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Abstract 

As many studies show, spectral signatures provide detailed information on plant functional traits. Forage 

yield and quality are of great importance in grassland management. Therefore, we derived widely used 

vegetation indices from hyperspectral reflectance data and evaluated their potential for estimating yield 

and quality on grassland plots with different fertilization. The spectral reflectance measurements were 

carried out shortly before each of three harvests per year with a field spectrometer on a long-term 

experiment with 24 organic and mineral fertilization treatments with a four-fold repetition. Starting with a 

null model, the best predictors for dry matter yield (DM, kg ha-1) and crude protein content (CP, g kg-1) 

estimation were determined from selected vegetation, chlorophyll and water indices and a leaf area 

index using an exhaustive search algorithm on a training data set. The estimation of DM with an index 

combination on an independent test data set yielded R² = 0.76, the CP was estimated with R² = 0.69. 

Additionally, we compared the index-based results with neural net analyses using Sentinel-2 bands 

calculated with spectral response functions (S2-SRF) as predictors. With a variety of observations, we 

have shown that simple indices can differentiate forage yield and quality on grasslands evolved under 

different levels of nutritional supply. 
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Introduction 

The great diversity of land use types and management intensities in grassland with very different plant 

communities is a big challenge for empirical and dynamic grassland models. As Reinermann et al. 

(2020) show in their overview, remote sensing with multi- and hyperspectral reflectance data offers a 

wide range of possibilities to get traits of plant stands, which represent the effects of site and 

management factors. Sensors on several platforms ranging from terrestrial systems like field 

spectrometers to UAVs and satellites are used for this purpose, supporting different spatial scales from 

field to global applications. 

In this study, the potential of remote sensing vegetation indices was analysed by combining and verifying 

them for yield and quality estimates of highly diverse grasslands. These models were compared with an 

approach using the S2-SRF transformed Sentinel-2 bands (Klingler et al., 2020) to show differences in 

using indices and original spectral information. Based on Sentinel-2 bands, models can be used in 

image-based applications on a large spatial scale. 

Materials and methods 

The evaluation of vegetation indices for estimating grassland yield and quality is based on hyperspectral 

data collected by the HandySpec Field VIS/NIR 1.7 (tec5) field spectrometer with a range from 400 to 

1690 nm. The spectral measurements were taken on a long-term field fertilization experiment, 

established in 1946 in Admont (Styria, Austria) three times a year, immediately before each cut between 

2015 and 2019. 

The field experiment consists of 96 plots and shows a wide variability of well-established plant stands 

that have developed very differently over more than 70 years due to 24 continuous fertilization 

treatments, each repeated four times. Besides an unfertilized treatment, the other plots are supplied 

with mineral (N, P, K) and organic fertilizers (solid and liquid manure) in different combinations and 

levels. 

From the obtained spectral signatures we calculated commonly used vegetation indices (NDVI, RVI, 

SAVI, EVI, RDVI, TVI, MTVI1 MTVI2, CARI, LCI, GI, PRI, REIP1, REIP2, LWVI1, LWVI2, NDNI, TGI 

(definitions see at indexdatabase.de)) and the Leaf Area Index (LAI). As described by Klingler et al. 

https://www.indexdatabase.de/
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(2020), we converted hyperspectral data into the corresponding Sentinel-2 bands using the S2-SRF 

(ESA, 2018) and we applied algorithms proposed by Baret et al. (2010) in combination with radiative 

transfer models for LAI calculation. We selected the indices with the highest prediction power for DM 

and CP using an exhaustive search algorithm on a training data set in R. Furthermore, we compared 

linear models (LM) based on the selected indices with an Averaged Neural Network (ANN) from the R 

package caret (Kuhn, 2008) were the S2-SRF bands B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12 

were used as predictors. We split the data for both models in two different ways: i) a random split into 

2/3 for training and 1/3 for the test, and ii) a split by years with 2015, 2016 and 2017 as a training set 

and 2018 and 2019 as a test set for the DM model and 2015 and 2016 as a training set and 2017 as a 

test set for the CP model (CP analyses were only available for three years). We optimized the model 

parameters using the R function "trainControl" for the training data set and evaluated the models by 

calculating R² and RMSE on the independent test data set. 

Results and discussion 

Among the calculated indices and all their combinations, the Leaf Water Vegetation Index 2 (LWVI2) 

(Galvão et al., 2005), a variant of the Normalised Difference Water Index (NDWI) in combination with 

the Normalised Difference Nitrogen Index (NDNI) (Serrano et al., 2002) provided the best estimation 

results for grassland yield. The best correlation between modelled and observed CP as a quality 

parameter was given in the combination of LWVI2 and LAI. Both results are shown in Figure 1. 

 

Figure 1. Estimation of DM and CP by a linear model using a random test dataset with LWVI2 & NDNI 

for DM and LWVI2 & LAI for CP. 

The results of the ANN model with S2-SRF data are shown in Table 1 and can be compared there with 

the index-based results. The R² as well as the RMSE of both modelling approaches, are in a comparable 

range. 

Table 1. Comparison of R² and RMSE results for randomly and yearly split test datasets, from a linear 

model (LM) with combination of two different indices and an Averaged Neural Network (ANN) using S2-

SRF bands. 

 Random split Split by years 

 LM (2 Indices) ANN (S2-SRF) LM (2 Indices) ANN (S2-SRF) 

 n R² RMSE R² RMSE R² RMSE R² RMSE 

Dry Matter kg ha-1 1438 0.76* 552* 0.79 511 0.65 598 0.60 645 

Crude Protein g kg-1 360 0.69* 12* 0.74 10 0.71 13 0.72 11 

* Results are plotted in Figure 1 
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By combining two indices, we are already using those parts of the electromagnetic spectrum that 

contribute most to the estimate. Therefore, extending the model to include all S2-SRF bands does not 

add much value. However, the direct use of Sentinel-2 bands supports a large-scale application. 

To verify the model results, a data split is used in two ways. While a random split does not distinguish 

between replicates or survey years, a split by years applies the test to independent data from an entire 

year. This demonstrates the prediction power of each model for all three growths of an independent 

year. 

Conclusions 

The combination of remote sensing vegetation indices supports considerable estimates of yield and 

forage quality. We found that directly used multispectral data in neural networks achieve similar 

prediction accuracy as indices. For further development of the models, other predictors should be added, 

and the ground truth database needs to be extended to other sites and climate regions. 
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