

Emissionsminderung im Stallbau – mehr Tierwohl und verbesserte Tiergesundheit?

Abteilung Tierhaltungssysteme, Technik und Emissionen

Aktuelle Diskussionen – Überlegungen zu Stallbau

- Gesetzliche Vorgaben EU NEC Richtlinie zur Minderung NH3 Emissionen - Nationale Maßnahmen?
- Förderperiode LE 2021 2027
- Antibiotikadiskussion
- Vollspaltendiskussion
- Schwanz kupieren
- Tierwohl Tierschutz
- Baurecht Raumordnung
- Soja Fütterungstrategie Rationen?
- Konsumentenverhalten
- Klimawandel kühlere Stallungen!

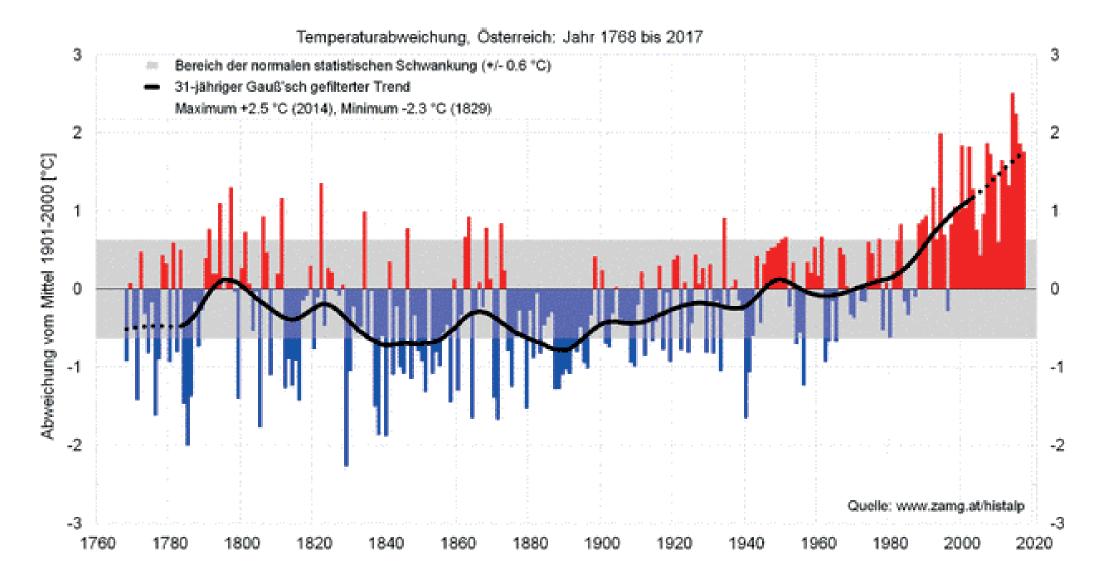
- Minderung >90% end of pipe!
- Abluftreinigung wird niemals eine Generallösung sein sondern nur in Ausnahmefällen Anwendung finden!

Emissionsminderung – wo ansetzen?

Schadgas Ammoniak - NH3

- Experimentelle Untersuchungen haben gezeigt, dass die Infektabwehr durch Ammoniakkonzentrationen von >50ppm (0,005 Vol.%) signifikant vermindert wird, wobei eine gestörte Zilienfunktion (staubpartikelreinigende Funktion < 5μm) vermehrt zu Atemwegserkrankungen durch Bakterien, Viren und Parasiten, führt.
- Bereits ab einem Ammoniakgehalt von 20ppm (0,002 Vol.%) werden klinische Symptome wie Reizhusten und gerötete Schleimhäute (Lidbindehäute, Nase) festgestellt. Ammoniak stellt für den Organismus in entsprechend hohen Konzentrationen ein starkes Zell- bzw. Atemgift dar.

Quelle: Prof. M. Schuh 2010


NH3 - Hauptquellen nach 3 Nutzungsrichtungen in % vom Gesamtaufkommen

	Stall und Laufhof		in% von - Gesamtauf-	Wirtschaftsdünger Lagerung		in% von Gesamtauf-	Wirtschaftsdünger Ausbringung		in% von Gesamtauf
	in%	in t NH3	kommen	in%	in t NH3	kommen	in%	in t NH3	kommen
Nutztiere gesamt		20400	33,3		7900	12,9		26900	44
Davon									
Rinder	56	11.424	18,7	67	5293	8,7	72	19368	31,7
Schweine	26	5.304	8,7	12	948	1,5	16	4304	7,0
Geflügel	14	2.856	4,7	9	711	1,2	6	1614	2,6
Sonstige	4	816	1,3	12	948	1,5	6	1614	2,6
Summe	100	20.400	33,3	100	7900	12,9	100	26900	44,0

Nahezu 60% aus der Rinderhaltung!!

Klimawandel und die Konsequenzen

Zeitraum 1760 bis 2017 in °C

Ammoniak - Minderungspotenziale

Tab. 4: Beispiele für Reduktionspotenziale lüftungstechnischer Maßnahmen zur NH₃-Emissionsminderung der Mastschweinehaltung

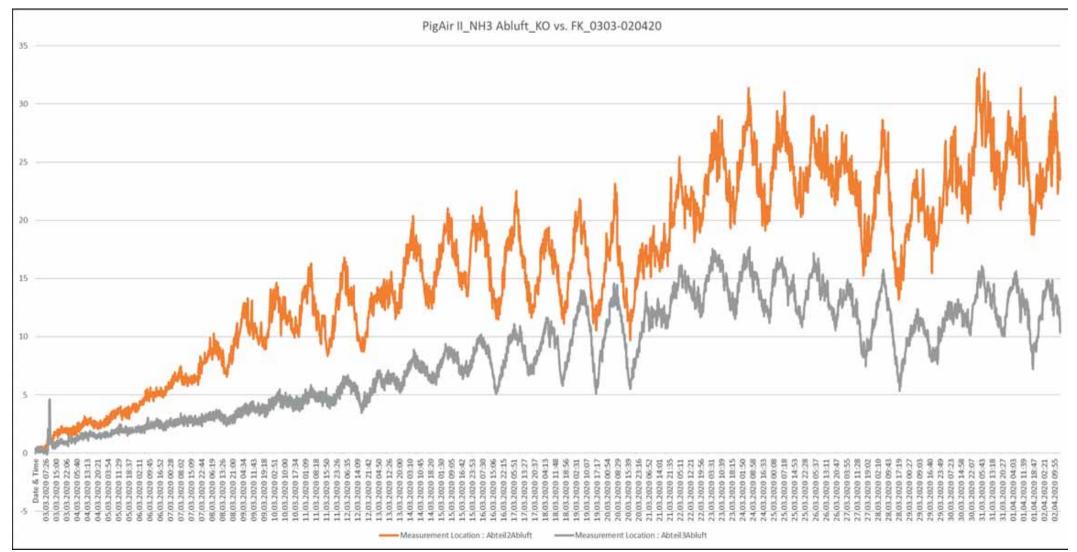
Maßnahme	Reduktions- potenzial (Anhaltswerte)	Autor	
Lüftungssteuerung, Temperatur, Zuluftkühlung, (Erdwärmetauscher)	10 bis 15 %	in VAN DEN WEGHE (2001)	
Verringerung des Luftvolumenstromes Verringerung der Temperatur	k.A.	Nı (1998)	
Optimierte Lüftungssteuerung mit dem Ziel der Kombination geringst möglicher Luftrate, Temperatur und Gaskonzentration (Simulationsergebnis)	ca. 10 %	BERCKMANS et al. (1994)	
Senkung der Innenraumtemperatur um etwa 5 °C mit dadurch ebenfalls entsprechender indirekter Absenkung der Flüssigmisttemperatur	ca. 50 %	Rom & Dahl (2002)	
Indirekte Absenkung der Flüssigmisttemperatur durch angepasste Luftführung und Lüftungssteuerung	ca. 10 % pro 1 °C geringere Flüssigmist- temperatur	AARNINK (1997)	
Optimierung der Lüftung um geringst mögliche Innenraumtemperaturen zu erhalten; geringe Zulufttemperaturen im Sommer; gleichmäßige und kontrollierte Luftverteilung; Vermeidung von Luftbewegungen über der Flüssigmistoberfläche	k.A.	HARTUNG, J. & PHILIPPS (1994)	
Abluftführung: Oberflurabsaugung i. Vgl. zu Unterflurabsaugung	ca. 15 %	STEFFENS et al. (1996)	
Impulsarme Zuluftführung	ca. 10 bis 30 %	GUSTAFSSON (1987)	
Futterganglüftung mit Oberflurabsaugung i. Vgl. zu Deckenstrahllüftung mit Oberflurabsaugung	10 bis 20 %	Кеск (1997)	
Futterganglüftung mit Unterflurabsaugung* i. Vgl. zu Deckenstrahllüftung mit Oberflurabsaugung (*Abstand zwischen Ansaugöffnungen und Flüssigmist war > 30 cm; s.u.)	16 bis 23 %	Кеск (1997)	
Zuluftlochplatten mit Unterflurabsaugung* i. Vgl. zu Deckenstrahllüftung mit Oberflurabsaugung (*Abstand zwischen Ansaugöffnungen und Flüssigmist war > 30 cm; s.u.)	ca. 12 %	Кеск (1997)	

Höhere
Temperaturen =
mehr Emissionen
Plus 1 Grad = plus
10% an Ammoniak

GALLMANN, 2003

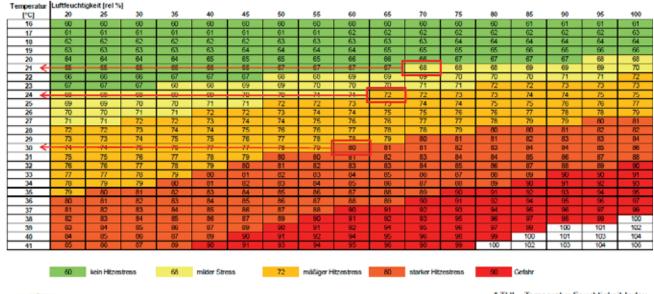
N-reduzierte Fütterung – Kat. 2, Schwein, Geflügel

- Bei Schwein und Geflügel lässt sich für jedes Prozent an Minderung des Proteins, eine 10%ige Reduzierung von Stickstoff und Ammoniak annehmen! (CANH et al. 1998, EC 2003) – Kosten Aminosäuren zu berücksichtigen
- Geht man davon aus, dass Protein oder Eiweiß (z.B. Soja) als kostenintensive Bestandteile der Ration zu bezeichnen sind, ergäbe sich daraus ein Doppelnutzen!
- Im Gegensatz zu Deutschland gibt aber der Handel oder besser der Konsument in Österreich andere Fleischqualitäten im Hinblick auf den Magerfleischanteil vor.
- Inwieweit diese Anforderungen mit einer entsprechenden Eiweißminderung (bis 13%) konform gehen ist zu prüfen!
- Aktuelle Publikation in TopAgrar Ersparnis minus €2,50/MS
 - Abschlag Fleischqualität? Untersuchungen unerlässlich!


Verbrauch, Verwertung und Verlust von Eiweiß bei der Erzeugung eines Schweins von 108 kg Lebendmasse

67% der Komponente verlassen das Schwein wieder!? 1% Eiweißreduktion = 10% Emissionsreduktion!

Fütterung: 16 zu 3 Phasen


- Wöchentliche Anpassung
- Ammoniakreduktion 50%

Bautechnische Maßnahmen in Stallungen

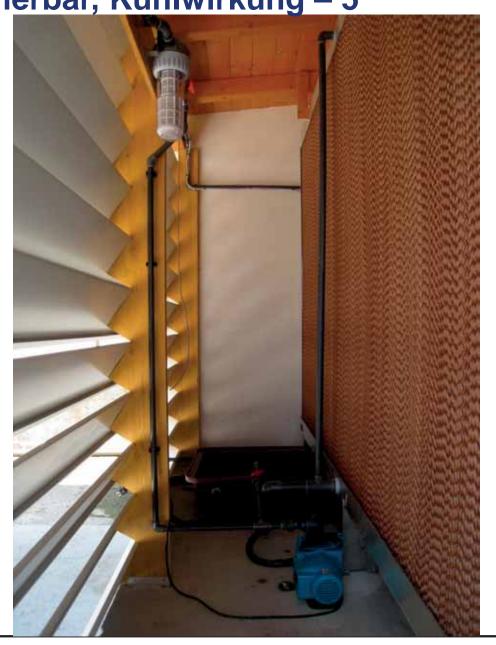
- Maßnahmen zur Kühlung im Tierbereich Kat. 1
- Unterscheidung Bestand Neubau
- Relevant für alle Nutzungsrichtungen
- Techniken vorhanden Luftrate minus 40% möglich!
- Vorsicht mit Einbringung von zusätzlicher Feuchte THI beachten!

THI- Diagramm:
Hitzestress in Abhängigkeit von Temperatur und rel. Luftfeuchtigkeit

THI = (0,8 * Temperatur) + [(rel. Luftfeuchte / 100) * (Temperatur-14,4)] + 46,

* THI – Temperatur-Feuchtigkeit-Index berechnet nach Thom 1959

Technische Maßnahmen


Bauhülle: Unterflur – Zuluftsysteme; Quelle DLG

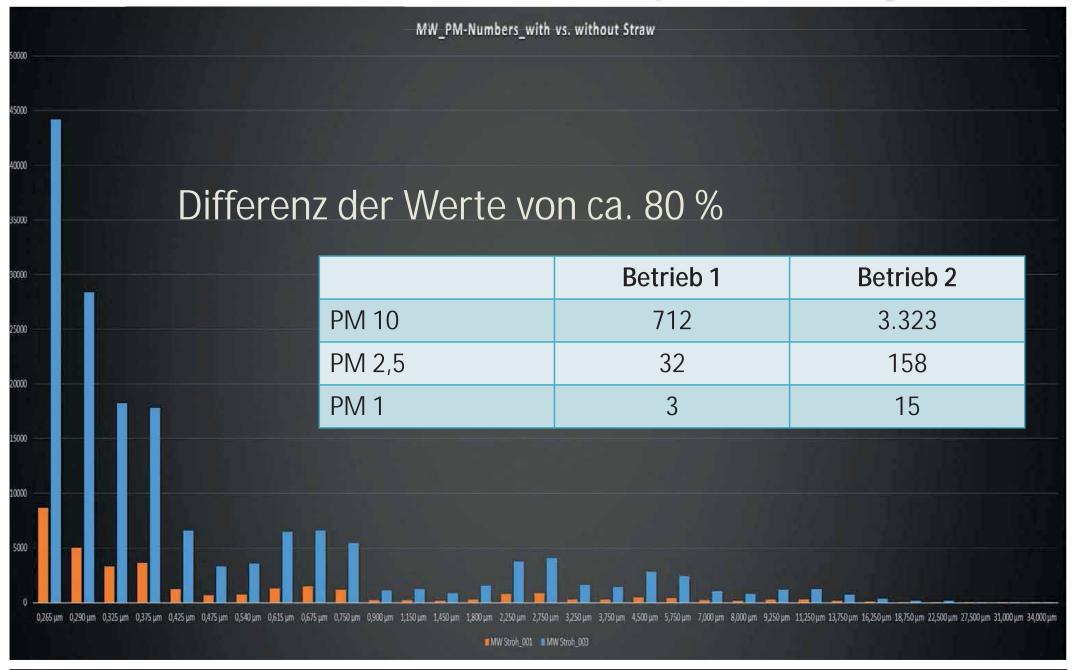
Mittlere Lufteintrittstemperatur (°C) an den Ansaugschächten	Temperaturdifferenz (K) zwischen Lufteintrittstemperatur außen und Einströmtemperatur in den Zentral- gang im Winter / Frühjahr	Temperaturdifferenz (K) zwischen Lufteintrittstemperatur außen und Einströmtemperatur in den Zentral- gang im Sommer
-14,5	+ 15,9	
-10	+ 11,8	
-5	+ 8,0	
0	+ 3,8	
3	+ 2,0	
10	+ 3,6	
15	+ 1,0	+ 2,2
16	+ 0,1	+ 2,0
17	- 0,7	0,0
18	- 1,3	+ 0,1
19	- 1,1	- 0,3
20	- 2,8	-1,4
25	- 4,1	-3,9
28		- 5,6
29		- 7,2
30		- 7.6
31		- 8,5

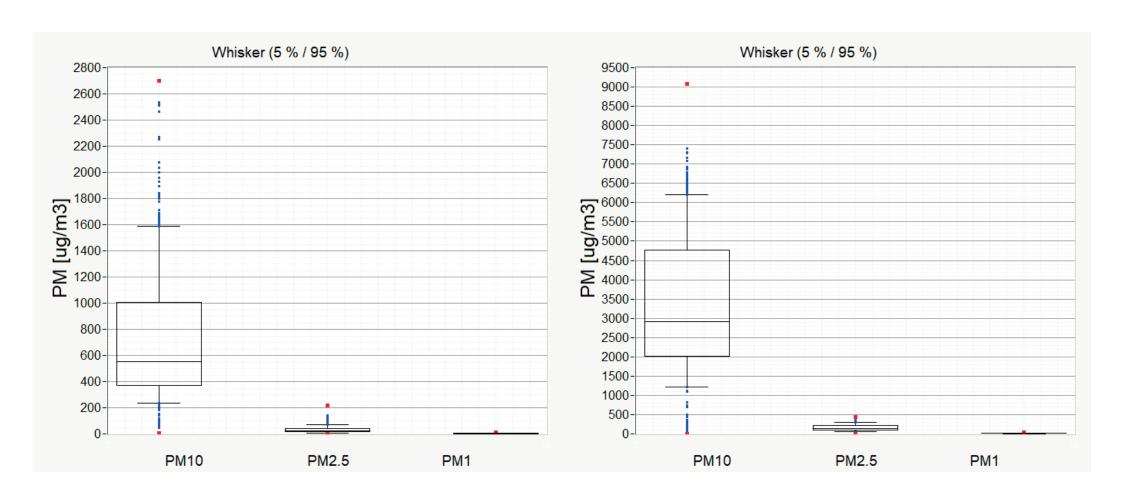
Technische Maßnahmen

Cool Pad: Alt- und Neubau integrierbar, Kühlwirkung – 5°

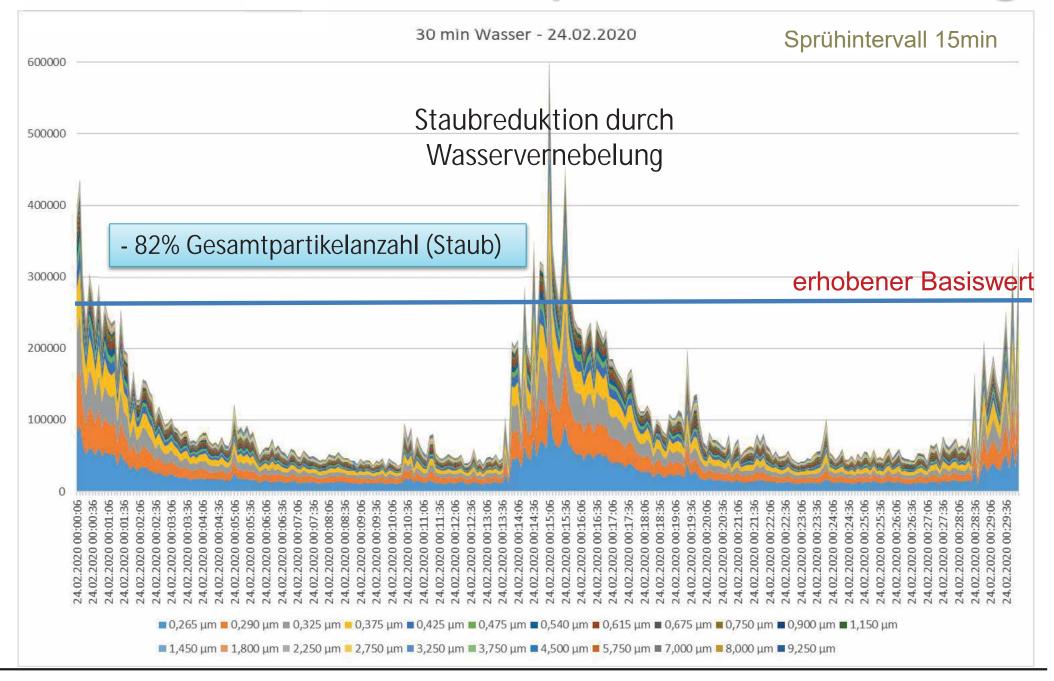
Bautechnische Maßnahmen in Stallungen

- Einrichtung von Funktionsbereichen im Schweinestall Kat. 2
- Liege- Ruhebereich (Pig-port, Tieflauf oder Tierwohlkonzept)
- Aktivitätsbereich Fütterung
- Kotbereich Tränken
- Reduzierung der emittierenden Oberflächen
- Im Außenbereich verringerte Jahresdurchschnittstemperatur
- Trennung Kot-Harn möglich?
- Enzymatische Umsetzung in NH3 unterbunden
- Emissionsminderung für Geruch bei 30 bis 80% nachgewiesen!
- Ammoniakminderung wird in der selben Bandbreite erwartet
- Stark reduzierter Energieaufwand im laufenden Betrieb gegenüber Warmstallungen




Feinstaub – respiratorische Probleme

Feinstaub – Reduktionspotenzial Zyklon


Feinstaub - Reduktionspotenzial Zyklon

Feinstaub – Aerosolvernebelung Zweistoffdüse

Feinstaub – Reduktionspotenzial Vernebelung

www.raumberg-gumpenstein.at