

Univ.Doz. Dr. Erich M. Pötsch

Abteilung Grünlandmanagement und Kulturlandschaft des LFZ Raumberg-Gumpenstein

Zur Wirksamkeit von Wirtschaftsdüngern im Grünland

Bedeutung von Wirtschaftsdüngern für das Grünland

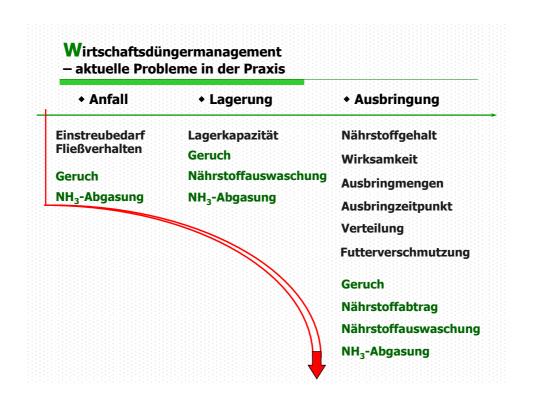
- **▶** wertvolles betriebseigenes Produktionsmittel
 - Hauptquelle für die Nährstoffversorgung von Wiesen & Weiden
 - zentrales Element der bäuerlichen Kreislaufwirtschaft
 - wichtiger Faktor in low input Systemen

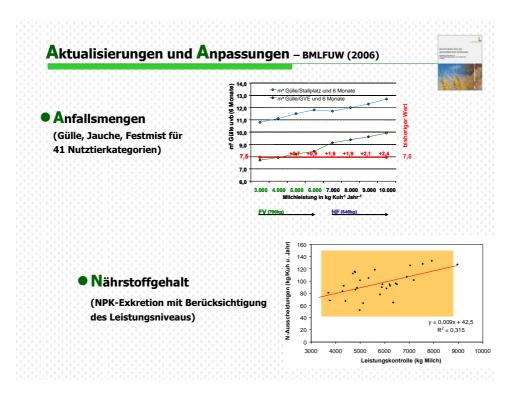
Einsatz von mineralischem Stickstoff in der österreichischen Landwirtschaft (Quelle: Grüne Berichte bis 2007)

Summe Reinnährstoffe (N,P,K) von 1991 (371 kt) bis 2006 (179 kt): - 52%

Bedeutung von Wirtschaftsdüngern für das Grünland

- ▶ wertvolles betriebseigenes Produktionsmittel
 - Hauptquelle für die Nährstoffversorgung von Wiesen & Weiden
 - zentrales Element der bäuerlichen Kreislaufwirtschaft
 - wichtiger Faktor in low input Systemen
- ► sach- und umweltgerechter Einsatz von Wirtschaftsdüngern erfordert solides Fachwissen und Kenntnis über deren:
 - Anfallsmengen
 - Nährstoffgehalt
 - Wirksamkeit





Wirksamkeit des Wirtschaftsdüngerstickstoffs – BMLFUW (2006)

1) Nbrutto (= schwanzfallender Stickstoff) minus unvermeidbare N-Verluste (15-45%) im Stall und am Lager = Nex Lager

Aktionsprogramm - Nitratrichtlinie ✓

- 2) Nex Lager minus Ausbringungsverluste (9-13%) = Nfeldfallend

 Wasserrechtsgesetz ✓
- 3) Nfeldfallend x Jahreswirksamkeit (10-100%) = Npflanzenwirksam

Richtlinien f.d. sachgerechte Düngung ✓

Wirksamkeit des Wirtschaftsdüngerstickstoffs – BMLFUW (2006)

Kalkulationsbeispiel

(Milchkuh, Jahresmilchleistung: 6.000 kg, WD-Basis: Gülle)

Bezeichnung	Berechnung kg N/Jahr		relevant für:	
N-Anfall brutto (schwanzfallend)		96,5		
N-Anfall nach Abzug der Stall- und Lagerverluste (=15%)	96,5 x 0,85 =	82,0	Obergrenze gemäß Aktionsprogramm (EU-Nitratrichtlinie)	
N-Anfall nach Abzug der Ausbringungsverluste (=13%)	82,0 x 0,87 =	71,3	Bewilligungsgrenze gemäß WRG	
Pflanzenwirksamer N- Anfall im Jahr der Anwendung (=70%)	71,3 x 0,70 =	49,9	Umsetzung der Düngeempfehlung (Richtlinie f. SGD)	

Wirkungsgefüge/Spannungsfeld Aktionsprogramm – Wasserrecht – Sachgerechte Düngun

Problematik:

- (zu) hohe Kuhzahlen resp. hochleistende Tiere in Ungunstlagen
- begrenztes (niedriges/mittleres) Leistungspotential des Grünlandes
- Kompensation durch betriebsexternes (Kraft)futter
- Anhebung des Nährstoffbudgets am Betrieb
- Nährstoffüberschuss
- Disharmonie zwischen Nährstoffanfall und Nährstoffempfehlung

"Lösung":

- kalkulatorische Reduktion des N-Anfalls!

Offene Fragen:

- wo bleibt der in Abzug gebrachte Stickstoff?
- was ist mit den mittel- und langfristigen Nachwirkungen?
- wie hoch ist die tatsächliche Wirksamkeit des Wirtschaftsdüngers (-N)?

Wirtschaftsdüngerversuche – LFZ Raumberg-Gumpenstein

• 3 Versuchsstandorte

Standort	Höhenlage in m	Ø Jahres- temperatur	Ø Jahresnieder- schlag
Kobenz	627	8,2 °C	856 mm
Winklhof	490	8,2 °C	1400 mm
Gumpenstein	710	6,8 °C	1010 mm

• 7 Versuchsjahre: Anlage 2000, Hauptversuchsjahre 2001-2006

• 2 Hauptfaktoren: Nutzung (2): 3-Schnitt 4-Schnitt
Düngung (16): 9 Varianten 7 Varianten

• Versuchsanlage: randomisierte Blockanlage mit vier Wiederholungen

Wirtschaftsdüngerversuche – LFZ Raumberg-Gumpenstein

• Düngungsvarianten

Intensitätsstufen/Varianten	Anzahl Schnitte/	Ø Nährstoffzufuhr (kg ha ⁻¹ Jahr ⁻¹)			
	Jahr	N _{ex Lager}	P	K	
NPK mineralisch	3	92,2	20,2	91,4	
Gülle 1:0,25	3	92,8	13,4	84,0	
Gülle 1:1	3	92,8	13,4	84,0	
Rottemist + Jauche	3	103,8	28,5	176,3	
Mistkompost + Jauche	3	118,8	31,6	185,8	
NPK mineralisch	4	234,3	40,3	182,9	
Gülle 1:0,25 + 50 kg N	4	236,7	26,1	162,4	
Gülle 1:1 + 50 kg N	4	236,5	26,1	162,4	
Rottemist + Jauche + 50 kg N	4	239,0	49,4	317,9	
Mistkompost + Jauche + 50 kg N	4	256,5	54,1	310,9	

- an allen Standorten wurden Wirtschaftsdünger derselben Herkunft eingesetzt
- die Wirtschaftsdünger wurden vor der Ausbringung analysiert \Rightarrow Nex Lager
- · N-Niveau im 4-Schnittblock bedürfte einer Ausnahmegenehmigung gem. Aktionsprogramm
- NPK mineralisch (4-Schnittblock) bedürfte einer wasserrechtlichen Genehmigung

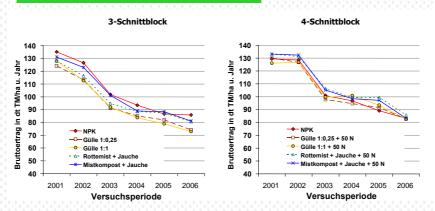
Wirtschaftsdüngerversuche – LFZ Raumberg-Gumpenstein

Pflanzenbauliche Erhebungen: FM-Ertrag, TM-Ertrag, Rohnährstoffgehalt

(Weender), VOM (Tilley & Terry), Energiekonzentration, Energieertrag, Nährstoffbilanzen (Flächenbilanz),

N-Effizienz (Ertrag)

- Botanische Erhebungen: Pflanzenbestandsaufnahmen, Artengruppenbonituren
- Bodenuntersuchungen: bodenphysikalische und bodenchemische Parameter

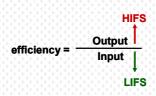


Ergebnisse (I) – Ertragsdynamik (Ø aller Standorte)

- Signifikanter Einfluss von Standort, Jahr und Düngungsvariante sowie Standort x Jahr auf die Variable "TM-Ertrag"
- hohes Ertragsausgangsniveau in beiden Versuchsblöcken auf allen Standorten
- extremer Einfluss der beiden Trockenjahre 2002 und 2003 mit starken Standortsunterschieden (Kobenz > Gumpenstein > Winklhof)
- Düngungsvarianten reagieren gleichgerichtet, allerdings auf unterschiedlichem Niveau

Ergebnisse (II) – Ertragsniveau (Ø 2001-2006)

Intensitätsstufen/Varianten	Anzahl Schnitte/ Jahr	Kobenz dt TM/ha	Winklhof dt TM/ha	Gumpen- stein dt TM/ha
NPK mineralisch	3	106,8a	113,9ª	94,0ª
Gülle 1:0,25	3 3 3 3	91,6b	104,7b	88,7a
Gülle 1:1	3	91,3b	104,8b	88,0a
Rottemist + Jauche	3	92,8ab	109,9ab	95,2ª
Mistkompost + Jauche	3333	97,4ab	110,6ab	98,7ª
NPK mineralisch	4	99,9ª	114,9ª	99,2ª
Gülle 1:0,25 + 50 kg N	4	96,1ª	117,7ª	97,8a
Gülle 1:1 + 50 kg N	4	97,0ª	117,1ª	100,8a
Rottemist + Jauche + 50 kg N	4	102,1ª	120,3ª	105,2ª
Mistkompost + Jauche + 50 kg N	4	98,7ª	117,6ª	105,5ª


- Signifikante Ertragsunterschiede nur im 3-Schnittblock (Kobenz und Winklhof)
- Keine signifikanten Ertragsunterschiede im 4-Schnittblock
- relativ geringe Ertragsdifferenzen zwischen 3-Schnitt- und 4-Schnittsystem trotz mehr als zweifacher N-Zufuhr ⇒ limitierendes Standortspotential
- insgesamt rel. geringe Differenzen zwischen WD-Varianten und jeweils korrespondierender NPK-Variante

Ergebnisse (III) – Qualitätsertrag (Ø 2001-2003)

Intensitätsstufen/Varianten	Anzahl Schnitte/ Jahr	Kobenz GJ NEL/ha	Winklhof GJ NEL/ha	Gumpensteir GJ NEL/ha
NPK mineralisch	3	64,02ª	52,76a	53,47a
Gülle 1:0,25	44443444	56,82a	47,94b	49,96a
Gülle 1:1	3	55,59a	52,28a	52,72a
Rottemist + Jauche	3 3 3	55,64ª	51,83ª	52,83ª
Mistkompost + Jauche	3	58,23a	52,06ª	52,06a
NPK mineralisch	4	58,47a	64,70°	64,37ª
Gülle 1:0,25 + 50 kg N	4	62,02a	65,78a	62,50a
Gülle 1:1 + 50 kg N	4	58,59ª	67,11ª	63,25ª
Rottemist + Jauche + 50 kg N	4	61,52a	66,20a	66,89ª
Mistkompost + Jauche + 50 kg N	4	63,48a	67,54ª	68,30a

- Ein einziger signifikanter Unterschied innerhalb der einzelnen Versuchsblöcke und Standorte
- Höchster Energieertrag in den 3-Schnittblöcken durch NPK
- Höchster Energieertrag in den 4-Schnittblöcken durch WD-Varianten (Ausnahme Güllevarianten in Gumpenstein)
- Signifikanter Effekt der Nutzungsfrequenz auf die Variable "Energieertrag", v.a. durch deutlich höhere Energiekonzentrationen im Futter

Ergebnisse (IV) – WD-Effizienz

- N-Effizienz
- Mineraldüngergleichwert
- Mineraldüngeräquivalent
- N-Ausnutzung
- N-Wirkungsgrad
- Wirkungsgrad von WD
- Systemeffizienz

Abbildung der Leistungsfähigkeit der Wirtschaftsdünger!

- TM-Ertrag je zugeführter N-Einheit
- N-Basis: Nex Lager
- N-Effizienz der NPK-Variante = 100
- Ermittlung des relativen Bezuges der WD-Varianten
- Gewichtung der Einzeldaten und Ermittlung einer Ø N-Effizienz nach Nutzungsfrequenz und Standort
- <u>Unterstellte Wirksamkeit:</u> ausgehend von Nex Lager

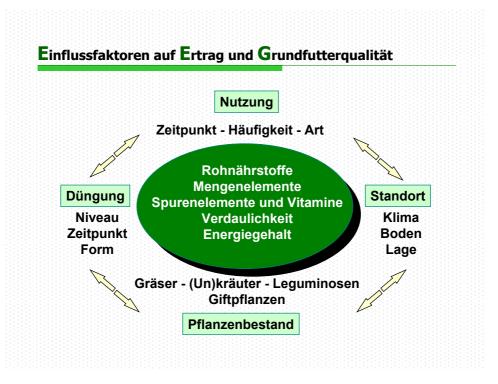
Ergebnisse (V) – WD-Effizienz (Ø 2001 – 2006)

Intensitätsstufen/Varianten	Anzahl Schnitte/ Jahr	Kobenz %	Winklhof %	Gumpen- stein %	unterstellte Wirksamkeit %
NPK mineralisch	3	100	100	100	100
Gülle 1:0,25	3	85	91	94	61
Gülle 1:1	3	83	89	90	61
Rottemist + Jauche	3	75	87	89	38
Mistkompost + Jauche	3	73	79	86	21
NPK mineralisch	4	100	100	100	100
Gülle 1:0,25 + 50 kg N	4	96	102	98	69
Gülle 1:1 + 50 kg N	4	97	101	100	69
Rottemist + Jauche + 50 kg N	4	100	102	103	51
Mistkompost + Jauche + 50 kg N	4	91	96	97	36

- Die Wirksamkeit von Wirtschaftsdüngern unterliegt einer standortsbedingten Streuung
- Die h\u00f6here Wirksamkeit im 4-Schnittblock liegt prim\u00e4r an der niedrigen Leistung der NPK-Vergleichsvariante
- Die tatsächlich erzielte Wirksamkeit der eingesetzten Wirtschaftsdünger war aber in jedem einzelnen Fall höher als die gemäß BMLFUW (2006) unterstellte Wirksamkeit!
- mit der aktuellen Vorgangsweise wird die Wirksamkeit der WD unterschätzt!
- Der Verzicht auf eine kalkulatorische Reduktion für die "Jahreswirksamkeit" bildet die erzielte Wirksamkeit sowohl für Gülle und Jauche als auch für Rottemist und Mistkompostgut realistisch ab

Zusammenfassung und Schlussfolgerungen

- Wirtschaftsdünger sind wertvolle betriebseigene Produktionsmittel
- Der sach- und umweltgerechte Einsatz von Wirtschaftsdüngern erfordert Kenntnis über deren Anfallsmengen, Nährsstoffgehalte und Wirksamkeit
- N-Verluste im Stall und Lager sowie bei der Ausbringung sind unvermeidbar und werden mit dem aktuellen Kalkulationsmodus plausibel abgebildet
- Die Einbeziehung der Jahreswirksamkeit zur kalkulatorischen Reduktion des N-Anfalls muß für die Kulturart Grünland kritisch hinterfragt und diskutiert werden!
- Zur Vermeidung des Spannungs- und Problemfeldes "Nährstoffanfall versus Nährstoffempfehlung" ist ein standortsbezogener Viehbesatz unter Berücksichtigung des regionalen/lokalen Ertragsniveaus anzustreben



Wichtige Aspekte zur Probenziehung

- Auswahl homogener Erhebungsflächen
- repräsentative Mischprobe (40-50 Einstiche/ha)
- gleichbleibender Beprobungstermin
- richt unmittelbar nach einer Düngungsmaßnahme
 - ca. 0,5 1,0 kg Frischprobe
 - innenbeschichtete Probensäckchen
 - leserlich und eindeutig beschriften
 - lufttrocknen
 - Angabe des gewünschten Analysenspektrums

Umfang und zeitliche Abfolge von Bodenuntersuchungen

- Bodenart
- Humusgehalt
- Kalkgehalt Kalkbedarfsermittlung
 pflanzenverfügbares Phosphat, Kali, Magnesium
- weitere Analysen bei Problemen im Pflanzenbestand und/oder in der Fütterung - Tiergesundheit

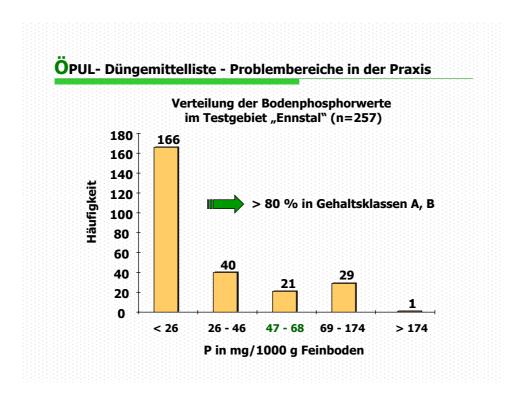
◆ alle 5 - 6 Jahre (ÖPUL - Zeitraum)

Ermittlung eines allfälligen Ergänzungsbedarfes in der Düngungspraxis

- Empfehlungswerte (Richtlinien f.d. SGD)
 - Bodenuntersuchung Gehaltsklassen Zuschlagsystem:

Empfehlung ≠ **Verpflichtung!**

- Einbindung der botanischen Situation (Kleeanteil!)
 - Nährstoffbilanzen?
 - Futterinhaltsstoffe?


Praktisches Beispiel zur Düngungsplanung im Grünland

Milchviehbetrieb (Basis Gülle): 1,2 Milchkühe/ha, Milchleistung 6.000 kg/Kuh, 3-mähdiges (kleereiches) Grünland in niedriger Ertragslage 8,7 mg P/1000g Fb, 149 mg K/1000g Fb, Mg "C" pH-Wert: 5,0; Kalkbedarf: 600 kg CaO

Nährstoffanfall versus Nährstoffempfehlung (+ allfälliger Zuschlag) Nährstoffdifferenz - Ausgleich?!

	N _{stallf}	N _{AP}	N _{WRG}	N_{SGD}	P ₂ O ₅	K ₂ O
Nährstoffanfall in kg/ha	brutto	- 15%	- 13%	- 30%	brutto	brutto
Gülle von 1,2 Milchkühen = 1,2 x 97,4 (Brutto N-Anfall/Kuh)	116,9	99,4	86,5	60,6	39,4	196,6
Nährstoffempfehlung + 40% Zuschlag für P ₂ O ₅				70,0	45,0 18,0	130,0
Differenzbetrag			(+15,6)	-10,4	-23,6	+ 66,6
Ausgleich mit 100 kg Hyperphos	phat (0/	25/0)			+25,0	
Nährstoffbilanz			(+15,6)	-10,4	+ 1,4	+ 66,6

ÖPUL- Düngemittelliste - Problembereiche in der Praxis

P₂O₅ - Ergänzung mit physiologisch sauer oder neutral wirkendem P-Dünger!

Gute P-Versorgung als Basis für Leguminosen!!

Univ.Doz. Dr. Erich M. Pötsch

Zur Wirksamkeit von Wirtschaftsdüngern im Grünland

