0,6	0,2

Die Bedenkultur: Journal of Land Management, Food and Environment Volume 67, Issue 2, 91–103, 2016. DOI: 10.1515/boku-2016-0009 ISSN: 0006-5471 online, ⊕ De Gruyter, www.degruyter.com/view/j/boku

Research Ar

Net food production of different livestock: A national analysis for Austria including relative occupation of different land categories

Netto-Lebensmittelproduktion der Nutztierhaltung: Eine nationale Analyse für Österreich inklusive relativer Flächenbeanspruchung

Paul Ertl1, Andreas Steinwidder2, Magdalena Schönauer12, Kurt Krimberger2, Wilhelm Knaus1, Werner Zollitsch1

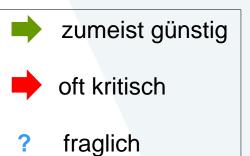
¹University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Sustainable Agricultural Sytems, Division of Livestock Sciences, 1180 Vienna, Austria

² Agricultural Research and Education Centre Raumberg-Gumpenstein, Institute of Organic Farming and Farm Animal Biodiversity, 8951 Trau-

Optimierung -> Lebensmitteleffizienz und Flächenkonkurrenz

- Tierhaltung stärker auf nicht direkt vom Menschen nutzbare Futter (Flächen)
 zurückgreifen: Grünland, faserreiche Nebenprodukte der LM-Verarbeitung, LM-Abfälle ...
- Konsumgewohnheiten ändern: Mehr Ackerflächen direkt für Menschen.... <u>und dann</u> erst ... Geflügel, Schwein,
- Standortangepasste und für den Standort effiziente Tierhaltung
- Grünland als wichtige Ressource erhalten und nachhaltig nutzen

Nachhaltigkeit – nicht nur an einem Kriterium messen!!


FEEDLOT MAST

GRÜNLAND MAST

Freude ist auch wichtig!

Bemühen wir uns diese am Handwerk "Land- und Lebenswirt" zu erhalten

Lebensmitteleffizienz in der Tierhaltung

Steinwidder Andreas

Danke für Ihre Aufmerksamkeit!

Lebensmitteleffizienz in der Tierhaltung

Bedeutung der grünlandbasierten Wiederkäuerfütterung

Priv.-Doz. Dr. Andreas Steinwidder HBLFA Raumberg-Gumpenstein Institut für Biologische Landwirtschaft und Nutztier-Biodiversität Irdning-Donnersbachtal, 15. Jänner 2020

