

Auswirkungen der neuen GfE-Empfehlungen auf die Futteranalytik

Reinhard Resch¹ und Gerald Stögmüller²

¹ HBLFA Raumberg-Gumpenstein, Referat Futterkonservierung und Futterbewertung

² LK Niederösterreich, Futtermittellabor Rosenau

51. Viehwirtschaftliche Fachtagung, 20. März 2024

Einleitung

Ziel der Futteranalyse ist die Ermittlung von Kenngrößen des Futterwertes

Änderungen durch GfE (2023)

- Futterwert und Bedarf des Tieres nunmehr entkoppelt
- Futteraufnahme (FAN) und Passage haben Einfluss auf Futterwert
- NEL und nXP fallen weg!
- ME und sidP sind die neuen Kenngrößen für Energie und Protein

GfE Empfehlungen zur Energie- und Nährstoffversorgung von Milchkühen

Anpassungen bei Untersuchungsmethoden für ME, UDP und sidP erforderlich

Umsetzung der neuen GfE-Empfehlungen

Klärung der Vorgangsweise erforderlich

- Arbeitsgruppe Futter und Fütterung → Koordination mit Deutschland
- Laborbefundung ME und sidP auf Basis FAN 1 (Erhaltungsbedarf)
- Festlegung der zulässigen Analysenmethoden für:
 - Verdaulichkeit der organischen Masse (OMD)
 - Im Pansen unabgebautes Futterprotein (UDP)

Neue Tabellen zum Futterwert

- Vorhandene Tabellen der GfE mit Lücken bei Grundfutter (Grünfutter, Silage und Heu)
- Beisteuerung Analysendaten für Österreich typischer Futtermittel

Energiebewertung

Aktuelle Energiebewertung im FML Rosenau

auf Basis der DLG-Verdaulichkeitskoeffizienten= Standard bei Einzelfuttermittel

- Analyse der Rohnährstoffe
- aschekorrigierte Rohfaser = Parameter für Reifegrad und somit Verdaulichkeit der Rohnährstoffe des Grundfutters
- Automatische Ermittlung der Verdaulichkeitskoeffizenten nach DLG-Futterwerttabelle (1997), interpoliert nach Gruber et al. (1997)
- Automatische Berechnung der umsetzbaren Energie (ME) nach GfE (2001)
 ME = Summe der verdaulichen Rohnährstoffgruppe × dessen Energieniveau
- Berechnung der Nettoenergie-Laktation (NEL) aus der ME

Aktuelle Energiebewertung im FML Rosenau

mittels Enzymlöslichkeitstest (enzymlösliche organische Substanz, ELOS) = Standard bei Mischfutter, auf Wunsch bei Einzelfutter

- Analyse der Rohnährstoffe und bestimmter Gerüstsubstanzen
- Behandlung der Probe mit Pepsin-Salzsäure-Lösung und Cellulase-Lösung
- Berechnung der umsetzbaren Energie (ME) mit verschiedenen Formeln für Grasprodukte, Maissilage, Mischration, Kraftfutter
- Berechnung der Nettoenergie-Laktation (NEL) aus der ME

Bewertung der aktuellen Energieberechnungssysteme

aus den Verdaulichkeitskoeffizienten

Vorteil: lange erprobt

basiert auf wissenschaftlichen Versuchen

kann einfach aus den Rohnährstoffen errechnet werden

Nachteil: Verdaulichkeitskoeffizienten stehen nicht in einem starren Verhältnis zur Rohfaser

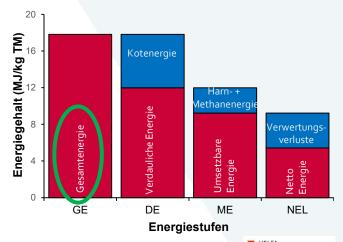
- siehe Gruber et al (2022)

aus der Enzymlöslichkeit (ELOS)

Vorteil: Berücksichtigung des Abbauverhaltens durch Enzymbehandlung

Nachteil: sehr material- und zeitaufwändige nasschemische Analyse

begrenzte Verfügbarkeit von (regionalen) Formeln für die Energiebewertung


1. Ermittlung der Bruttoenergie / Gesamtenergie

mit einer Formel aus

Rohprotein, Rohfett, Stärke, Zucker, organischer Rest × dem jeweiligen Brennwert

GE [kJ/kg OM] = $(23.6 \times CP + 39.8 \times CL + 17.3 \times Stärke + 16 \times Zucker + 18.9 \times org. Rest) / (1 + CA / 1000)$

1. Ermittlung der Bruttoenergie

mittels Bombenkalorimeter

auch Berthelotsche Bombe / kalorimetrische Bombe benannt nach Marcelin Berthelot
Bestimmung des Brennwertes eines Stoffes unter einer Sauerstoffatmosphäre und hohem Druck

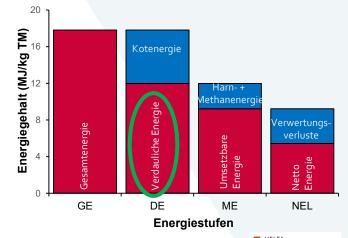
- Bei hohen Pektin- bzw. NPN- oder Milchsäuregehalten ist die Berechnungsformel ungenau,
 hier wird die Energieermittlung mittels Bombenkalorimeter empfohlen
- aktuell gibt es zur Kalorimetrie keine VDLUFA-Methodenvorschrift
- sehr zeit- und materialaufwendig

2. Ermittlung der verdaulichen Energie

Verdaulichkeit der Energie

steht in einem fixen Verhältnis zur Verdaulichkeit der organischen Masse (OMD)

ED (%) = OMD(%) - 3,3



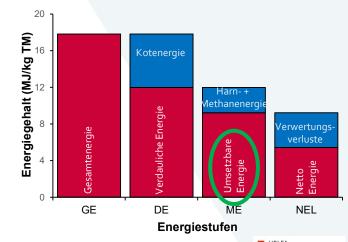
aus **ELOS** + weiteren Parametern zB **ADF**, **CL** aktuell noch nicht ausreichend Formeln für alle Futterkategorien verfügbar

Verdauliche Energie = Gesamtenergie × Verdaulichkeit der Energie

 $DE = GE \times ED$

3. Ermittlung der Umsetzbaren Energie

Berechnung **Harnenergieverlust** (UE) aus CP:


UE ([MJ/kg OM]) = $0.0037 \times CP$ ([g/kg OM]

Berechnung **Methanenergieverlust** (CH4-E):

CH4-E ([MJ/kg OM]) = 0,7 + 0,014 × OMD [%]

Umsetzbare Energie = verdauliche Energie minus Harnenergie- und Methanenergieverlust $ME = DE - UE - CH_4 - E$

Geplante Umsetzung im Futtermittellabor Rosenau

Energiebewertung über ELOS

Viele nasschemische Analysen liegen von Grassilage, Heu und Maissilage vor

Gleichzeitig wurden NIRS-Messungen der Proben durchgeführt

Kalibrationen wurden erarbeitet

Anwendung NIRS zur ELOS-Schätzung

Hohe Schätzgenauigkeit ist gefordert (starke Gewichtung von ELOS!)

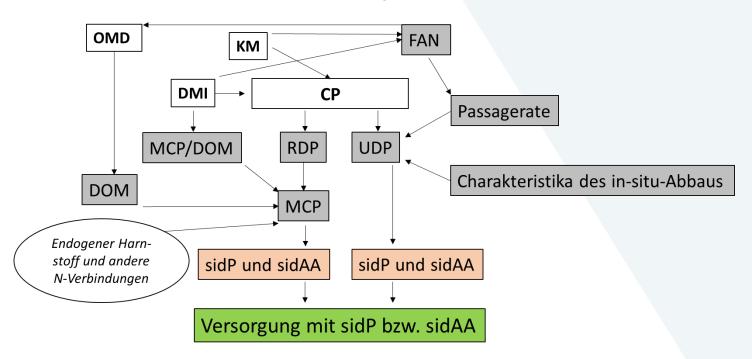
GGf. kann NIRS-Schätzung abweichen → nasschemische Prüfung erforderlich (höhere Kosten!)

ELOS-Energieschätzformeln noch nicht ausreichend vorhanden

Feldfutterbestände (Gras-/Leguminosengemenge)

Grundfuttermischungen (Gras + Maissilage)

Mischrationen mit Kraftfutterkomponenten


Proteinbewertung

Das neue Proteinbewertungssystem

(GfE 2023)

Weiß unterlegte Größen dienen der Berechnung der grau unterlegten Größen

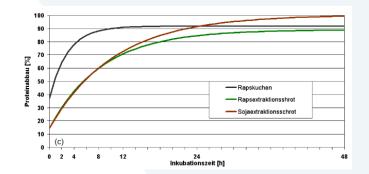
Parameter und Analysenmethoden für die Proteinbewertung nach GfE (2023)

Parameter	Kürzel	Einheit	Methode	Nasschemische Vorschriften	Labor-
					standard
Trockenmasse	TM	g/kg FM	C, NIRS	V 3.1	☑
Rohasche	CA	g/kg TM	С	V 8.1	☑
Organische Masse	OM	g/kg TM	K, (NIRS)		Ø
Stickstoff	N	g/kg TM	C, NIRS	V 4.1.1 (Kjeldahl), V 4.1.2 (Dumas)	Ø
Rohprotein	СР	g/kg TM	K	CP = Stickstoff × 6,25	Ø
Ammoniak-N	NH ₃ -N	g/kg TM	С		Ø
OM-Verdaulichkeit	OMD	%	C, NIRS, K	De Boever et al. (1986) [Steingass und Menke (1983)]	Ø
Proteinfraktionen	CNCPS	%	C, (NIRS)	Licitra et al. (1996) Van Amburgh et al. (2015)	X
Im Pansen nicht abgebautes Futter- Rohprotein	UDP	g/kg TM	С, К	Ha and Kenelly (1984)	×
Aminosäuren	AA	g/kg TM	C, (NIRS)	V 4.11.1	X

C = Nasschemie; NIRS = Nahinfrarot-Spektroskopie; K = Kalkulation; V = VDLUFA (1976)

^{) =} keine bzw. noch keine Standardmethode; [] = erfordert Pansensaft, daher in Österreich nicht mehr in Anwendung

 $[{]f oxed{arDelta}}$ = kostengünstige Routineanalytik, ${f oxed{f B}}$ = nasschemische Spezialanalytik mit hohen Kosten


Ruminaler Protein- und Aminosäurenabbau

in situ-Methode wäre der Goldstandard

Bewertung der Abbaukinetik und damit der Pansenpassage

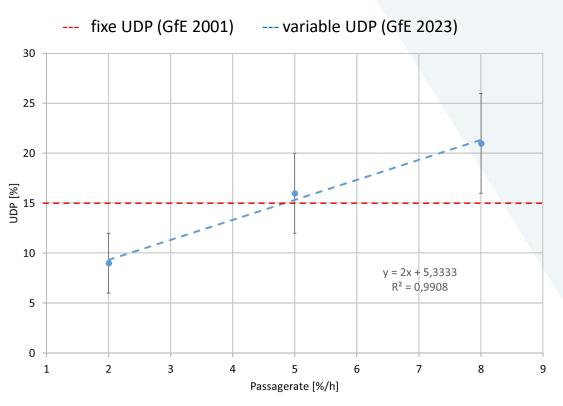
Bedarf an pansenfistulierten Tieren

Sehr hoher Kostenaufwand → nur für wissenschaftliche Basisarbeit!

Zielsetzung für diese Analytik:

Nutzung vorhandener Ergebnisse

Datenlücken müssen von mehreren Forschungsinstituten gemeinsam geschlossen werden


Erstellung bzw. Ergänzung Tabellenwerk

Diese Spezialanalytik kann nicht von Futtermittellaboren abgedeckt werden!

UDP Grassilagen in Abhängigkeit der Passagerate

(Gappmaier et al. 2022)

Proteinfraktionierung (CNCPS)

Cornell Net Carbohydrate and Protein System (CNCPS)

Berechnung des im Pansen unverdaulichen Futter-Proteins UDP möglich

Licitra et al. (1996)

Higgs et al. (2015)

Abbaugeschwindigkeit	Fraktion	enthaltene Sticksto	Fraktion	
bereits abgebaut	Α	NPN-Verbindungen	Ammoniak	A1
sehr schneller Abbau	B1	pufferlösliches I	A2	
variabler Abbau	B2	pufferunlösliches	B1	
langsamer Abbau	В3	an die Faser gebundenes	B2	
schwer bis unabbaubar	С	Maillardprodukte bzw. unlöslich an ADF gebundenes Protein		С

Ausblick für die Futteranalytik

Ziel 1 – Aktualisierung österreichischer Futterwerttabellen

Forschungsprojekt "UFE-Kuh_GfE2023" (2024-2029) wurde eingereicht

Analysen: Proteinfraktionierung (R-G) und Aminosäuren (BOKU TTE)

Nutzung vorhandener Daten: in situ-Daten (400 Proben), CNCPS (700)

Neue Probenziehungen aus laufenden Projekten

Einspeisung in Datenbanken bzw. Tabellen → Nutzung durch Labore, Rationsprogramme

Integration von ME (2023) und sidP

Neuauflage der Futterwerttabellen für das Grundfutter im Alpenraum

Ziel 2 – Anpassung Analysenmethoden

ELOS als nasschemische Standardmethode

Bestimmung der OM-Verdaulichkeit über die enzymlösliche organische Substanz (ELOS)

Hohenheimer Futterwerttest (HFT) kommt in Österreich wahrscheinlich nicht mehr zur Anwendung, weil hier Pansensaft von fistulierten Spendertieren gebraucht würde.

Stickstoffverbindungen im Futter

In Silagen ist zu beachten, dass Ammoniak durch die Trocknung zum Teil verloren geht. Eine Messung des NH3-N müsste erfolgen und auch eine Korrektur des Rohproteingehaltes.

Ammoniak wird im CNCPS (Higgs et al. 2015) als Fraktion A1 berücksichtigt.

Ziel 3 – Nahinfrarotspektroskopie (NIRS)

Kostengünstiger Zugang zu OMD, ME, UDP und sidP

NIRS ist kostenmäßig sehr günstig im Vergleich zur Nasschemie

Aufbau von Kalibrationen für Grundfutter erforderlich

Speziell für ELOS und Proteinfraktionierung (CNCPS)

Gute Kalibrationen für das österreichische Grundfutter sind essentiell!

Zusammenarbeit zwischen Instituten und Futtermittellaboren wird angestrebt

Schlussfolgerungen

Laborbefundung bleibt auch nach GfE (2023) bedeutsam

Nährstoffanalyse verliert in der Rationsberechnung an Bedeutung

Befunddaten bleiben ein zentrales Instrument für Vergleiche zwischen Futtermitteln

Zusammenarbeit und Diskussion

Akteure und Branchenvertreter sollten näher zusammenrücken

Vorgangsweisen sind im Detail noch abzustimmen

Es besteht also noch Raum für Dialog in Arbeitsgruppen, um letztlich breite Akzeptanz zu erreichen

Danke für die Aufmerksamkeit!

Ing. Reinhard Resch
HBLFA Raumberg-Gumpenstein
Referat Futterkonservierung und Futterbewertung
+43 (0)3682 22451-320
reinhard.resch@raumberg-gumpenstein.at

Dipl.-Ing. Gerald Stögmüller Landwirtschaftskammer Niederösterreich Futtermittellabor Rosenau +43 (0)050259 42200 gerald.stoegmueller@lk-noe.at

