

Optimierung der Wiesenund Weidenutzung am Bio-Grünland

Acker- und Grünlandbewirtschaftung Biolandbau – mehr als eine Nische LFS Alt Grottenhof, 29. August 2016

Walter Starz, Bio-Institut – HBLFA Raumberg-Gumpenstein

Kulturpflanze Gras

- im Grünland wird in erster Linie Gras kultiviert
- Grünlandflächen in Österreich sind zum überwiegenden Teil angesät
- Nicht jede Grasart passt für jede Nutzung
- Gräser haben eine Lebenserwartung von 5-10 Jahre
- Durch Versamung, Bestockungs- oder Ausläufertriebe bleiben sie länger im Bestand
- Erkennen der Gräser auf der Fläche ist die wichtigste Maßnahme, um Entscheidungen über eine mögliche Sanierung treffen zu können!

Lolium perenne

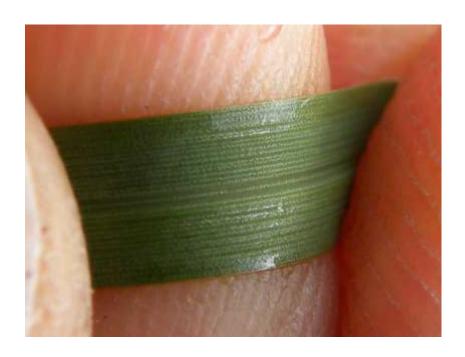
- das Englische Raygras ist international das bedeutendste Gras des intensiven Grünlandes in der gemäßigten Klimazone
- bildet Horste mit Trieben, die zur Bestockung neigen und so posterförmig in die Weide wachsen
- Blätter glänzen deutlich auf der Unterseite
- Oberseite des Blattes ist mit vielen starken Rillen überzogen
- das Blatt hat eine Breite von unter 5 mm
- Triebgrund ist rot und das jüngste Blatt erscheint gefaltet

- im Bergegebiet nicht immer geeignet
- lange schneereiche Winter führen zu großen Schädigung der Pflanzen
- besonders problematisch ist Schnee auf nicht gefrorenem Boden → starker Befall an Schneeschimmel
- auf Dauerweiden ist es ausdauernder
- nicht zu hoch in den Winter schicken
- auf südexponierten Hängen noch auf 1.000 Höhenmeter anzutreffen

- rechts: stark gerillte Blattoberseite und unter 5 mm breit (breite, linke Blatt = Wiesenschwingel)
- unten: stark glänzende Blattunterseite

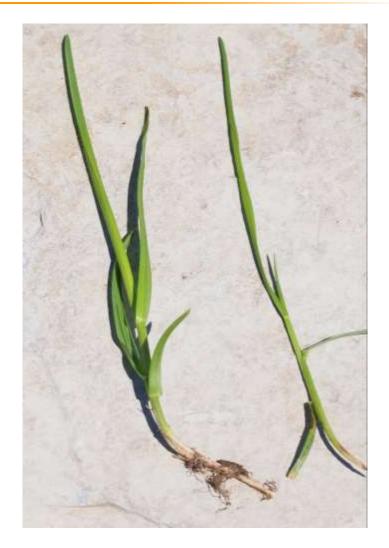
- rechts: jüngste Blatt erscheint in der Triebmitte gefaltet
- unten: Triebgrund ist deutlich rot bis weinrot gefärbt

Poa pratensis



- Wiesenrispengras ist das bedeutendste, sehr winterharte und intensiv nutzbarste Gras im Alpenraum
- dunkelgrün bis blaugrüne Blattfarbe
- Blattspitze läuft kaputzenförmig zu
- Blätter haben an Oberseite in der Mitte ein Doppelrille
- streicht man kaptuzenförmige Spitze aus, geht diese auf und zwei Spitzen sind sichtbar = Enden der beiden Rillen
- jüngste Blatt ist gefaltet
- Achtung Verwechslungsgefahr mit der Lägerrispe (*Poa supina*)! → Blätter sind weicher und Pflanze wächst niedriger

- rechts: Kaputzenförmige Spitze und geöffnetes Blattende mit den beiden Spitzen
- unten: Doppelrille auf der Blattoberseite



- rechts: aufrecht, steife Blätter mit gefaltetem jüngsten Blatt
- unten: im Gegensatz zur Gemeinen Rispe (unterhalb) läuft das Blatt nicht spitz zu

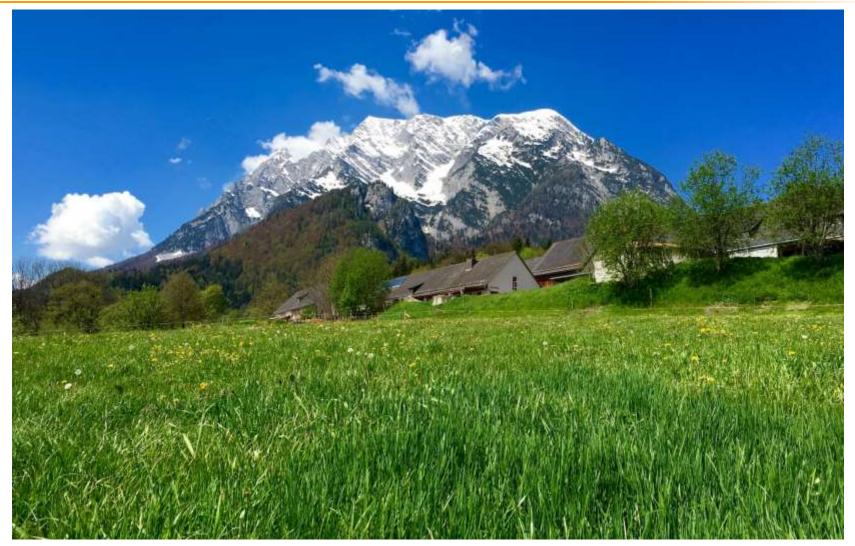
• Typisch sind auch unterirdischen Ausläufertriebe, die eine dichte Grasnarbe bilden und aktiv in die Fläche wachsen

Poa trivialis

Gemeine Rispe

- die Gemeine Rispe bildet oberirdische Ausläufertriebe und ist eines der bedeutendsten Problemgräser in intensiven Wiesen
- die Blätter sind hellgrün und laufen sehr spitz zu
- am Samentrieb ist das Blatthäutchen weiß und 1 cm hoch ansonsten ist es 1-2 mm hoch
- ab dem zweiten Aufwuchs wächst das Gras nur mehr wenige cm auf

Gemeine Rispe


Gemeine Rispe

Optimierung am Grünland

Problemsituation im Dauergrünland

- viele Flächen liefern nicht jene Erträge, die sie liefern könnten
- oftmals sind die Bestände zu lückig und das ertragsbildende Grasgerüst ist zu schwach ausgebildet
- Lücken werden vielfach durch ertragsschwache verfilzende Gräser eingewachsen oder von minderwertigen Kräutern dominiert
- durch Zukäufe von Grund- und Kraftfutter werden Defizite in den Grünlanderträgen und –qualitäten versucht auszugleichen

Nutzung und Graswachstum

- Nutzung hat einen sehr großen Einfluss auf die Artenzusammensetzung
- Zeitpunkt des 1. Schnittes entscheidet wie viele weitere Nutzungen möglich sind
- Vorverlegung der 1. Nutzungen machte mehr Schnitte pro Jahr möglich
- Der größte Einfluss der zu einer Veränderung der Wiesenbestände führt passiert in erster Linie durch das Mähwerk!

Probleme am Dauergrünland

Indirekter Lückennachweiß

- regelmäßiges absamen mit Flugschirmen
- weite Verbreitung und Keimung nur in Lücken möglich
- ständig neu auflaufende Pflanzen
- langfristige Verbesserung nur möglich wenn die Grasnarbe geschlossen wird

Vermeintlich dichter Grasbestand

- Problem Gras Gemeine Rispe, da eine dichte Grasnarbe vorgetäuscht wird
- Futterwert beim ersten Schnitt gering, da sehr frühreif
- ertragswirksam nur zum ersten Aufwuchs

Wie geht es weiter?

- Suchen der Ursachen, die zum Ungleichgewicht geführt haben!
- Passen Nutzung und Gräser zusammen?
- Wird die Düngung der Nutzung entsprechend durchgeführt?
- Brauche ich für meine Nutzung andere Gräser, die übergesät werden müssen?
- Das Entfernen der ungewünschten Pflanzen löst nicht das Problem!

Zielkonflikt im Bio-Grünland?

- Wiederkäuergemäße Fütterung versucht den KF-Einsatz zu reduzieren → dazu muss die GF-Aufnahme steigen
- in Bio werden GF-Leistungen von 4.500-5.000 kg Milch pro Tier und Jahr bzw. 15-17 kg Milch pro Tier und Tag angestrebt
- um dies zu erreichen sind beste GF-Qualitäten von Intensivwiesen mit hohen Energie- und Proteinkonzentrationen notwendig → nur möglich wenn das Futter früh genutzt wird und die Bestände blattreich sind

Nutzung und Futterqualität

- Alter des Bestandes entscheidet über die Qualität des **Futters**
- hohe Qualität im Zeitpunkt des Ähren- und Rispenschiebens
- Ergebnisse aus Schnittversuchen des Bio-Instituts (2008-2013)

	Parameter	Einheit	1. Schnitt	2. Schnitt	3. Schnitt	4.Schnitt
	Energie	MJ NEL/kg TM	5,67	5,57	5,8	
3-Schnittwiese	e Rohprotein	g/kg TM	110	141	152	
	Rohfaser	g/kg TM	306	290	267	
4-Schnittwiese	Energie	MJ NEL/kg TM	6,13	5,89	5,75	6,14
	e Rohprotein	g/kg TM	133	152	155	179
	Rohfaser	g/kg TM	265	255	260	205

Lösung wäre abgestufte Nutzung

- meist unterschiedlich tiefgründige Böden am Betrieb Anpassung der Bewirtschaftung an den natürlichen Standort
- wegen der Viehbesätze in Bio (1,3 GVE/ha in Österreich)

zu wenig Wirtschaftsdünger um alle Flächen gleich intensiv zu nutzen und bedarfsgerecht zu versorgen

- Bereitstellung unterschiedlicher GF-Qualitäten
- Flächen auf eine Nutzungsintensität einstellen
- Grünlandbetrieb fördert Artenvielfalt Grundsatz von Bio!

Extensive Wiesen

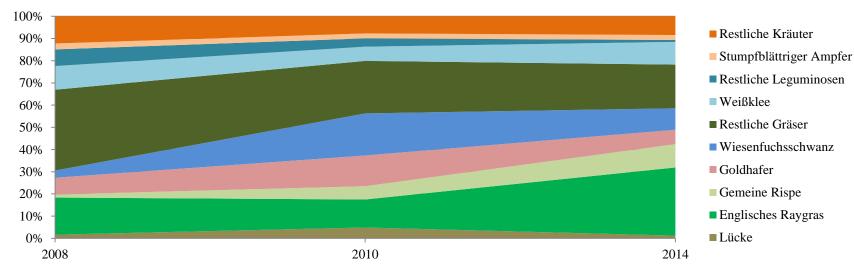
Intensive Wiesen

Bestandesverbesserung mit Übersaaten

- Übersäen = auf die Bodenoberfläche legen
- nachfolgendes anwalzen verbessert die Wasserversorgung und so die Keimung
- Bestandeslücken sind Notwendig
- Übersaat bringt moderne Zuchtsorten in das Grünland
- Übersaaten vor dem 1. Aufwuchs nur in sehr lückigen Beständen
- entstehen Bestandeslücken muss sofort mit gezielten Übersaaten reagiert werden!

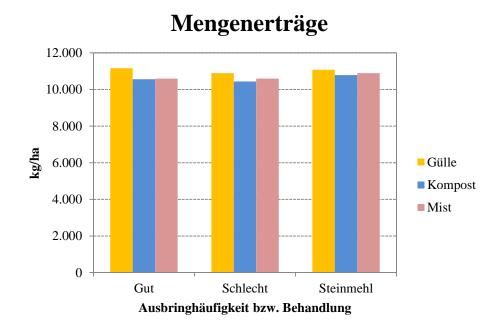
Wirtschaftsdünger im Dauergrünland

Wirtschaftsdünger-Versuch am Bio-Institut


- 2008-2012 WD-Versuch am Bio-Institut
- Umbruch und Neuansaat im Spätsommer 2006 mit einheitlicher Mischung (inklusive Kräuter)
- Versuchsannahme war ein Betrieb mit 1,2 GVE
- Kalkulation als Gülle-, Festmist- und Mistkompost-Betrieb
- zusätzlicher Faktor war Ausbringhäufigkeit als gute oder schlechte Verteilung
- in den Faktor Ausbringhäufigkeit wurde noch eine Behandlung mit Urgesteinsmehl gelegt

Entwicklung Pflanzenbestand

- kein Einfluss durch Düngerart oder Düngerbehandlung feststellbar
- Abnahme von Rotklee, Hornklee, W-Fuchsschwanz und Goldhafer
- Zunahme von Engl. Raygras und leicht Gemeine Rispe



Erträge

- Mengenertrag im Schnitt in allen Gülle-Varianten mit 11.045 kg TM/ha am höchsten
- langfristige Abnahme der Erträge im Versuchszeitraum
- Grund: Veränderungen im Pflanzenbestand und geringere Düngernachlieferungen, vor allem bei festen Wirtschaftsdüngern

Parameter	Einheit	2008	2009	2010	2011	2012
Niederschlagssumme	mm	987	1.132	988	981	1.261
Niederschlag in der Vegetationszeit	mm	665	824	795	805	920
Temperaturmittel	°C	8,9	8,6	7,7	8,8	8,5
Gülle	kg/ha TM	10.522	11.776	11.968	10.155	10.802
Kompost	kg/ha TM	10.615	11.563	10.824	9.887	10.105
Mist	kg/ha TM	10.948	11.535	11.015	10.039	9.938

Schlussfolgerung

- über welche Wirtschaftsdüngerform die Düngung erfolgt hat auf den Pflanzenbestand keinen Einfluss, sofern die Mengenzuteilung bedarfsgerecht erfolgt
- das Güllesystem zeigte die geringsten N-förmigen Verluste
- die Beimengung von Urgesteinsmehl zeigte keine Effekte im Pflanzenbestand und beim Ertrag
- die Anzahl der Nutzungen pro Jahr ist die treibende Kraft in der Veränderung der Wiesenbestände
- langfristig solche Gräser in die Fläche übersäen, die an die Nutzungshäufigkeit angepasst sind, der Nutzung entsprechend Düngen und so den Kreislauf schließen

Weidehaltung

Pflanzenbestand

- seit 5 Millionen Jahren sind rinderartige Wiederkäuer an Weidegras angepasst
- aber auch das Gras passte sich an den Verbiss an
- nicht die Klaue führt in erster Linie zur Veränderung des Pflanzenbestandes sondern das Maul
- an das regelmäßige Entblättern können sich nicht alle Grünlandpflanzen gleich gut anpassen

Pflanzenbestand – Weide- und Schnittnutzung

Veränderungen im Pflanzenbestand nach 4 Jahren intensiver Kurzrasenbeweidung

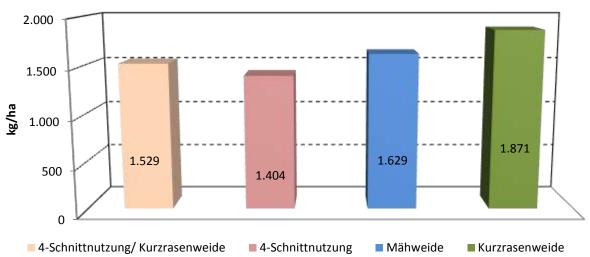
Versuch am Bio-Institut von 2007-2010

		Kurzrasenweide	4-Schnittnutzung
Lücke	Flächen-%	1	2
Gräser	Flächen-%	68	78
Englisches Raygras	Flächen-%	20	11
Gemeine Rispe	Flächen-%	5	18
Goldhafer	Flächen-%	2	11
Knaulgras	Flächen-%	3	12
Wiesenrispengras	Flächen-%	22	7
Leguminosen	Flächen-%	18	8
Kräuter	Flächen-%	12	13
Arten	Anzahl	27	26

Übersaat

- wird begonnen eine Wiese zu beweiden, beginnt sich bereits im ersten Jahr der Bestand zu ändern
- entstehende Lücken sind optimal, um Übersaaten durchzuführen
- je oberflächlicher die Saat, desto schneller entwickeln sich die Sämlinge
- gerade Wiesenrispengras verträgt keine tiefe Saat
- durch Übersaaten werden auch moderne Sorten eingebracht
- je dichter die Weidenarbe, desto mehr Blätter nehmen die Tier pro Bissen auf

Instrumente zur Ermittlung der Wuchshöhe



Erträge Versuch Bio-Institut 2007-2012

vier unterschiedliche Nutzungssysteme im Vergleich auf einer inneralpinen Dauergrünlandfläche (Nettoerträge)

Parameter	Einheit	Variante					
		4-Schnittnutzung/ Kurzrasenweide	4-Schnittnutzung	Mähweide	Kurzrasenweide		
TM-Ertrag	kg/ha	8.432	9.389	8.732	8.832		
NEL-Ertrag	MJ/ha	52.301	55.176	53.734	56.870		
XP-Ertrag	kg/ha	1.529	1.404	1.629	1.871		

Rohproteinerträge

Pflege und Düngung

- Ausgewachsene Geilstellen müssen abgemäht werden, damit wieder neue Blätter gebildet werden und im Anschluss die Flächengröße anpassen
- Damit ein gut entwickelter Weidebestand langfristig hohe Erträge und Qualitäten liefert, ist auf eine regelmäßige Düngung zu achten
- 15-20 m³/ha Rottemist im Herbst oder 10-15 m³/ha Gülle im Frühling und ein weiteres Mal während der Weidezeit fördern das Graswachstum und halten die Erträge stabil

Potential der Weide im Alpenraum

- Intensive Weidenutzung kann mit einer üblichen Schnittnutzung am Dauergrünland mithalten
- Rohproteinerträge sind in der Weide signifikant am höchsten
- Energiekonzentrationen auf der Weide entsprechen dem Silomais und die Rohproteinkonzentrationen der Körnererbse
- Unabhängig vom Standort stellt die Weide ein flächeneffizientes und tiergerechtes Nutzungssystem im Dauergrünland dar!

Basis für ein wertvolles Grünland

- Aufbau von grasreichen Bestände mit an die Nutzung angepassten Futtergräsern
- im Dauergrünland ist in erster Linie Gras die zu fördernde Kulturpflanze
- Gras ist im Dauergrünland für den Ertrag und die Energie verantwortlich
- eine geschlossene und dichte Narbe lässt sich mit wertvollen Futtergräsern verwirklichen
- Lücken müssen so bald wie möglich und so oft wie nötig mit Übersaaten geschlossen werden!

Danke für die Aufmerksamkeit!

