Weide- und grünlandbasierte Rinderproduktionssysteme

Einleitung

PD Dr. Andreas Steinwidder gjsche Landwirtschaft und Biodiversität der Nutztiere, mfür Landwirtschaft, LF2 Raumberg-Gumpenstein, A-8952 Irdr www.raumberg-gumpenstein.at

HIXODECON FEET DEPOCEMENTO BATTERIOSE

Vertiefende Informationen zu weide- und grünlandbasierten Low-Input Rinderhaltungsstrategien

Einleitung - Rahmenbedingungen

- Energiereserven, Bevölkerungsentwicklung, Stellung des Rindes in der Lebensmittelproduktion, Wiederkäuer Anforderungen
- Produktionssysteme Weltweit, Wirtschaftlichkeit und Markt, Systeme in

Low-Input Strategien und Wert der graslandbasierten Rinderproduktion

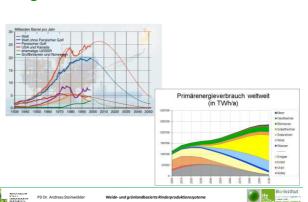
Tier, Produkt, Gesellschaft, Markt

Vertiefende Informationen zu weide- und grünlandbasierten Low-Input Rinderhaltungsstrategien

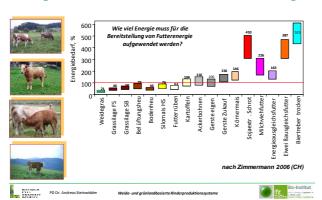
Weidestrategien und –systeme mit Rindern • Weideverhalten von Rindern

- Pflanzenwachstum und Weidesysteme
- Weidestrategien Ergänzungsfütterung zur Weide
- Weideplanung

Grundfutterleistung bei Milchkühen

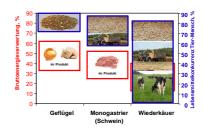

- Leistungsgrenzen
 Strategien zur Erhöhung der Grundfutterleistung Praxisempfehlungen

Grünlandbasierte Rindermast Aspekte zur Fleischqualität

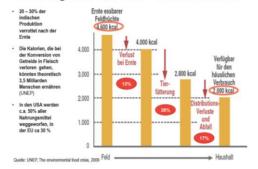

- Ochsen-, Kalbinnen- und Stiermast Mutterkuhhaltung
- Kuhausmast

Energieverbrauch

Energieverbrauch - Futtermittelherstellung


Weltbevölkerung

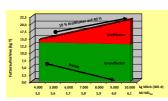
1999: Über 6 Milliarden Menschen 2011: Über 7 Milliarden


Lebensmittelversorgung Kalorienaufnahme/Tag HIXODACON CORNELS DESCRIPTION DESCRIPTION PD Dr. Andreas Str

Energie-Effizienz - typische Gesamtration Lebensmittelanteil - typische Ration

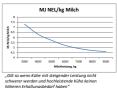
Ernährungs-Effizienz: 44 % = Verlust von 56 %

Futterumwandlungseffizienz - Protein


Konvertierungsrate in verzehrbares		Vorwiegendes Futter	Nahrungs - Konkurrenz zum Mensch
Milcherzeugung	28 - 34 %	Grünland, Maissilage, Getreide	几食會
Eier	20 - 26 %	Getreide, Eiweißfutter (Soja)	11
Masthuhn	19 - 25 %	Getreide, Eiweißfutter, Fett	111
Mastschwein	18 - 24 %	Getreide, Eiweißfutter	111
Maststier	8 - 15 %	Maissilage, Getreide, Grünland	1111

Milchleistungsanstieg und übliche Futterration

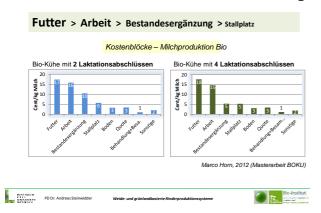
Milch	Grundfutter		Kraftfutter Energie-Kl		F Eiweiß-KF	
kg	kg TM	%	kg TM	kg TM	kg TM	
5.822	4.759	87	710	687	23	
7.676	4.575	75	1555	1395	160	
9.567	4.577	67	2209	1592	617	


Fleckvieh, 3. Laktation ne n. Gruber et al. 2006

PD Dr. Andres

Milchleistungssteigerung "Warum strebte man das in den letzten Jahrzehnten an?"

Milch	Energiebedarf je kg Milch	Energiebedarf Abnahme je 1000 kg Mehrmilch
kg/Jahr	MJ NEL	%
3000	7,3	
4000	6,3	14
5000	5,7	10
6000	5,2	7
7000	5,0	6
8000	4,7	4
9000	4,6	4



- Futteraufwand je kg Milch reduziert sich
- **Fixkostendegression** kann genutzt werden (Stall, Arbeit) Sicherung der **Versorgung** der Bevölkerung mit preiswerten Lebensmitteln
- Flächenunabhängigere Produktion möglich Erhöhung des Betriebseinkommens Vorteile für Abnehmer (Molkereien)
- Export von Zuchtvieh
- Vorgelagerter Bereich verdient mit

"Milchleistungsanstieg - wie erreicht?" Fütterung, Management, Zucht

Kostenblöcke in der Milchviehhaltung

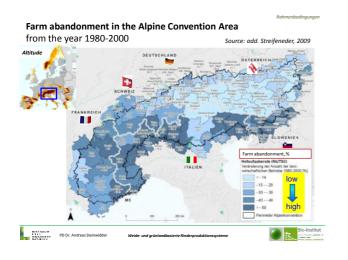
Proteinangebot und Fütterung

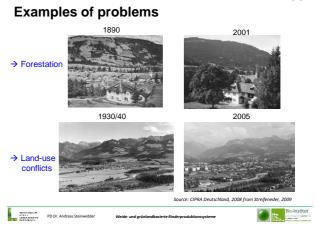
→ In der Fütterung von Wiederkäuern hohe Mengen an hochwertigem Protein zusätzlich zu ergänzen?

Rahmenbedingungen

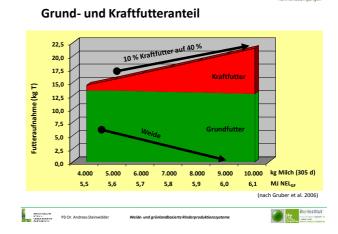
Rahmenbedingungen

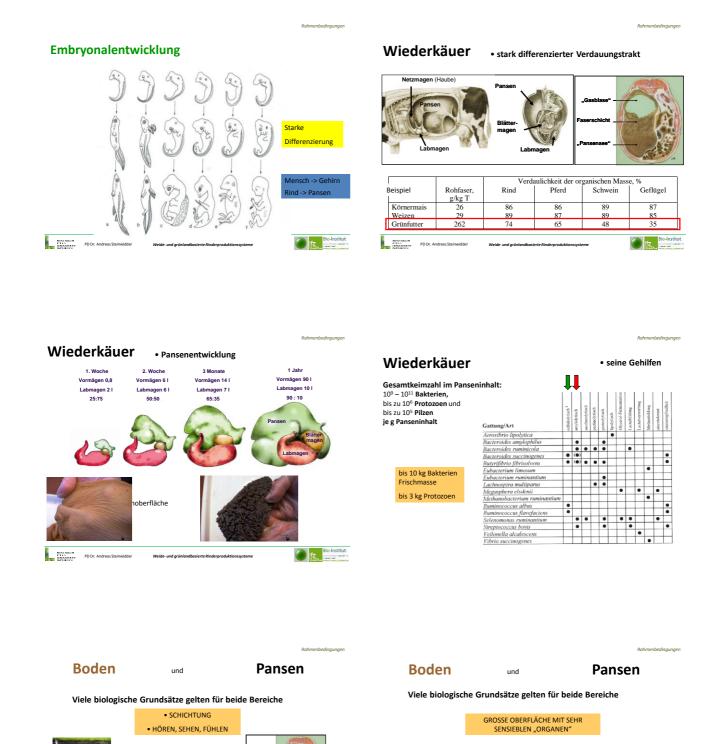
Effiziente Grünlandverwertung?


Grünland in Österreich



Letzten 50 Jahre: Landwirtschaftliche Nutzfläche in Österreich: - 860,000 ha
Berggebiet - 566,000 ha Grünland → Wald




Examples of problems - intensification → animal breeding... Switzerland (+ ~ 3 cm/10 years) • Size and weight of dairy cows increases REREERIÑI • Milk yield per year and cow increases Germany (+ ~ 3 cm/10 years)

More and more problems for (organic) farms, especially in mountainous regions → energy supply, grazing, concentrate input, health, longevity, forage efficiency, ... HING DAGGE PLANS PROPERTY PD Dr. Andreas Stein

HING DECIM FOREST DEPOSITOR

5

Pansen einfach

Intermediate types (IM)

Raufutter Verzehrer

white tailed deer

mountain goat

moule deer

pronghorn

red deer

pronghorn

red deer

fallow

wisent

advanced

fimited

advanced

fimited

pansen

intermediate types (IM)

Raufutter Verzehrer

bighorn, Dall

and stone sheep

moulfon

pronghorn

red deer

fallow

wisent

advanced

fimited

advanced

fimited

pansen

komplex

(e.g. cattle)

Pansen

icattle)

Pa

Kau- und Wiederkautätigkeit: je bis zu 8 Stunden je ca. 25.000 Kau- bzw. Wiederkauschläge 10 – 14 l Speichel/kg T pro Tag ca. 1,1 – 3,2 kg NaHCO₃/Tag ca. 0,4 – 1,1 kg Na₂HPO₄/Tag pH-Wert Speichel 8,5 – 8,8

Wiederkauen

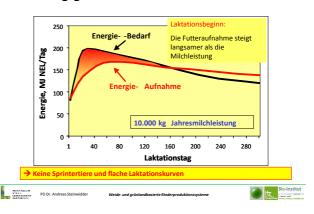
HIXETERIA HIXETERIA DESCRIPTION BOTHLESSON

PD Dr. Andreas Steinwidder Weide- und grünlandbasierte Rinderproduktionssysteme

nach Kaufmann et al. 1980

6

Leistungsbegrenzende Faktoren - Milchrind

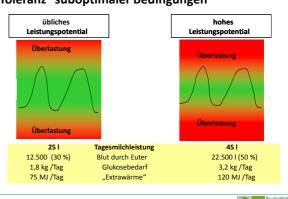

Flachowsky et al. 2000

- Energie- und Nährstoffaufnahme bei ausreichender Strukturversorgung
- Abbau und Synthesevermögen der Mikroorganismen in den Vormägen
- Mobilisation von Körperreserven und Syntheseleistung der Leber und der Milchdrüsen

PD Dr. Andreas Steinwidder

Leistungsgrenzen (Energieversorgung)

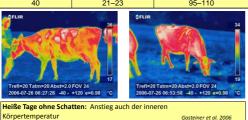
Milchleistung und Futteraufnahme


Je 1 kg Milchmehrleistung steigt die Futteraufnahme nur um 0,17 kg T/Tag an (0,1-0,2)

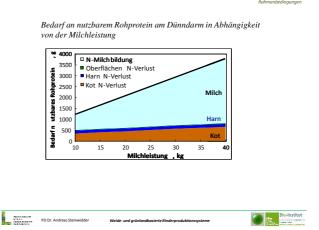
ightarrow bei **steigender Milchleistung** nimmt, unter Konstanz aller anderen Faktoren, das Energiedefizit daher zu

Milchleistung, kg	15	25	35
Futteraufnahme, kg T	15,5	17,2	18,9
Energieaufnahme, MJ NEL	99,2	110	121
Energieversorgung, MJ NEL/Tag	13	-8	-29

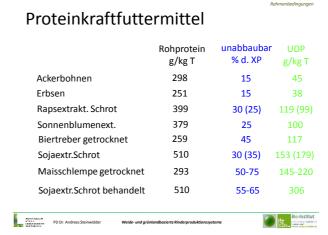
*Futterqualität: 6.4 MJ NEL/kg T 650 kg Kuh, 3,2 MJ NEL/kg Milch PD Dr. Andreas S

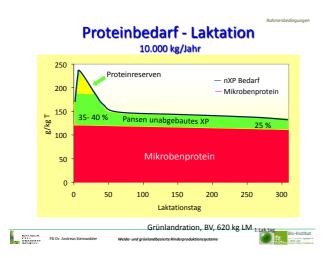

Toleranz "suboptimaler Bedingungen"

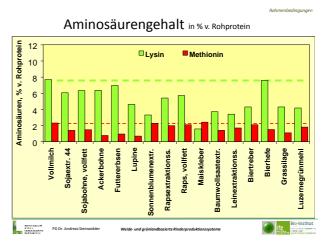
PD Dr. Andreas Ste


Weidehaltung - Wärmeproduktion u. Hitzestress

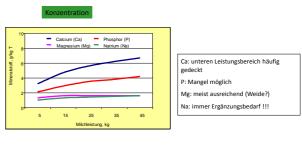
10 11-13 45-50 14–17 20 65-70 21-23 95-110



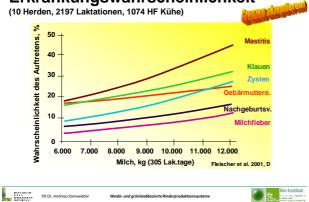

Energieversorgung Modellrechnung für Bio Grünland "gut" Grünland "schlecht" 8000 kg Steinwidder et al. 2001




nXP-Bedarf und Deckung UDP Nutzbares Protein (g) Mikrobenprotein Milchleistung (kg ECM) HIXODOUM PERSON DARKGARTO BOTRODICH PD Dr. Andreas S



Modellrechnung für Bio nXP-Versorgung mit Proteinkraftfutter



Mineralstoffversorgung

Erkrankungswahrscheinlichkeit (10 Herden, 2197 Laktationen, 1074 HF Kühe)

Milchleistung und Fitness

HING DATES

Korrel. Milchleistung 1.Lak. 305 T.	genetisch	phenotypisch		
Tage bis 1. Besamung	0,44	0,15		
Zwischenkalbezeit	0,52	0,18		
Konzeption bei 1. Besamung	- 0,42	- 0,07		
	'	VEERKAMP et a. 2001 177.220 HF-Kühen		
Im Durchschnitt besteht ein negativer Zusammenhang zwischen Leistung und Fitness				

Achtung! AK-Betriebe 2005 u. 2006 Große Streuungen in der Praxis (Vermischung von Effekten) → Niedrige Leistung bedeutet nicht automatisch gesunde Kühe, längere Nutzungsdauer etc. Ifz Bio-Institut HIXODEUM CEPS DIMENSION DIMENSION PD Dr. Andreas Str

9