Einfluss der Ergänzungsfütterung auf Futteraufnahme und Milchleistung bei der Weidehaltung von Milchkühen

Johann Häusler^{1*}, Reinhard Resch¹, Leonhard Gruber¹, Andreas Steinwidder¹, Erich Pötsch¹ und Thomas Guggenberger¹

Zusammenfassung

Am LFZ Raumberg-Gumpenstein wurde in einem Fütterungsversuch mit 32 Milchkühen das Thema Ergänzungsfütterung zur Weidehaltung behandelt.

Die unterschiedliche Ergänzungsfütterung (4 Versuchsgruppen) brachte sowohl einen signifikanten Einfluss auf Futteraufnahme und Nährstoffversorgung als auch auf die Milchleistung. In der Vollweidegruppe konnte mit einem Weidefutteranteil am Grundfutter von 55.5 % (= 2.600 kg T) eine Milchleistung von 6.778 kg ECM ermolken werden (50 % aus Weidefutter). Durch die Beifütterung von Maissilage erhöhte sich die Milchleistung auf 7.089 kg ECM und durch die Beifütterung von zusätzlichem Kraftfutter (etwa 500 kg T) auf 6.966 kg ECM, (Anteil Milch aus Weidefutter 44 % bzw. 39 %). Eine Ergänzungsfütterung mit Heu führte zu einem Rückgang der Milchleistung auf 5.798 kg ECM (43 %).

Das unterschiedliche Laktationsstadium brachte keinen signifikanten Einfluss auf Futteraufnahme, Nährstoffversorgung und Milchleistung. Während die tatsächliche Jahresmilchleistung ausgehend von jenen Kühen, die erst im April abkalbten (Beginn 1), zurückging, stiegen in gleichem Ausmaß die Milchinhaltsstoffe, so dass die Milchleistung nach ECM in allen Beginngruppen mit Ausnahme der Gruppe 3 (Abkalbung im Februar) gleich hoch war. Eine Begründung liefern die um bis zu 500 kg T niedrigeren Gesamtfutteraufnahmen der Gruppen 3 und 4 (Abkalbung im Februar bzw. Jänner). Je später die Kühe abkalbten, desto höher war die Milchleistung in der Weidephase. Allerdings erhöhte sich in der Weidephase durch die frühere Abkalbung der Anteil des Weidefutters am Gesamtfutter von 63 % auf 76 %.

Schlagwörter: Vollweide, Ergänzungsfütterung, Futteraufnahme, Nährstoffversorgung

1. Einleitung

Durch die Umstellung von arbeitsintensiven Portionsweiden auf moderne Intensivweiden (Kurzrasen- bzw. Koppelweide) aber auch wegen der in letzter Zeit schwankenden Kraftfutter- und Milchpreise präsentiert sich die Weidehaltung als durchaus ernst zu nehmende Alternative zur ganzjährigen Stallhaltung. In der Milchviehhaltung

Summary

In an experiment in Raumberg-Gumpenstein with 32 dairy cows the topic supplementary feeding to pasture was treated.

The different supplementary feeding (four experimental groups) brought both a significant effect on feed intake and nutrient supply as well as on performance of milk. In full pasture group a share of 55.5 % pasture forage (= 2,600 kg DM) gained a milk yield of 6,778 kg ECM. Approximately 50 % of this milk came from pasture forage. The additional feeding of maize silage increased the milk yield up to 7,089 kg ECM and the supplementary feeding with concentrates (500 kg DM) up to 6,966 kg ECM. But it decreased the proportion of milk from pasture forage to 44 % and 39 % respectively. The supplementary feeding with hay resulted in a decrease of milk production to 5,798 kg ECM and a share of 43 % of milk from pasture forage.

The different days of lactation (4 different beginning groups) brought no significant effect on feed intake, nutrient supply and milk yield. While effective yearly milk yield decreased from those cows, which calved in April (beginning group 1), the milk ingredients increased, so the milk yield in ECM was, except of beginning group 3 (calving in February), at the same level. A lower feed intake up to 500 kg DM in the beginning groups 3 and 4 (calving in February and January) could be a reason. Cows, which calved later, showed a higher performance in pasture phase. However, the proportion of pasture forage on total forage increased from 63 % in beginning group 1 up to 76 % in beginning group 4.

Key words: full pasture, supplementary feeding, feed intake, nutrient supply

liegt das größte Einsparungspotential neben den Kosten für die Bestandesergänzung in der Fütterung. Durch die Reduktion von Kraftfutter und die bestmögliche Nutzung des billigen aber hochwertigen Weidefutters gelingt es, die Kosten für die Fütterung erheblich zu senken. Zusätzlich vermittelt die Weidehaltung den Konsumenten nicht nur das Bild einer besonders artgerechten Tierhaltung, sondern sie erhöht nachgewiesenermaßen auch die Produktqualität

LFZ Raumberg-Gumpenstein, Abteilung für Physiologie und Herdenmanagement, Referat für Futterkonservierung und Futterbewertung, Institut für Nutztierforschung, Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere, Abteilung für Grünlandmanagement und Kulturlandschaft, Abteilung für Innenwirtschaft und Ökolometrie, A-8952 Irdning

^{*} Ansprechpartner: Johann Häusler, email: johann.häusler@raumberg-gumpenstein.at

(Erhöhung des Gehaltes an ungesättigten Fettsäuren, CLAs und Omega-3-Fettsäuren).

Neben vielen Vorteilen bringt die Weidehaltung auch einige Probleme bzw. Nachteile mit sich. So steigt beispielsweise während der Weidezeit der Harnstoffwert, zu rasche Umstellungen auf die Weide können im Frühjahr Pansenacidosen verursachen, es gibt Schwankungen in der Futteraufnahme und im Nährstoffgehalt des Futters und natürlich können bei Vollweide bedingt durch den geringeren Nährstoffinput nur niedrigere Milchleistungen ermolken werden.

Aus all diesen Gründen stand die Frage nach einer gezielten und optimierten Ergänzungsfütterung bei Weidehaltung im Mittelpunkt eines Projektes, das am LFZ Raumberg-Gumpenstein durchgeführt wurde.

2. Versuchsgrundlagen und Methoden

2.1 Versuchsplan

Von 2005 bis 2007 wurde in einem Projekt des Institutes für Nutztierforschung des LFZ Raumberg-Gumpenstein mit insgesamt 32 Milchkühen das Thema Ergänzungsfütterung intensiv behandelt. Um eine saisonale Abkalbung zu simulieren, wurden für den Versuch nur Kühe ausgewählt, die

in den Monaten Jänner bis spätestens Anfang Mai abkalbten, wobei darauf geachtet wurde, dass die Kühe sowohl bezüglich Rasse und Laktationszahl als auch bezüglich Leistung und Abkalbetermin gleichmäßig auf die 4 Gruppen verteilt wurden. Folgende Bezeichungen wurden für die Gruppen vergeben: Vollweide (1), Heu (2), Maissilage (3) und Kraftfutter (4)

Die Versuchsperiode begann 10 Tage vor dem errechneten Abkalbetermin. Bis zum 56. Laktationstag wurden alle Kühe gleich gefüttert. Neben Heu und Grassilage wurde in dieser Periode auch Maissilage und Kraftfutter (max. 7 kg Frischmasse (FM) pro Tag und max. 2 kg FM pro Teilgabe) eingesetzt. Danach unterschied sich das Fütterungsregime der 4 Gruppen. Ab Beginn der Vegetationszeit (1. Austrieb zwischen 12.4. im Jahr 2007 und 20.4. im Jahr 2006) kamen die Tiere aller 4 Gruppen gemeinsam auf die Weide, die als Kurzrasenweide geführt wurde.

In den Gruppen Kontrolle (Vollweide), Heu und Maissilage wurde etwa 600 kg (FM) Kraftfutter pro Kuh und Laktation eingesetzt. In der Kraftfuttergruppe wurde diese Menge auf ca. 1.200 kg pro Laktation verdoppelt. Die Zusammensetzung des Kraftfutters änderte sich mit dem Weideaustrieb. Während im Winter auch Eiweißkomponenten (Soja- und Rapsextraktionsschrot) eingesetzt wurden, bestand das

Gruppe	Versuchsbeg. bis 56. Lakt.tag	57 98.Tag	99 120. Tag	121 150.Tag	151 250. Tag	251 280.Tag	251 305.Tag
	4 kg T	pro Woche 0,5 kg T/d				ab 1.9. 2	kg t / Tag
Kontroll-	3,5 kg T	pro Woche 0,5 kg T/d					
gruppe	ad libitum bis Weidebeginn		freie Aufnahme vo	n Weidebeginn bi	s Vegetationsende		ad libitum ab Weideende
	0,3 bis 7 kg FM	pro Woche mi	nus 1 kg FM/d				
	4 kg T		4 kg T b	is zum 63. Laktatio	onstag, 64 305. Ta	ıg 3,5 kg T	
Gruppe	3,5 kg T	pro Woche 0,5 kg T/d					
Heu	ad libitum bis Weidebeginn		freie Aufnahme vo	on Weidebeginn bi	s Vegetationsende		ad libitum ab Weideende
	0,3 bis 7 kg FM	pro Woche mi	nus 1 kg FM/d				
	4 kg T	pro Woche 0,5 kg T/d					2kg T / Tag ab Weideende
Gruppe	3,5 kg T / Tag	3,5 kg T / Tag	3,5 kg T / Tag	3,5 kg T / Tag	3 kg T / Tag	2,5 kg T / Tag	2kg T / Tag
Maissilage	ad libitum bis Weidebeginn		freie Aufnahme vo	on Weidebeginn bi	s Vegetationsende		ad libitum ab Weideende
	0,3 bis 7 kg FM	pro Woche mir	nus 1 kg FM/d				
	4 kg T	pro Woche 0,5 kg T/d				ab 1.9. 2	kg t / Tag
Gruppe	3,5 kg T	pro Woche 0,5 kg T/d					
Kraftfutter	ad libitum bis Weidebeginn		freie Aufnahme vo	n Weidebeginn bi	s Vegetationsende		ad libitum ab Weideende
	0,3 bis 7 kg FM	von 7 FM auf 6 kg FM	5 kg FM / Tag	4 kg FM bis 180.T.	3 kg bis 220; 2 kg	1 kg bis 260. Tag	
	Heu	Maissilage	Grassilage	Kraftfutter	Weidefutter		

Abbildung 1: Versuchsplan

Tabelle 1: Kraftfutterzusammensetzung

Komponente		Winter Anteil	Sommer Anteil
Gerste	%	20	25
Mais	%	21	35
Weizen	%	12	15
Trockenschnitte	%	10	15
Kleie	%	10	10
Sojaextraktionsschrot	%	20	
Rapsextraktionsschrot	%	7	
Gesamt	%	100	100

Sommerkraftfutter ausschließlich aus Energiekomponenten, wobei wegen des Acidoserisikos vor allem auch ein höherer Anteil pansenschonender Komponenten (Körnermais, Trockenschnitte, Weizenkleie) in die Mischung eingebaut wurde (*Tabelle 1*).

Ab dem 56. Laktationstag veränderte sich die Rationszusammensetzung in den vier Gruppen. In den Gruppen Vollweide, Heu und Maissilage wurde die Kraftfuttergabe schrittweise reduziert und mit dem 120. Laktationstag gänzlich eingestellt. Heu und Maisilage wurde mit Ausnahme jener Gruppen, die durchgehend diese Futtermittel verabreicht bekamen, nur bis zum 91. Laktationstag verfüttert. Die Grassilage wurde ab Weidebeginn schrittweise durch Weidefutter ersetzt. Von Ende Mai bis Anfang September erhielt die Vollweidegruppe – mit Ausnahme jener Kühe, die sehr spät abkalbten – ausschließlich Weidefutter. Um Strukturproblemen vorzubeugen, wurde allerdings bis Ende Mai und ab Anfang September ebenso wie in der Kraftfuttergruppe jeweils 1 kg T (Trockenmasse) Heu pro Mahlzeit verabreicht. Während also in der Vollweidegruppe während der Sommermonate ausschließlich Weidefutter verfüttert wurde, wurde in jeweils einer Gruppe das Weidefutter zusätzlich durch Heu, Maissilage und Kraftfutter ergänzt. Zur Mineralstoffversorgung erhielten alle Kühe täglich jeweils 70 g Rimin Stabil und 30 g Viehsalz.

Wie bereits oben angeführt, kamen die Versuchstiere in unterschiedlichen Laktationsstadien auf die Weide. Bei der Gruppeneinteilung wurde darauf geachtet, dass die Anzahl der Laktationstage beim Weideaustrieb in allen Gruppen vergleichbar ist (im Durchschnitt der Gruppen zwischen dem 54. und 59. Tag). Aus Tabelle 2 wird jedoch ersichtlich, dass die Streuung relativ groß war. Aus diesem Grund wurde bei der Auswertung eine zusätzliche Klasse "Beginn" eingeführt. Bei der Aufteilung der Beginnzeiten (= Tage von der Abkalbung bis zum Weideaustrieb) wurde eine Unterteilung in wiederum 4 Gruppen vorgenommen, wobei sich die durchschnittlichen Laktationstage pro Beginngruppe um ca. 28 Tage (4 Wochen) erhöhten. Daraus ergab sich, dass die Tiere der Beginngruppe 1 (Abkalbung Anfang April) im Frühjahr durchschnittlich bereits mit dem 15. und die Tiere der Beginngruppe 4 (Abkalbung ca. Mitte Jänner) erst mit dem 97. Laktationstag ausgetrieben wurden. Beginngruppe 2 und 3 folgen der dargestellten Reihung. Bei der Auswertung der Daten wurde also neben der Gruppe auch das Jahr und der Zeitpunkt der Abkalbung (Beginn) berücksichtigt. Da in diesem Projekt vor allem die Weidephase im Mittelpunkt des Interesses stand, wurde eine Trennung zwischen Vor- (Stall-)phase (1) und Weidephase

Tabelle 2: Durchschnittliche Laktationstage in den einzelnen Beginngruppen

			Gı	ruppe		Mittel-
Begin	n Abkalbung	Vollweide	Heu	Maissilage	KF	wert
1	April	16,0	13,5	17,0	13,0	14,9
2	März	39,5	47,5	44,0	40,0	42,8
3	Februar	68,5	68,5	64,5	83,5	71,3
4	Jänner	93,5	95,5	100,5	100,0	97,4
Mittel	wert	54,4	56,3	56,5	59,1	56,6
Standa	ardabweichung	29,3	30,0	30,5	34,5	30,9

(2) vorgenommen. Neben diesen Basisklassen wurden die möglichen Wechselwirkungen geprüft. In Folge der geringen Freiheitsgrade wird auf deren Interpretation aber verzichtet.

2.2 Versuchsdurchführung

In der Stall- (Winter-)fütterungszeit wurden die Tiere in Anbindehaltung auf Mittellangstand mit Gummimatten und Gitterrost gehalten. Während der Weidezeit kamen sie nur zur Melkung und zur Verabreichung des jeweiligen Ergänzungsfuttermittels in den Stall (ca. 1,5 - 2 Stunden pro Mahlzeit), die restliche Zeit, also mehr als 20 Stunden, verbrachten sie auf der Weide.

Insgesamt standen rund 7 ha Weideflächen zur Verfügung. Die Weideflächen wurden 4-mal und zwar im Herbst (15 m³ Gülle pro ha), im Frühjahr (10 m³ Jauche pro ha) und auch während der Vegetationszeit (2-mal jeweils 7,5 m³ Jauche pro ha) gedüngt. Zusätzlich wurde im Frühjahr 150 kg Hyperkorn pro ha auf die Flächen ausgebracht. Auf eine Weidepflege wurde weitgehend verzichtet, die Weiden wurden im Frühjahr gestriegelt u. nach Bedarf – meist einmal im Laufe der Weidesaison – bei trockenem Wetter mit einem hoch eingestellten Motormäher (10 cm Schnitthöhe) abgemäht ("getoppt"). Jene Flächen, die am Beginn nicht für die Weide benötigt wurden, wurden bis zu 3-mal gemäht und als Winterfutter geerntet.

Während der Winterfütterungszeit wurden die Futteraufnahmen tierindividuell erhoben, wobei Kraftfutter, Maissilage und Heu fix vorgegeben wurden und die Grassilage ad libitum aufgenommen werden konnte. In der Weidezeit konnten nur die Ergänzungsfuttermittel und die Mineralstoffe tierindividuell verabreicht werden, die Weidefutteraufnahme wurde tierspezifisch über das Futteraufnahmepotential der Tiere abgeschätzt. Neben der täglichen Ermittlung der Milchleistung und der Milchinhaltsstoffe wurde das Fettsäuremuster der Milch (Ergebnisse siehe Tagungsband der Biotagung 08) ermittelt und ab dem 22. Laktationstag bis zur erfolgreichen Belegung alle 3 Tage der Progesteronwert der Milch bestimmt. Die Tiere wurden wöchentlich gewogen und alle 2 (zu Laktationsbeginn) bzw. 3 Wochen (ab dem 4. Laktationsmonat) die Körperkondition beurteilt. Ebenfalls alle 3 Wochen wurden jeweils mittwochs um ca. 7:30 Uhr Blutproben gezogen und auf ihren Gehalt an Harnstoff, Creatinin, Tbil (Gesamtbilirubin), GOT (Glutamat-Dehydrogenase), GGT (Gamma-Glutamyl-Transferase), ß-HBS (ß-Hydroxybuttersäure), FFS (Freie Fettsäuren), Ca, P, Mg und Glucose untersucht. Zur Ermittlung der Gesundheits- und Fruchtbarkeitsparameter (Besamungsindex, Zwischenkalbezeit u. dgl. mehr) wurden alle Erkrankungen, Behandlungen und Belegungen aufgezeichnet und zusätzlich in den Laktationswochen 1, 8, 20, 32 und 42 die Klauengesundheit kontrolliert bzw. bei Bedarf eine funktionelle Klauenpflege durchgeführt. Zwei Mal pro Weidezeit wurden mit Hilfe von pansenfistulierten Ochsen, die parallel zu den Versuchskühen gehalten wurden, die Auswirkungen der Rationen auf die Pansenflora und das Fettsäuremuster im Pansen kontrolliert.

2.3 Ertragsfeststellung und Weideführung

Die Ertragsfeststellung wurde auf ausgezäunten Flächen durchgeführt. Diese wurden mit Hilfe von GPS – Technologie (GeoXH) bei einer Messgenauigkeit von +/- 30 cm vermessen. Aufgrund der Fläche und des Besatzes wurden der Flächenbedarf und die Besatzstärke ermittelt.

Die Messung der Aufwuchshöhe war der wichtigste Parameter bei der Weideführung. Sie wurde zwei Mal pro Woche mit Hilfe eines Aufwuchshöhenmessgerätes (Filip's Folding Plate Pasture Meter) ermittelt. Angestrebt wurde dabei eine Aufwuchshöhe von rund 4 cm, das entspricht in etwa einer Aufwuchshöhe von 7 - 8 cm gemessen mit dem Zollstab (bei den Kontrollmessungen in den letzten beiden Versuchsjahren wurde auf einer Teilfläche ein Faktor von 0,53 ermittelt). Die Weidefläche wurde in Folge entsprechend adaptiert, d.h. entweder verkleinert oder vergrößert. Im Mittel der Jahre konnten pro Kuh Weideflächen zwischen ca. 2.000 m² (ab etwa Mitte Mai bis Anfang Juni) bis über 6.000 m² im Herbst ermittelt werden (*Abbildung* 2).

2.4 Futtermittelanalysen

Der Nährstoff- (Weender, Gerüstsubstanzen, Mineralstoffe und Spurenelemente) und Energiegehalt (Energiebewertung *in vitro* mit dem Cellulasetest) der konservierten Futtermittel (Heu, Grassilage, Maissilage, Kraftfutter) wurde aus vierwöchigen Sammelproben ermittelt. Täglich wurden der Trockenmassegehalt der Silageeinwaagen und der T-Gehalt aller Rückwaagen erfasst. Die T-Gehalte von Heu und Kraftfutter stammten aus einer wöchentlichen Sammelprobe. Diese T-Gehalte dienten als Grundlage zur Rationsanpassung, die wöchentlich vorgenommen wurde. Auf der Weide wurden die Futterproben in neun gleichen Intervallen nicht nur von den ausgezäunten Parzellen,

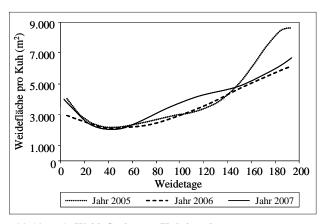


Abbildung 2: Weidefläche pro Kuh in m²

sondern parallel dazu auch direkt von den Weideflächen gezogen und im Labor untersucht. Die Ergebnisse der Futtermittelanalysen werden im Tabellenanhang angeführt, wobei eine Trennung zwischen den Analysendaten der im Stall verfütterten Futtermittel und jener des Weidefutters vorgenommen wurde.

2.4.1 Nährstoffgehalt der im Stall eingesetzten Futtermittel

Die *Tabellen 3a* und *3b* (siehe Tabellenanhang) zeigen die durchschnittlichen Nährstoffgehalte der im Stall eingesetzten Futtermittel. Die Werte stellen die Durchschnittswerte jedes Versuchsjahres dar und wurden als Mittelwert der Analysenergebnisse der Proben aus den jeweils vierwöchigen Sammelperioden ermittelt.

2.4.1.1 Raufutter

Das im Versuch eingesetzte Raufutter wies eine durchschnittliche bis gute Qualität auf, wobei Unterschiede zwischen den einzelnen Versuchsjahren auftraten. Dies ist einerseits auf die Verwendung unterschiedlicher Aufwüchse und andererseits auf jahresspezifische Einflüsse zurückzuführen. Im Jahr 2006 wurde aus Witterungsgründen beispielsweise sehr spät mit der Ernte begonnen, aus diesem Grund war die Futterqualität, der im Jahr 2007 eingesetzten Futtermittel am schlechtesten. 2005 erreichte der Rohproteingehalt einen Wert von 14 %. In den Jahren 2006 und 2007 wurde ein Gehalt von 12 bzw. 10 % erreicht. Der Rohfasergehalt lag in den Jahren 2005 und 2006 bei rund 28,5 % und bedingt durch die verspätete Ernte im Jahr 2007 bei 30 %. Daraus resultierten Energiewerte zwischen 5,34 MJ NEL (2007) und 5,38 (2005) bzw. 5,45 MJ NEL (2006). Die nXP-Werte lagen mit 12,6 (2005) bzw. 12,3 (2006) und 11,8 % (2007) auf etwa gleichem Niveau. Ebenfalls keine großen Unterschiede gab es beim Ca-Gehalt, der sich mit 6,1 (2005 u. 2007) bzw. 5,8 g (2006) allerdings auf einem relativ tiefen Niveau befand. Die P-Gehalte differierten etwas stärker, wobei sich die gute Qualität im Jahr 2006 auch auf den P-Gehalt auswirkte, der mit 3,2 g doch deutlich über den beiden anderen Jahren (2,5 im Jahr 2005 und 2,7 im Jahr 2007) lag.

2.4.1.2 Grassilage

Die Qualität der Grassilage unterschied sich ebenfalls zwischen den einzelnen Versuchsjahren. So sank der Rohproteingehalt von 16 % im Jahr 2005 über 13 % (2006) auf etwa 12,5 % (2007). Im Gegensatz dazu stieg der Rohfasergehalt von 26 % (2005) auf 27 % (2006) bzw. 28 % im Jahr 2007. Wiederum absteigend waren die Energiegehalte, und zwar von 6,06 MJ NEL im Jahr 2005 auf 5,97 MJ NEL (2006) bzw. 5,87 MJ NEL im Jahr 2007. Die NXP-Werte lagen zwischen 13,5 % (2005) und 13 % (2006) und bei 12,7 % im Jahr 2007. Schwankungen gab es im Mineralstoffgehalt. So schwankten die Ca-Gehalte zwischen 6,2 (2005), 7,7 (2006) und 7,4 g (2007) und die P-Gehalte zwischen 2,8, 2,4 und 3,2 g.

2.4.1.3 Maissilage

Ennstaler Maissilagen entsprechen den Qualitäten der Maisrandlagen. So lag der Rohproteingehalt zwischen knapp 9 % im Jahr 2005 und etwas über 8 % in den Jahren 2006 und 2007. Der Rohfasergehalt lag jeweils bei rund 22 %, wobei er mit 22,8 % im Jahr 2006 am höchsten war. Die Energiegehalte bewegten sich bei 6,3 MJ NEL im Jahr 2005 und 6,2 bzw. 6,25 MJ NEL in den Jahren 2006 bzw. 2007. Im nXP-Gehalt differierten die Maissilagen kaum und lagen alle um rund 13 %. Die Ca-Gehalte in den Jahren 2005 bis 2007 lagen bei 2, 2,4 und 2,7 g und die P-Gehalte bei 2,1, 2,2 und 2,8 g.

2.4.1.4 Kraftfutter

Im Versuch wurden, bedingt durch den hohen Rohproteingehalt während der Weidephase, zwei unterschiedliche Kraftfuttermischungen verwendet. Sowohl beim Sommerals auch beim Winterkraftfutter gab es leider relativ große Abweichungen zwischen den einzelnen Versuchsjahren. Dies dürfte in erster Linie auf die unterschiedliche Qualität der Einzelkomponenten zurückzuführen sein. So lag der Rohproteingehalt des Sommerkraftfutters zwischen 13,7 % im Jahr 2005 und 12,2 bzw. 11,3 % in den Jahren 2006 bzw. 2007. Auch bei der Wintermischung differierte der Rohproteingehalt zwischen 15,4 % im Jahr 2006 und 17,8 bzw. 18,4 % in den Jahren 2005 und 2007. Die Rohfasergehalte unterschieden sich in beiden Mischungen um mehr als 1 % und lagen zwischen 5,8 und 7,1 %. Relativ konstant waren die Energiegehalte, die beim Sommerkraftfutter zwischen 7,87 und 7,97 MJ NEL und beim Winterkraftfutter zwischen 7,94 und 7,99 MJ NEL lagen. Die nXP-Gehalte des Sommerkraftfutters pendelten sich zwischen 16,1 und 16,9 % und die des Winterkraftfutters zwischen 17,4 und 18,4 % ein. Auf der Mineralstoffseite wies das Sommerkraftfutter Ca-Gehalte zwischen 2,1 und 2,7 g und P-Gehalte zwischen 3,3 und 4,2 g auf. Etwas größer waren die Unterschiede beim Winterkraftfutter, das zwischen 3,2 und 4,1 g Ca bzw. 3,9 und 5,8 g P vorweisen konnte.

2.4.2 Nährstoffgehalt des Weidefutters

Die Qualität des Weidefutters verändert sich täglich, die Probenziehung wurde aus Kostengründen in 9 gleichen Intervallen vorgenommen. Zur Harmonisierung der einzelnen Nährstoffgehalte wurde die Wachstumsdynamik in nährstoffspezifischen Regressionen abgebildet (siehe *Abbildung 3*) Aus diesen Einzeldaten bilden sich wiederum Mittelwerte für die einzelnen Wachstumsperioden (siehe Tabellenanhang: *Tabellen 4a, 4b, 5a, 5b, 6a* und *6b*).

Die Verdaulichkeit der für die Energieberechnung relevanten Nährstoffe des Weidefutters wurde über den linearen Zusammenhang zwischen Einzelnährstoff und Rohfaser in der organischen Substanz abgeschätzt. Datenbasis der linearen Regression sind einerseits die Ergebnisse der DLG-Futterwerttabelle (DLG 1991) und andererseits Untersuchungen aus dem eigenen Hause (GUGGENBERGER 2006). Folgende Gleichungen wurden angesetzt:

- dOM(%) = (0.687-0.00115*((XF/OM*1000)-305.9))*100
- dXF(%) = (0.689-0.001069*((XF/OM*1000)-305.9))*100
- dXL(%) = (0.164-0.004639*((XF/OM*1000)-305.9))*100

Die so ermittelten Verdauungskoeffizienten wurden zur Energiebewertung der Futterproben nach dem Basismodel der GfE (GfE 1998) herangezogen.

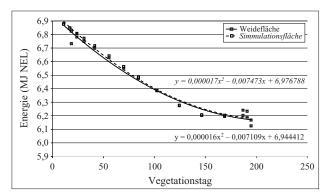
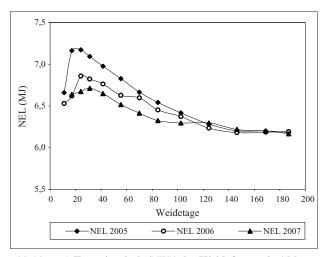
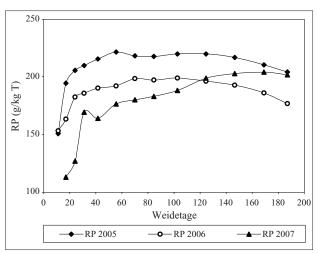




Abbildung 3: Energiegehalt (NEL) der Kurzrasenweide

 $Abbildung~4: {\bf Energiegehalt}~({\rm NEL})~{\bf des}~{\bf Weidefutters}~{\bf in}~{\bf Abh\"{a}n-gigkeit}~{\bf vom}~{\bf Versuchsjahr}$

 $\label{lem:Abbildung 5: Rohproteingehalt (RP) des Weidefutters in Abhängigkeit vom Versuchsjahr$

In den *Abbildungen 4* und *5* werden die Verläufe der Rohprotein- und Energiegehalte des Weidefutters für jedes Versuchsjahr grafisch dargestellt. Sowohl die Rohproteingehalte als auch die Energiegehalte bewegten sich auf hohem Niveau. Zur Zeit des maximalen Graswachstums (ca. Mitte Mai) konnten so beispielsweise Energiegehalte von rund 7 MJ NEL beobachtet werden, wobei dieser Wert

im 1. Versuchsjahr (2005) sogar überschritten wurde. In den Folgejahren lagen die Maximalwerte bei etwa 6,7 (2007) bzw. 6,85 MJ NEL (2006). Diese Werte entsprechen in etwa dem Energiegehalt von Hafer und liegen deutlich über dem Energiegehalt von Maissilagen. Im Verlauf der Weideperiode ging der Energiegehalt bis auf etwa 6,2 MJ NEL zurück.

Im Gegensatz dazu nahm der Rohproteingehalt des Weidefutters im Vegetationsverlauf zu. Während zu Beginn der Weidezeit die Rohproteingehalte bei rund 15 % lagen, erhöhten sie sich im Lauf der Vegetationszeit auf ca. 20 % (22 % im Versuchsjahr 2005), wobei diese Werte schon etwa im Juli erreicht wurden und sich dann nicht mehr stark veränderten. Dieses Protein/Energie-Verhältnis führte zu einem relativ konstanten nXP-Wert von rund 14,5 % (Minimalwert 13,5 % und Maximalwert 15,5 %). Allerdings zeigten sich große Unterschiede in der Pansenbilanz (RNB). Während zu Beginn der Weidezeit die RNB ziemlich ausgeglichen war, konnten ab etwa Juli RNB-Werte bis etwa + 11,5 g N entdeckt werden (ab diesem Zeitpunkt stiegen auch die Harnstoffwerte der Milch!).

Die Rohfasergehalte zeigten keine große Varianz und lagen meist zwischen 18 und 20 %. Sowohl die Ca- als auch die P-Gehalte etablierten sich auf einem durchaus hohen Niveau, wobei sie sich tendenziell gegen Ende der Vegetationsperiode erhöhten. So lagen die Ca-Gehalte zwischen 5,5 und 8,5 g und die P-Gehalte zwischen 3,1 und 5,5 g (1 Ausreißer zu Weidebeginn im Jahr 2005).

2.5 Versuchsauswertung

Die statistische Auswertung erfolgte mit dem Programm LSMLMW PC-1 Version (HARVEY 1987) nach folgendem Modell:

gemeinsame Konstante

 $\begin{array}{lll} J_{i} & = & \text{fixer Effekt des Jahres,} \\ i = 2005, 2006, 2007 \\ \\ G_{j} & = & \text{Versuchsgruppe, j} = 1, 2, 3, 4 \\ \\ P_{k} & = & \text{Fütterungsperiode, k} = 1, 2, 3 \\ \\ B_{l} & = & \text{Abkalbezeitpunkt, l} = 1,2,3, 4 \\ \\ (G^{*}P)_{ik} & = & \text{Interaktion zwischen Versuchsgruppe i} \end{array}$

(G*P)_{jk} = Interaction zwischen Versuchsgruppe i und Fütterungsperiode k

(G*B)_{jl} = Interaktion zwischen Versuchgruppe i und Abkalbezeitpunkt l

E_{iili} = Restkomponente

3. Ergebnisse

μ

Der Versuch wurde dem Versuchsplan entsprechend durchgeführt. Im Folgenden wird ausschließlich auf die Auswirkungen der Ergänzungsfütterung und der unterschiedlichen Abkalbetermine auf Futteraufnahme und tierische Leistungen eingegangen. Diese Berechnungen waren Basis für die betriebswirtschaftliche Bewertung, die von Dr. Agnes Leithold vom Institut für artgerechte Tierhaltung und Tiergesundheit vorgenommen wurde.

3.1 Futteraufnahme und Nährstoffversorgung

Während der Winterfütterungsperiode wurde im Stall die Futteraufnahme tierindividuell erhoben. In der Weidezeit erwies sich dies aber als nicht durchführbar, da tierindividuelle Weidefutteraufnahmen sehr arbeitsintensiv und bedingt durch den hohen technischen bzw. analytischen Aufwand auch teuer sind. Aus diesem Grund musste für jeden einzelnen Weidetag die tierindividuelle Weidefutteraufnahme mit Hilfe einer Kalkulation errechnet werden, in die die im Stall verfütterten Ergänzungsfuttermittel als exakt erhobene Größe einflossen.

Für die Kalkulation der Weidefutteraufnahme boten sich zwei Varianten an:

1. Schätzung der Weidefutteraufnahme mit Hilfe des Energiebedarfes der Tiere:

Bei dieser Methode wird die Futteraufnahme ausgehend vom Energiebedarf der Tiere (Erhaltungs- und Leistungsbedarf) ermittelt. Dabei werden auch Gewichtsveränderungen, die durch Mobilisation bzw. Fetteinlagerung hervorgerufen werden, berücksichtigt. Hier zeigt sich die Mobilisation als sehr unsichere Größe. Meist wird die Milchbildung aus der Mobilisation über- und damit die Futteraufnahme unterschätzt

Schätzung der Weidefutteraufnahme mit Hilfe der Futterschätzformel nach GRUBER et al. 2001, 2004 und 2007:

Diese Schätzgleichung berücksichtigt alle für die Futteraufnahme wesentlichen Faktoren. Dazu gehören neben den tierbedingten Faktoren (Rasse, Laktationszahl, Laktationstag, Lebendmasse, Milchleistung) auch futterbedingte (Kraftfuttermenge, Energiegehalt, Art und Zusammensetzung des Grundfutters, Rohprotein/Energie-Verhältnis) und betriebsbedingte Faktoren (Region, Managementniveau, Fütterungssystem).

Abbildung 6 zeigt eine Gegenüberstellung der mit Hilfe der beiden Methoden ermittelten Gesamtfutteraufnahmen. Im Vergleich der beiden bedarfsbezogenen Kurven zeigt sich die große Unsicherheit, die bezüglich der Mobilisationsrate von Energie im ersten Laktatationsabschnitt herrscht. Es

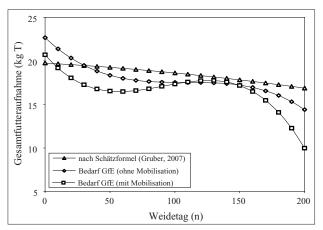


Abbildung 6: Systemvergleich zur Berechnung der Futteraufnahme

ist nicht Aufgabe dieser Untersuchung diese Sachlage zu klären, weshalb eindeutig die Variante der Futteraufnahmeschätzung zu bevorzugen ist. Sie bildet einen stetigen Verlauf ab, der gewährleistet, dass es nicht zu berechnungsbedingten Verschiebungen in den Gruppen kommt.

3.1.1 Futteraufnahme

Die durchschnittliche Gesamttagesfutteraufnahme (Durchschnitt aller Tiere und aller Versuchstage) betrug 17,5 kg T und setzte sich aus 2,2 kg Raufutter (15 % des Grundfutters), 3,9 kg Grassilage (25 %), 1,4 kg Maissilage (9 %), 7,8 kg Weidefutter (51 %) und 2,2 kg Kraftfutter (12,3 % der Gesamt-T) zusammen.

Zwischen den einzelnen Versuchsjahren konnten nur geringfügige Abweichungen, die vor allem auf die unterschiedliche Dauer der Vegetationsperiode zurückzuführen waren, beobachtet werden. Der Anteil des Weidefutters am Grundfutter lag in allen drei Versuchsjahren bei rund 50 %, im Jahr 2005 sogar bei 52,5 %. Trotz eines sehr hohen Bestimmtheitsmaßes konnten jedoch nur signifikante Werte für die Raufutter- und die Weidefutteraufnahme berechnet werden (*Tabellen 7a* und *7b*).

3.1.1.1 Auswirkungen der unterschiedlichen Ergänzungsfütterung auf die Futteraufnahme

Die unterschiedliche Ergänzungsfütterung veränderte zwar die Rationszusammensetzung nicht aber die Gesamtfutteraufnahme (Tabellen 7a und 7b). Lediglich die Kraftfuttergruppe hatte mit 17,9 kg T eine um ca. 0,6 kg höhere Futteraufnahme als die drei anderen Gruppen vorzuweisen. Die Unterschiede in der Rationszusammensetzung entsprechen der Versuchsplanung. Während in der Vollweide- und Kraftfuttergruppe jeweils rund 2 kg T Heu (13,3 bzw. 14 % des Grundfutters) verfüttert wurden, betrug die Heumenge in der Heugruppe 3,7 kg (23,8 %) und in der Maissilagegruppe nur 1,2 kg (7,7 %). Die Grasilagemengen variierten zwischen 3,3 kg (Heugruppe – 21,5 % des GF) und 4,2 kg (Kraftfuttergruppe – 29 % des GF). Der Anteil der Maissilage stieg von 0,9 kg T (Vollweide- u. Kraftfuttergruppe – jeweils ca. 6 % des GF) über 1,1 kg (Heugruppe – 7 %) auf 2,7 kg T in der Maisgruppe (17 % des GF). Die Weidefutteraufnahme verringerte sich von 8,7 kg T in der Vollweidegruppe (55,5 % des GF), über 7,7 kg T (Maisgruppe – 49,5 %) auf 7,4 bzw. 7,3 kg T in der Heubzw. Kraftfuttergruppe (Anteile am GF: 48 bzw. 51 %). Die Kraftfuttermenge und damit der Kraftfutteranteil waren mit 1,7 kg T (Vollweide- u. Maisgruppe – 9,7 bzw. 9,9 % Anteil an der Gesamt-T) und in der Heugruppe mit knapp 1,9 kg und einem Anteil von 10,7 % an der Gesamt-T auf gleichem Niveau. In der Kraftfuttergruppe lag die Kraftfuttermenge bei 3,4 kg T und einem Anteil von 19 % der Gesamt-T. Mit Ausnahme der Grundfuttermenge, die nur einen tendenziellen Wert zeigte, und der Gesamtfuttermenge – konnten alle Ergebnisse mit einem hohen Bestimmtheitsmaß (wiederum mit Ausnahme der Grund- bzw. Gesamtfuttermenge) durch signifikante Werte belegt werden.

3.1.1.2 Auswirkungen der unterschiedlichen Abkalbetermine auf die Futteraufnahme

Wie die unterschiedliche Ergänzungsfütterung beeinflusste auch das Abkalbedatum in erster Linie die Rationszusammensetzung und nur geringfügig die Gesamtfutteraufnahme (*Tabelle 7b*). Lediglich die Beginngruppe 3, das sind jene Tiere, die etwa Mitte Februar abkalbten, hatte mit 17 kg T eine etwas niedrigere Futteraufnahme als die drei anderen Gruppen vorzuweisen. Raufuttermenge und Raufutteranteil variierten nur kaum und lagen zwischen 2,1 kg und 2,3 kg T, das entsprach Raufutteranteilen am Grundfutter zwischen 13,6 und 15,3 %. Auch die verfütterte Maissilagemenge (1,2 bis 1,4 kg T) mit damit verbundenen Maissilageanteilen zwischen 7,5 und 9,5 % zeigte ebenso wie die Kraftfuttermenge (2,1 - 2,3 kg T) mit einem Kraftfutteranteil am Gesamtfutter zwischen 11,7 und 13 % kaum Unterschiede zwischen den Gruppen. Am stärksten wirkte sich der unterschiedliche Abkalbetermin auf den Grassilage- und Weidefutteranteil aus. Während in der Beginngruppe 1 4,9 kg T Grassilage (31 % des GF) verfüttert wurde, reduzierte sich dieser Wert über 4,2 kg in Beginngruppe 2 (27,5 %) auf 2,7 bzw. 3,8 kg T (18 bzw. 24,5 %) in den Beginngruppen 3 und 4. Fast im gleichen Ausmaß stieg der Anteil des Weidefutters von knapp 46,5 % (7,3 kg T) in der Beginngruppe 1 über 48 % (ebenfalls 7,3 kg T) und 52 % (8 kg) in den Beginngruppen 2 und 4 auf über 57 % (8,5 kg T) in der Beginngruppe 3. Mit Ausnahme der Mais-, Grundfutter- und Gesamtfuttermenge konnten auch hier – ebenfalls mit einem sehr hohen Bestimmheitsmaß – signifikante Unterschiede festgestellt werden.

3.1.2 Nährstoffversorgung

Die Futtermengen und deren spezifischer Nährstoffgehalt bilden in Summe die Gesamtnährstoffaufnahme. Aus der Gegenüberstellung von Nährstoffaufnahme und -bedarf bildet sich die Nährstoffbilanz, die wir in Prozent angeben. In Folge gehen wir nur auf die Energie- und Proteinversorgung (nXP-Versorgung) ein.

Wie aus der *Tabelle 7a* abzulesen, waren die Tiere im Durchschnitt energetisch bedarfsgerecht versorgt. Der Gesamtenergieaufnahme zwischen 112,5 und 114 MJ NEL stand ein Energiebedarf zwischen 111 und 112 MJ NEL gegenüber. Daraus ergab sich eine leichte Überversorgung, die sowohl im Durchschnitt als auch in den einzelnen Versuchsjahren zwischen 0,7 und 3 % lag.

Die nXP-Versorgung zeigte ein anderes Bild. Einer nXP-Versorgung zwischen 2.403 und 2.521 g nXP/Tag stand ein nXP-Bedarf zwischen 2.145 und 2.179 g gegenüber. Daraus ergaben sich nXP-Überschüsse zwischen 262 und 375 g oder eine Bedarfsdeckung zwischen 112 und 118 %.

3.1.2.1 Auswirkungen der unterschiedlichen Ergänzungsfütterung auf die Nährstoffversorgung

Die unterschiedliche Ergänzungsfütterung führte sowohl zu Unterschieden in der Energieaufnahme als auch in der Energiebedarfsdeckung (*Tabellen 7a* und *7b*). Während die Tiere in den Gruppen Vollweide, Heu und Maissilage jeweils 111 MJ NEL Energie aufnahmen, erhöhte sich die Energieaufnahme in der Kraftfuttergruppe auf 119 MJ NEL pro Tag. Die Milchleistung und das Lebendgewicht sind die maßgeblichen Größen der Bedarfsberechnung. So hatten beispielsweise die Tiere der Heugruppe bedingt durch die niedrigere Milchleistung nur einen Energiebedarf von 106 MJ NEL, während die Tiere der anderen Gruppen

zwischen 112 und 115 MJ NEL benötigten. Daraus ergaben sich Energiebedarfsdeckungen von 97 % (Maisgruppe), 99 % (Vollweidegruppe), 104 % (Heugruppe) und 106 % (Kraftfuttergruppe).

Die nXP-Aufnahme lag mit Ausnahme der Kraftfuttergruppe (2.555 g nXP) zwischen 2.417 und 2.430 g/ Tag. Auch hier wird der Bedarf maßgeblich durch die Milchleistung bestimmt. So stieg der nXP-Bedarf von 2.040 g in der Heugruppe auf 2.244 g in der Kraftfuttergruppe. Daraus ergab sich eine Bedarfsdeckung, die zwischen 110 % in der Maisgruppe und 119 % in der Heugruppe lag.

Bei der Energieversorgung konnten bis auf den Energiebedarf (nicht signifikant) und die Energieaufnahme aus dem Grundfutter (tendenziell) sämtliche Ergebnisse durch signifikante Werte abgesichert werden. Etwas schlechter war die Sicherheit bei der nXP-Versorgung. Der nXP-Eintrag durch die einzelnen Futtermittel konnte mit einem hohen Bestimmtheitsmaß durch signifikante Werte belegt werden.

3.1.2.2 Auswirkungen der unterschiedlichen Abkalbetermine auf die Nährstoffversorgung

Die unterschiedlichen Abkalbetermine hatten einen relativ geringen Einfluss auf die Nährstoffversorgung (*Tabelle 7b*). Über das Futter wurden zwischen 111 (Beginngruppe 3) und 116 MJ NEL (Beginngruppe 4) aufgenommen. Mit Ausnahme der Beginngruppe 4 (115 MJ NEL) lag der NEL-Bedarf zwischen 110 und 111 MJ NEL. Damit wurden die Tiere der Beginngruppen 3 und 4 annähernd bedarfsgerecht und die Tiere der Beginngruppen 1 und 2 mit einem Überschuss von 3 bzw. 2 MJ NEL leicht überversorgt.

Auch die nXP-Versorgung brachte keine sehr großen Unterschiede zwischen den einzelnen Beginngruppen. So lag die nXP-Aufnahme zwischen 2.405 g (Beginngruppe 3) und 2.512 g (Beginngruppe 4). Nach Abzug des jeweiligen nXP-Bedarfes ergaben sich daraus Überversorgungen zwischen 11 (Beginngruppe 4) und 16 % (Beginngruppe 1).

Bei der Nährstoffkalkulation der einzelnen Beginngruppen konnten nur die Energie- und nXP-Einträge aus Raufutter, Grassilage, Weide- und Kraftfutter mit signifikanten Werten hinterlegt werden.

3.1.3 Gesamtfutteraufnahme

Die Gesamtfutteraufnahme stellt die Summe der täglichen tierindividuellen Einzelfutteraufnahmen dar und wurde aus der gewogenen Ration im Stall und der kalkulierten Weidefutteraufnahme errechnet. Als Zeitfenster gilt die gesamte Laktation des Tieres.

Die durchschnittliche Gesamtfutteraufnahme (*Tabelle 7a*) betrug etwa 5.168 kg T und setzte sich aus 656 kg Raufutter, 1.157 kg Grassilage, 405 kg Maissilage, 2.293 kg Weidefutter und 638 kg Kraftfutter (12,3 % der Gesamt-T) zusammen. Der durchschnittliche Anteil des Weidefutters am Gesamtfutter betrug 44 %.

Die Abweichungen zwischen den einzelnen Versuchsjahren (*Tabelle 7a*) wurden in *Abbildung 7* grafisch dargestellt. Der Anteil des Weidefutters am Geamtfutter lag in den drei Versuchsjahren zwischen 43 (2007) und 46 % (2005) und der Kraftfutteranteil zwischen 12 und 13 %.

3.1.3.1 Gesamtfutteraufnahme in den einzelnen Gruppen

Die unterschiedliche Ergänzungsfütterung veränderte nicht nur die Rationszusammensetzung sondern auch die Gesamtfutteraufnahme (Tabellen 7a und 7b und Abbildung 8). Durch die kürzere Laktation der Heugruppe (teilweise stellten die Tiere die Milchproduktion früher ein) war die Gesamtfutteraufnahme in dieser Gruppe mit 4.833 kg T deutlich niedriger als in den anderen Gruppen, für die Gesamtfutteraufnahmen von 5.195 (Vollweide), 5.215 (Mais) und 5.427 kg (Vollweide) kalkuliert wurden. Wie schon bei der täglichen Futteraufnahme beobachtet, veränderte sich vor allem die Rationszusammensetzung. Während in der Vollweide- und Kraftfuttergruppe 620 bzw. 616 kg T Heu verfüttert wurden, betrug die Heumenge in der Heugruppe 1.023 kg und in der Maissilagegruppe 366 kg. Die Grassilagemengen variierten zwischen 955 kg in der Heugruppe und 1.277 kg in der Kraftfuttergruppe. Der Anteil der Maissilage stieg von 263 bzw. 265 kg T in der Vollweide- bzw. Kraftfuttergruppe über 294 kg in der Heugruppe auf 798 kg T in der Maisgruppe. Im Gegensatz dazu verringerte sich die Weidefutteraufnahme von 2.596 kg T in der Vollweidegruppe (50 % des Geamtfutters) über 2.319 kg T in der Maisgruppe (44,5 %) auf 2.221 bzw. 2.032 kg T in der Kraftfutter- bzw. Heugruppe (Anteile am Gesamtfutter: 41 bzw. 42 %). Die Kraftfuttermenge (502, 511 bzw. 512 kg T) und damit der Kraftfutteranteil (9,5, 10,5 bzw. 10 % Anteil am Gesamtfutter) waren in den

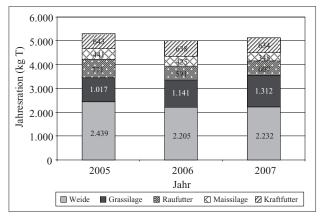


Abbildung 7: Jahresration in Abhängigkeit vom Versuchsjahr

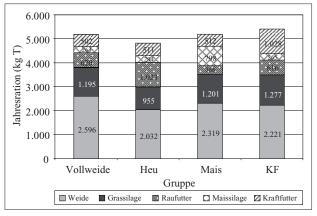


Abbildung 8: Jahresration in den einzelnen Gruppen

Tabelle 7a: Futteraufnahme und Kalkulation der Nährstoffversorgung (Gruppe)

		Mittelwert	2005	Jahr 2006	2007	Vollweide		uppe Maissilage	e KF
Tieranzahl	n		10	11	11	8	8	8	8
Laktationstag	n	150,68	154,34	148,34	149,34	153,71	141,33	153,21	154,46
Laktationszahl	n	2,54	3,40	2,27	1,95	2,72	2,61	2,36	2,48
Weidetage	n	192,34	204,98	188,29	183,74	196,62	184,08	193,96	194,71
Kalkulation Futteraufnahme		172,54	204,70	100,27	105,74	170,02	104,00	175,70	174,71
Futteraufnahme pro Tag	1 T	2.24	2.52	2.07	2.12	2.07	2.67	1.20	2,03
Raufutter Grassilage	kg T kg T	2,24 3,88	2,53 3,31	2,07 3,87	2,13 4,45	2,07 3,99	3,67 3,33	1,20 3,97	4,22
Maissilage	kg T	1,37	1,45	1,45	1,20	0,88	1,07	2,65	0,87
Weide	kg T	7,76	8,04	7,56	7,69	8,66	7,37	7,70	7,32
Kraftfutter	kg T	2,16	2,10	2,18	2,19	1,68	1,86	1,70	3,39
Grundfutter	kg T	15,25	15,33	14,95	15,47	15,60	15,44	15,52	14,44
Gesamtfutter	kg T	17,47	17,48	17,19	17,75	17,34	17,37	17,28	17,89
Anteil Ration									
Raufutter	% GF	14,73	16,46	14,11	13,62	13,32	23,82	7,74	14,04
Grassilage	% GF	25,35	21,60	25,94	28,52	25,54	21,31	25,49	29,08
Maissilage	% GF	8,93	9,42	9,46	7,91	5,61	6,93	17,12	6,05
Weide	% GF	50,99	52,52	50,50	49,95	55,53	47,94	49,65	50,83
Grundfutter	%	87,30	87,58	86,99	87,32	89,95	88,87	89,74	80,64
Kraftfutter	%	12,33	12,11	12,69	12,18	9,67	10,76	9,88	19,00
Kalkulation Versorgung									
Energieversorgung		4.00							
Raufutter NEL	MJ	12,08	13,53	11,20	11,51	11,09	19,74	6,56	10,94
Grassilage NEL	MJ	23,19	19,90	23,56	26,12	23,77	20,00	23,81	25,19
Maissilage NEL Weide NEL	MJ MJ	8,62 49,75	9,28 52,17	9,04 48,40	7,54 48,68	5,57 55,46	6,79 47,40	16,54 49,24	5,58 46,90
Kraftfutter NEL	MJ	19,35	17,68	20,23	20,14	15,08	16,66	15,18	30,47
Grundfutter NEL	MJ	93,65	94,87	92,20	93,86	95,89	93,93	96,15	88,61
Gesamtfutter NEL	MJ	112,99	112,55	112,43	114,00	110,97	110,59	111,33	119,08
Energiebedarf NEL	MJ NEL/Tag	111,55	112,35	111,44	110,86	111,92	106,18	114,87	113,24
Mangel/Überschuss NEL	MJ NEL/Tag	1,44	0,20	0,99	3,14	-0,94	4,41	-3,54	5,84
Deckung Energiebedarf NEL	%	101,72	100,73	101,37	103,06	99,38	104,38	97,37	105,73
nXP Versorgung									
Raufutter nXP	g	275,63	319,65	254,12	253,10	252,99	449,23	150,46	249,82
Grassilage nXP	g	505,58	444,06	503,80	568,88	518,77	436,74	517,94	548,87
Maissilage nXP	g	176,76	189,85	186,16	154,27	114,30	138,79	340,17	113,78
Weide nXP Kraftfutter nXP	g	1.122,98 373,77	1.190,16 376,81	1.084,84 374,19	1.093,93 370,32	1.252,12 292,10	1.068,90 322,84	1.111,91 296,40	1.058,98 583,74
Grundfutter nXP	g	2.080,94	,	2.028,93	2.070,18	2.138,18	2.093,66		1.971,45
Gesamtfutter nXP	g g	2.454,71		2.403,12		2.430,28		2.416,87	
Proteinbedarf nXP	g nXP/Tag	2.158,42		2.151,04		2.147,73	2.040,07		
Mangel/Überschuss nXP	g nXP/Tag	296,30	375,09	252,07	261,72	282,55	376,44	215,17	311,02
Deckung Proteinbedarf nXP	%	114,14	118,27	111,89	112,26	113,23	118,65	110,41	114,28
Gesamtfutteraufnahme Perio	de								
Raufutter	kg T	656	771	591	607	620	1.023	366	616
Grassilage	kg T	1.157	1.017	1.141	1.312	1.195	955	1.201	1.277
Maissilage	kg T	405	441	425	348	263	294	798	265
Weide	kg T	2.292	2.439	2.205	2.232	2.596	2.032	2.319	2.221
Kraftfutter	kg T	638	643	638	634	502	511	512	1.028
Grundfutter	kg T	4.510	4.668	4.362	4.500	4.674	4.304	4.684	4.379
Gesamtfutter Anteil Weidefutter am GES F	kg T	5.168	5.327	5.016	5.160	5.195	4.833	5.215	5.427
Anteil Weiderutter am GES F Anteil KF am GES Futter	Futter kg T kg T	44,4 12,4	45,8 12,1	44,0 12,7	43,3 12,3	50,0 9,7	42,1 10,6	44,5 9,8	40,9 19,0
Anten Kr am GES rutter	Kg I	12,4	12,1	14,/	12,3	9,7	10,0	9,0	19,0

Gruppen Vollweide, Heu und Maissilage auf demselben Niveau. In der Kraftfuttergruppe wurde insgesamt 1.028 kg T Kraftfutter eingesetzt, was wiederum einem Anteil von 19 % an der Gesamt-T entsprach.

Mit Ausnahme der Grundfuttermenge konnten alle Ergebnisse mit einem relativ hohen Bestimmtheitsmaß durch signifikante Werte belegt werden.

3.1.3.2 Auswirkungen der unterschiedlichen Abkalbetermine

Wie die unterschiedliche Ergänzungsfütterung beeinflusste auch das Abkalbedatum sowohl die Rationszusammensetzung als auch die Gesamtfutteraufnahme (*Tabelle 7b* und *Abbildung 9*). Die Gesamtfutteraufnahme verringerte sich von 5.418 bzw. 5.312 kg T in den Beginngruppen 1 und 2 auf 4.908 bzw. 5.033 kg in den Beginngruppen 3 und 4.

Tabelle 7b: Futteraufnahme und Kalkulation der Nährstoffversorgung (Beginn)

			Ве	eginn				Statistik	:	
		1	2	3	4	Jahr	Gruppe		Std	\mathbb{R}^2
Tieranzahl	n	8	8	8	8					
Laktationstag	n	155,71	154,71	147,83	144,46	0,333	0,002	0,020	6,044	0,830
Laktationszahl	n	2,59	3,16	2,37	2,05	0,476	0,972	0,647	1,573	0,505
Weidetage	n	195,77	196,19	197,12	180,28	0,022	0,063	0,053	9,036	0,759
Kalkulation Futteraufnahme										
Futteraufnahme pro Tag										
Raufutter	kg T	2,32	2,33	2,20	2,11	0,001	0,000	0,052	0,137	0,990
Grassilage	kg T	4,86	4,19	2,67	3,79	0,106	0,073	0,000	0,633	0,854
Maissilage	kg T	1,17	1,43	1,42	1,44	0,288	0,000	0,225	0,254	0,958
Weide	kg T	7,28	7,30	8,46	8,03	0,022	0,063	0,053	9,036	0,759
Kraftfutter	kg T	2,07	2,11	2,20	2,25	0,423	0,000	0,038	0,102	0,991
Grundfutter Gesamtfutter	kg T	15,63	15,25	14,75	15,37	0,635	0,123 0,589	0,428	1,019 0,985	0,498
	kg T	17,77	17,42	17,01	17,69	0,615	0,389	0,489	0,985	0,392
Anteil Ration	0/ CE	14.00	15.27	15.10	12.64	0.002	0.000	0.042	0.073	0.001
Raufutter Grassilage	% GF % GF	14,89 31,07	15,27 27,45	15,12 18,30	13,64 24,59	0,002 0,030	0,000 0,001	0,043	0,872 2,931	0,991 0,917
Maissilage	% GF	7,44	9,40	9,46	9,42	0,050	0,000	0,084	1,545	0,963
Weide	% GF	46,61	47,88	57,12	52,35	0,627	0,006	0,000	3,564	0,859
Grundfutter	%	87,92	87,67	86,63	86,97	0,608	0,000	0,106	1,003	0,972
Kraftfutter	%	11,71	11,95	12,98	12,65	0,517	0,000	0,103	0,982	0,973
Kalkulation Versorgung										
Energieversorgung										
Raufutter NEL	MJ	12,43	12,55	11,85	11,50	0,001	0,000	0,099	0,746	0,990
Grassilage NEL	MJ	28,56	25,07	16,13	23,01	0,153	0,084	0,000	3,815	0,842
Maissilage NEL	MJ	7,32	8,92	8,98	9,27	0,255	0,000	0,174	1,548	0,960
Weide NEL	MJ MJ	46,43 18,59	46,64	54,17	51,76	0,322 0,001	0,002	0,004	3,754	0,853
Kraftfutter NEL Grundfutter NEL	MJ	94,73	19,06 93,19	19,46 91,13	20,28 95,54	0,762	0,000 0,103	0,050 0,621	0,838 6,255	0,993 0,506
Gesamtfutter NEL	MJ	113,32	112,25	110,59	115,82	0,702	0,042	0,587	6,074	0,560
Energiebedarf NEL	MJ NEL/Tag	110,20	110,13	110,72	115,16	0,974	0,217	0,778	8,254	0,617
Mangel/Überschuss NEL	MJ NEL/Tag	3,12	2,12	-0,13	0,66	0,796	0,025	0,756	6,067	0,737
Deckung Energiebedarf NEL	%	103,75	102,19	100,23	100,70	0,828	0,021	0,618	5,287	0,748
nXP Versorgung										
Raufutter nXP	g	284,52	287,97	269,28	260,74	0,000	0,000	0,048	16,743	0,990
Grassilage nXP	g	620,64	545,25	352,64	503,78	0,186	0,082	0,000	81,980	0,837
Maissilage nXP Weide nXP	g	150,90	183,33 1054,60	184,11	188,69	0,239 0,190	0,000 0,002	0,193	31,745	0,960
Kraftfutter nXP	g g	1051,49 359,40	363,90	1218,79 379,90	1167,03 391,89	0,190	0,002	0,006 0,022	84,835 16,375	0,855 0,992
Grundfutter nXP	g		2.071,16			0,442	0,118		138,582	0,543
Gesamtfutter nXP	g		2.435,06			0,402	0,153		132,709	0,555
Proteinbedarf nXP	g nXP/Tag	2.143,07	2.120,28	2.102,44	2.267,87	0,960	0,158	0,508	175,808	0,549
Mangel/Überschuss nXP	g nXP/Tag	323,87	314,77	302,28	244,26	0,239	0,062	0,712	107,818	0,686
Deckung Proteinbedarf nXP	%	115,68	115,32	114,73	110,83	0,244	0,071	0,594	5,654	0,676
Gesamtfutteraufnahme Period	le									
Raufutter	kg T	713	714	617	581	0,001	0,000	0,001	53,348	0,981
Grassilage	kg T	1.474	1.277	792	1.085	0,206	0,036		203,789	0,851
Maissilage	kg T	358	435	415	411	0,257	0,000	0,363	80,577	0,955
Weide	kg T	2.220	2.224	2.429	2.296	0,326	0,003		233,321	0,760
Kraftfutter Grundfutter	kg T kg T	634 4.764	642 4.650	636 4.253	640 4.373	0,739 0,524	0,000 0,218	0,801	14,382 428,715	0,998 0,569
Gesamtfutter	kg T	4.764 5.418	5.312	4.253	5.033	0,524	0,218	,	428,713	0,569
Anteil Weidefutter am GES F	-	41,0	41,9	4.908	45,6	0,514	0,071	0,177	150,271	0,000
Anteil KF am GES Futter	kg T	11,7	12,1	13,0	12,7					

Auch die Raufuttermenge ging von 713 bzw. 714 kg T in den Beginngruppen 1 und 2 auf 617 bzw. 581 kg in den Beginngruppen 3 und 4 zurück. Weniger stark unterschieden sich die verfütterten Maissilagemengen. Sie lagen zwischen 358 in der Beginngruppe 1 und 435 kg T in der Beginngruppe 2. Noch kleinere Unterschiede konnten bei der verfütterten Kraftfuttermenge (zwischen 634 kg in Beginngruppe 1 und

642 kg in Beginngruppe 2) festgestellt werden. Somit lag der Kraftfutteranteil am Gesamtfutter zwischen 11,7 und 13 %. Wie schon bei der täglichen Futteraufnahme, wirkte sich der unterschiedliche Abkalbetermin am stärksten auf den Grassilage- und Weidefutteranteil aus. Während in der Beginngruppe 1 1.474 kg T Grassilage verfüttert wurde, reduzierte sich dieser Wert über 1.277 kg in Beginngruppe

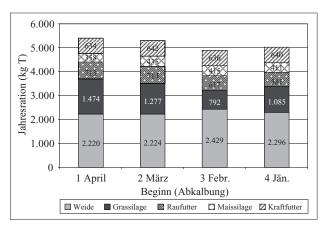


Abbildung 9: Jahresration in den einzelnen Beginngruppen

2 auf 792 bzw. 1.085 kg T in den Beginngruppen 3 und 4. Obwohl bei der Weidefuttermenge keine sehr großen Unterschiede gefunden werden konnten (Weidefutteraufnahme zwischen 2.220 kg T in Beginngruppe 1 und 2.429 kg T in Beginngruppe 3), veränderte sich bedingt durch die unterschiedliche Gesamtfutteraufnahme der Anteil des Weidefutters. So stieg der Weidefutteranteil von 41 % in Beginngruppe 1 über 42 % in Beginngruppe 2 auf 49,5 bzw. 45,5 % in den Beginngruppen 3 und 4. Trotz eines relativ hohen Bestimmheitsmaßes konnten nur die Raufutter- und Grassilagemengen mit signifikanten Werten abgesichert werden.

3.1.4 Futteraufnahme in den einzelnen Fütterungsphasen Wie aus den Tabellen 8a und 8b ersichtlich, wurden in der Vor- (Stall-) phase insgesamt 1.064 kg und in der Weidephase 3.292 kg T Gesamtfutter verfüttert. Diese Futtermenge setzte sich aus 208 bzw. 353 kg T Raufutter, 389 bzw. 105 kg T Grassilage, 168 bzw. 208 kg Maissilage, 0 bzw. 2.286 kg Weidefutter und 300 bzw. 340 kg Kraftfutter zusammen. Der Kraftfutteranteil am Gesamtfutter lag somit bei 28,2 bzw. 10,3 % und der Weidefutteranteil in der Weidephase bei 69,4 % der Gesamt- bzw. 77,4 % der Grundfutteraufnahme.

Abbildung 10 zeigt den Verlauf der täglichen Futteraufnahmen während der Weidephase. Während am Beginn der Weidephase durchschnittlich rund 20 kg Trockenmasse

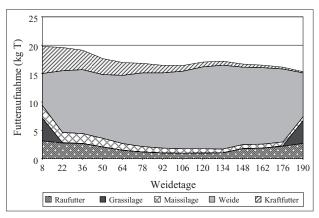


Abbildung 10: Verlauf der täglichen Futteraufnahme während der Weidephase

pro Kuh aufgenommen wurde, verringerte sich die Futteraufnahme gegen Ende der Weidezeit auf rund 15 kg T. Grassilage wurde nur zu Weidebeginn und dann erst wieder ab etwa Anfang Oktober und in der gesamten Nachphase, die hier allerdings nicht angeführt wird, verfüttert. Alle anderen Futtermittel wurden in verschieden großen Anteilen während der gesamten Weidesaison verfüttert.

3.1.4.1 Auswirkungen der unterschiedlichen Ergänzungsfütterung auf die Futteraufnahme in den einzelnen Fütterungsphasen

Untersucht man die Auswirkungen der unterschiedlichen Ergänzungsfütterung auf die Futteraufnahme in den einzelnen Phasen, so lassen sich mit Ausnahme der Grassilageaufnahme signifikante Unterschiede feststellen (Tabellen 8a und 8b). Während in der Vor-(Stall-) phase mit 184 (Vollweide), 220 (Heu), 212 (Mais) und 215 kg T (Vollweide) in allen Gruppen annähernd gleich viel Raufutter aufgenommen wurde, unterschied sich die Raufutteraufnahme in der Weidephase. In der Maisgruppe wurde am Beginn der Weidezeit noch etwa 153 kg Raufutter verfüttert. Diese Menge erhöhte sich in der Vollweide- bzw. Kraftfuttergruppe von 308 bzw. 298 kg T auf 654 kg T in der Heugruppe. Grassilage wurde in der Stallphase ad libitum verabreicht und in der Weidephase nur während der Umstellungsphase im Frühjahr und dann wieder im Herbst. Aus diesem Grund waren die eingesetzten Grassilagemengen in der Vorphase mit 360 (Vollweide), 371 (Heu), 387 (Maissilage) und 436 kg T (Kraftfutter) deutlich höher als in der Weidephase, mit nur mehr 129, 77, 101 bzw. 113 kg T. Nur kleine Unterschiede zeigten sich während der Stallphase bei der Maissilageaufnahme (155, 169, 177 bzw. 170 kg T in den Gruppen Vollweide, Heu, Maissilage bzw. Kraftfutter). Während der Weidephase erhöhte sich die aufgenommene Silomaismenge von den Gruppen Vollweide, Heu und Kraftfutter (107, 123 bzw. 90 kg T) auf 513 kg T in der Maisgruppe. Ein ähnliches Bild beim Kraftfutter: Während in der Vorphase die Kraftfuttermenge von 268 kg in der Vollweidegruppe über 294 bzw. 301 kg T in der Maissilage- bzw. Heugruppe auf 337 kg T in der Kraftfuttergruppe anstieg, wurde in der Weidephase in dieser Gruppe mit 665 kg T um 439, 435 bzw. 426 kg T mehr Kraftfutter verfüttert als in den Gruppen Heu (226 kg T), Maissilage (230 kg T) und Vollweide (239 kg T). Die Kalkulation der Weidefutteraufnahmen erbrachte in der Weidephase Weidefutteranteile von 65,2 (Heu), 65,5 (Kraftfutter), 69,8 (Mais) und 76,9 % (Vollweide). Für die Errechnung dieses Anteils wurden Weidefutteraufnahmen von 2.021, 2.210, 2.308 und 2.603 kg T zu Grunde gelegt.

Abbildung 11 zeigt den Verlauf der täglichen Futteraufnahme während der Weidephase in den einzelnen Versuchsgruppen. Gut ersichtlich ist die höhere Weidefutteraufnahme der Vollweidegruppe, aber auch die Höhe der verabreichten Ergänzungsfuttermittel. In der Kraftfuttergruppe ging mit dem Absetzen des Raufutters und der Maissilage die Futteraufnahme relativ rasch zurück, um dann wiederum leicht anzusteigen. Ein ähnliches Bild zeigte die Vollweidegruppe, während die beiden anderen Gruppen diesen Einbruch nicht verzeichneten und die Futteraufnahme mehr oder weniger gleichmäßig im Verlauf der Weidesaison zurückging.

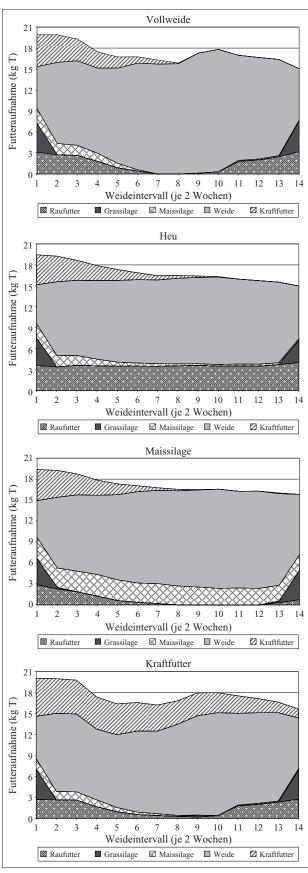


Abbildung 11: Verlauf der täglichen Futteraufnahme während der Weidephase in Abhängigkeit der Gruppe

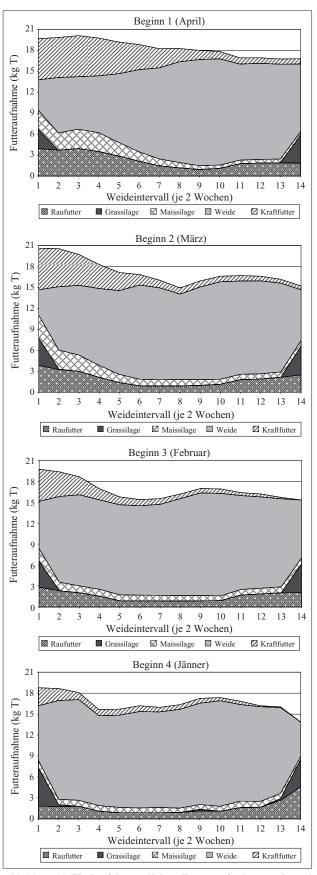


Abbildung 12: Verlauf der täglichen Futteraufnahme während der Weidephase in Abhängigkeit der Abkalbetermine

Tabelle 8a: Einfluss der Ergänzungsfütterung (Gruppe) auf Futteraufnahme, Milchleistung und Gewichtsentwicklung in Vorund Weidephase

					Vorph				Weider		
			nase		Gruj				Grup		
		Vorph.	Weideph.	Vollweide	Heu	Maissilage	KF	Vollweide	Heu	Maissilage	KF
Tieranzahl	n	32	32	8	8	8	8	8	8	8	8
Gesamtfutter Phase											
Raufutter	kg T	207,51	353,19	183,82	219,82	211,74	214,66	307,74	654,20	152,95	297,84
Grassilage	kg T	388,56	104,84	360,23	370,58	387,48	435,96	129,10	77,00	100,56	112,70
Maissilage	kg T	167,81	208,22	154,74	169,19	177,41	169,92	107,04	122,69	513,20	89,94
Weide	kg T	0,00	2.285,76	0,00	0,00	0,00	0,00	2.603,08	2.021,33	2.308,33	2.210,33
Kraftfutter	kg T	300,19	339,94	268,34	300,71	294,40	337,29	238,61	226,24	229,74	665,16
Grundfutter	kg T	763,89	2952,00	698,79	759,59	776,63	820,54	3.146,98	2.875,18	3.075,04	2.710,78
Gesamtfutter	kg T	1.064,08	3.291,93	967,13	1.060,30	1.071,03	1.157,83	3.385,59	3.101,42	3.304,78	3.375,94
Anteil Ration											
Raufutter	% GF	27,2	12,0	26,3	28,9	27,3	26,2	9,8	22,8	5,0	11,0
Grassilage	% GF	50,9	3,6	51,6	48,8	49,9	53,1	4,1	2,7	3,3	4,2
Maissilage	% GF	22,0	7,1	22,1	22,3	22,8	20,7	3,4	4,3	16,7	3,3
Weide	% GF	0,0	77,4	0,0	0,0	0,0	0,0	82,7	70,3	75,1	81,5
Weide	% Ges. T	0,0	69,4	0,0	0,0	0,0	0,0	76,9	65,2	69,9	65,5
Kraftfutter	%	28,2	10,3	27,7	28,4	27,5	29,1	7,0	7,3	7,0	19,7
Grundfutter	%	71,8	89,7	72,3	71,6	72,5	70,9	93,0	92,7	93,0	80,3
Leistung/Periode											
Milchleistung	kg	1.630	4.135	1.503	1.645	1.564	1.807	4.266	3.708	4.335	4.230
Milchleistung ECM		1.736	4.315	1.694	1.648	1.708	1.892	4.480	3.715	4.659	4.407
Leistung/Tag											
Milchleistung	kg	26,7	21,6	27,3	26,6	26,2	26,5	21,8	20,3	22,4	22,0
Milchleistung ECM		28,6	22,6	30,3	27,1	28,9	28,3	22,9	20,3	24,2	22,9
Fett	%	4,79	4,48	5,03	4,41	4,92	4,79	4,59	4,22	4,73	4,40
Eiweiß	%	3,20	3,29	3,27	3,07	3,25	3,23	3,29	3,12	3,36	3,40
Laktose	%	4,78	4,66	4,75	4,76	4,86	4,74	4,60	4,63	4,73	4,67
Zellzahl	x 1.000	199	187	233	250	159	152	243	203	173	129
	mg/100 ml	19,4	35,6	19,5	20,6	20,4	17,0	38,7	36,2	34,5	32,8
Erhaltung											
Lebendgewicht	kg	627	590	655	625	617	612	608	577	584	592
Tageszunahmen Mi	_	-875,9	77,7	-1.031,5	-859,8	-885,4	-727,1	129,1	16,4	72,2	93,1
Leistungsverteilung	0 0	,	,	,		,	,	,	,	,	,
Milchleistung	%	25,8	65,5	23,9	29,1	24,3	25,9	67,0	64,6	66,0	64,3
Milchleistung ECM		26,1	65,1	24,4	29,3	24,6	26,1	66,5	64,3	65,7	63,9
Fett	%	26,7	64,6	25,1	29,9	25,1	26,7	66,1	63,9	65,3	63,1
Eiweiß	%	24,9	65,8	23,2	28,3	23,5	24,7	67,0	64,7	66,3	65,0
Laktose	%	26,4	65,2	24,6	29,7	24,7	26,4	66,8	64,2	65,8	64,2

3.1.4.2 Auswirkungen der unterschiedlichen Abkalbetermine auf die Futteraufnahme in den einzelnen Fütterungsphasen

Die unterschiedlichen Abkalbetermine wirkten sich signifikant auf die Futteraufnahme in den einzelnen Phasen aus (Tabelle 8b). So stieg in der Vor-(Stall-) phase die Raufuttermenge von 102 kg T in der Beginngruppe 1 über 170 kg in der Beginngruppe 2 auf 262 bzw. 297 kg T in den Beginngruppen 3 und 4. Im Gegensatz dazu verringerte sich die Heuaufnahme von 439 kg und 390 kg T in den Beginngruppen 1 und 2 auf 305 bzw. 279 kg T in den Beginngruppen 3 und 4. Die Grassilagemenge in der Vorphase stieg von 89 kg T in der Beginngruppe 1 über 290 und 383 kg in den Beginngruppen 2 und 3 auf 792 kg T in Beginngruppe 4. In der Weidephase wurde nur während der Übergangsfütterung im Frühjahr und auch im Herbst Grassilage verfüttert, wobei sich aus dem unterschiedlichen Anteil des Ergänzungsfutters unterschiedliche Grassilagemengen in den einzelnen Gruppen ergaben. Während in den Beginngruppen 1 und 3 nur 38 bzw. 59 kg Grassilage

verfüttert wurden, erhöhte sich diese Menge in den Beginngruppen 2 und 4 auf 133 bzw. 190 kg T. Obwohl insgesamt annähernd die gleiche Menge Maissilage in den einzelnen Beginngruppen verabreicht wurde, unterschied sich der Anteil von Silomais in den einzelnen Phasen. So wurden in der Stallphase 65, 137, 182 und 287 kg T Maissilage in den Beginngruppen 1 bis 4 verabreicht. Während der Weidephase reduzierte sich die Maissilagemenge von 254 bzw. 255 kg T in den Beginngruppen 1 und 2 auf 188 bzw. 137 kg in den Beginngruppen 3 und 4. Ein ähnliches Bild zeigte sich beim Kraftfutter. Die Kraftfuttermenge stieg in der Vorphase von 109 kg in Gruppe 1 über 224 bzw. 376 kg T in den Beginngruppen 2 und 3 auf 492 kg in Beginngruppe 4. Bedingt durch die unterschiedliche Dauer der Stallphase ergaben sich daraus Kraftfutteranteile zwischen 26,3 % (Beginngruppe 4) und 31,2 % (Beginngruppe 3). In der Weidephase wurde in Beginngruppe 1 mit 542 kg die höchste Kraftfuttermenge verabreicht. In den Beginngruppen 2, 3 und 4 wurden hingegen nur 414, 251 und 154 kg Kraftfutter eingesetzt, daraus ergaben sich in den 4

Tabelle 8b: Einfluss des Abkalbetermines (Beginn) auf Futteraufnahme, Milchleistung und Gewichtsentwicklung in Vor- und Weidephase

			Vorphas	ıase			Weide	Weidephase			ā	ā		
		1	beginn 2	3 3	4	1	Beginn 2	mn 3	4	Phase	Fnase x Gruppe	rnase x Beginn	STD	R ²
Tieranzahl	u	∞	∞	∞	~	~	~	∞	∞					
Gesamtfutter Phase														
Raufutter	kgT	102,07	169,85	261,53	296,59	438,68	390,49	305,02	278,55	0,000	0,000	0,000	52,642	0,942
Grassilage	kg T	89,01	289,98	383,20	792,06	37,67	132,85	58,54	190,32	0,000	0,948	0,000	164,925	0,910
Maissilage	kgT	64,85	137,23	182,47	286,71	253,50	254,63	188,13	136,60	0,000	0,000	0,000	61,636	0,899
Weide	kgT	0,00	0,00	0,00	0,00	2.178,07	2.208,78	2.407,12	2.349,09	0,000	0,000	0,102	142,921	0,690
Kraftfutter	kgT	109,09	224,22	375,75	491,68	541,57	413,62	250,67	153,88	0,000	0,000	0,000	54,165	0,964
Grundfutter	kg T	255,92	597,07	827,20	1.375,36	2.907,92	2.986,74	2.958,81	2.954,57	0,000	0,080	0,000	267,288	0,961
Gesamtfutter	kg T	365,02	821,29	1.202,95	1.867,04	3.449,49	3.400,37	3.209,48	3.108,45	0,000	0,709	0,000	288,650	0,962
Anteil Ration														
Raufutter	% GF	39,9	28,4	31,6	21,6	15,1	13,1	10,3	9,4					
Grassilage	% GF	34,8	48,6	46,3	57,6	1,3	4,4	2,0	6,4					
	% GF	25,3	23,0	22,1	20,8	8,7	8,5	6,4	4,6					
	% GF	0,0	0,0	0,0	0,0	74,9	74,0	81,4	79,5					
Weide % C	% Ges. T	0,0	0,0	0,0	0,0	63,1	65,0	75,0	75,6					
Kraftfutter	%	29,9	27,3	31,2	26,3	15,7	12,2	7,8	5,0					
Grundfutter	%	70,1	72,7	8,89	73,7	84,3	8,78	92,2	95,0					
Leistung/Periode														
Milchleistung	kg	869	1.284	1.916	2.721	4.748	4.430	3.845	3.517	0,000	0,261	0,000	553	0,890
Milchleistung ECM	kg	630	1.409	1.935	2.969	4.928	4.623	3.963	3.747	0,000	0,188	0,000	277	0,889
Leistung/Tag														
Milchleistung	kg	21,2	29,2	27,7	28,6	25,1	22,5	20,2	18,6	0,000	0,880	0,002	4,5	0,511
Milchleistung ECM	kg	23,0	32,2	28,4	30,9	26,3	23,2	21,2	19,5	0,000	688,0	0,005	5,1	0,540
Fett	%	4,94	4,96	4,45	4,80	4,48	4,45	4,46	4,54	0,037	988'0	0,549	0,54	0,378
Eiweiß	%	3,35	3,19	3,02	3,25	3,26	3,19	3,31	3,41	0,163	0,823	0,183	0,24	0,355
Laktose	%	4,73	4,68	4,83	4,86	4,70	4,62	4,64	4,68	0,004	0,865	0,320	0,14	0,389
Zellzahl x	x 1.000	352	152	176	115	165	204	185	194	0,763	0,934	0,128	146	0,237
Harnstoff mg/1	mg/100 ml	19,5	20,0	20,0	18,1	34,6	36,2	36,9	34,7	0,000	0,667	0,981	5,7	0,758
Erhaltung														
Lebendgewicht	kg	909	619	879	959	582	574	298	809	0,026	806'0	0,949	61	0,259
Tageszunahmen Mittel	g/Tag	-1.036,2	-1.252,6	-624,6	-590,2	64,6	-27,0	191,2	82,0	0,000	0,624	0,165	373,0	0,718
Leistungsverteilung Phasen	en													
Milchleistung		8,9	19,1	32,4	42,8	75,4	0,89	63,9	54,6	0,000	0,202	0,000	5,2	0,957
Milchleistung ECM	%	0,6	20,1	32,0	43,3	74,9	67,0	64,3	54,2	0,000	0,263	0,000	5,4	0,952
Fett	%	9,3	21,0	32,4	44,1	74,8	66,3	64,1	53,4	0,000	0,314	0,000	5,7	0,945
Eiweiß	%	9,8	16,1	30,3	41,7	74,5	67,3	65,4	55,8	0,000	0,230	0,000	5,2	0,958
Laktose	%	8,9	19,4	33,3	43,8	75,9	68,3	63,0	53,7	0,000	0,224	0,000	5,5	0,951

Beginngruppen Kraftfutteranteile von 15,7 %, 12,2 %, 7,8 % und 5,0 %. Die Kalkulation der Weidefutteraufnahmen erbrachte in der Weidephase Weidefutteraufnahmen in der Höhe von 2.178, 2.209, 2.407 und 2.349 kg T und somit einen Weidefutteranteil von 63,1 (Beginngruppe 1), 65,0 (Beginngruppe 2), 75,0 (Beginngruppe 3) und 75,6 % (Beginngruppe 4) am Gesamtfutter.

Abbildung 12 zeigt den Verlauf der täglichen Futteraufnahme während der Weidephase in den einzelnen Beginngruppen. Je früher die Tiere abkalbten (Beginngruppen 3 und 4), desto höher war die Weidefutteraufnahme, weil der Anteil der Ergänzungsfuttermittel bedingt durch das Laktationsstadium bereits wieder zurückging. Allerdings blieb auch die Gesamtfutteraufnahme etwas hinter jener in den Beginngruppen 1 und 2.

3.2 Milchleistung und Milchinhaltsstoffe

3.2.1 Laktationsleistungen und Milchinhaltsstoffe

Aus *Tabellen 9a* und *9b* wird ersichtlich, dass die Versuchstiere im Durchschnitt eine Milchleistung von 6.658 kg ECM erzielten. Das Versuchsjahr hatte weder einen signifikanten Einfluss auf die Milchmenge noch auf die Milchinhaltsstoffe.

3.2.2 Auswirkungen der unterschiedlichen Ergänzungsfütterung auf Milchleistung und Milchinhaltsstoffe

Die unterschiedliche Ergänzungsfütterung in den vier Versuchsgruppen brachte erwartungsgemäß einen signifikanten Einfluss auf die Milchleistung in ECM, aber auch auf die Jahresfett- und Jahreseiweißleistung (*Tabellen 9a* und *9b*). Während auch beim durchschnittlichen Fettgehalt signifikante Wert gefunden wurden, konnten weder beim Eiweißnoch beim Harnstoffgehalt signifikante Unterschiede zwischen den Gruppen ermittelt werden. Die Vollweidegruppe brachte es auf eine Milchleistung von 6.778 kg ECM (6.367 kg Milch mit 4,66 % Fett und 3,28 % Eiweiß). Durch die Beifütterung von Maissilage während der Weidezeit erhöhte sich die Milchleistung auf 7.089 kg ECM (6.570 kg Milch mit 4,76 % Fett und 3,33 % Eiweiß) und die Beifütterung von zusätzlichem Kraftfutter brachte eine Milchleistung von 6.966 kg ECM (6.652 kg Milch mit 4,47 % Fett und 3,35 % Eiweiß). Eine Ergänzungsfütterung mit Heu führte zu einem Rückgang der Milchleistung auf 5.798 kg ECM (5.770 kg Milch mit 4,26 % Fett und 3,10 % Eiweiß). Wie bereits erwähnt, war der Fettgehalt mit 4,66 bzw. 4,76% in den Gruppen Vollweide bzw. Mais am höchsten. In der Kraftfuttergruppe konnte ein Fettgehalt von 4,47 % und in der Heugruppe ein Gehalt von 4,26 % erzielt werden. Obwohl auch der Eiweißwert in der Heugruppe mit 3,10 % deutlich hinter jenen der anderen Gruppen (Vollweidegruppe: 3,28 %; Maisgruppe: 3,33 %; Kraftfuttergruppe: 3,35 %) lag, konnte – allerdings mit einem Bestimmtheitsmaß von nur 37 % – kein signifikanter Einfluss festgestellt werden. Auch beim Harnstoffwert, der von 32,1 mg/ 100 ml in der Vollweidegruppe, über 30,0 in der Heu- und 29,4 in der Maisgruppe auf 27,7 mg/ 100 ml in der Kraftfuttergruppe zurückging, konnte kein signifikanter Unterschied entdeckt werden.

3.2.3 Auswirkungen der unterschiedlichen Abkalbetermine auf Milchleistung und Milchinhaltsstoffe

Das unterschiedliche Laktationsstadium brachte – bei einem Bestimmtheitsmaß von über 63 % – keinen signifikanten Einfluss auf Milchmenge und Milchinhaltsstoffe (*Tabelle 9b*). Zu beobachten war allerdings, dass die tatsächliche Jahresmilchleistung von 6.482 kg in der Beginngruppe 1 auf 6.197 bzw. 6.224 kg in den Beginngruppen 3 und 4 zurückging. Im gleichen Ausmaß stiegen aber – mit Ausnahme der Beginngruppe 3 – die Milchinhaltsstoffe von 4,44 % Fett und 3,24 % Eiweiß in Beginngruppe 1 auf 4,73 % Fett und 3,42 % Eiweiß in Beginngruppe 4, so dass die Milchleistung nach ECM in den Beginngruppen 1, 2 und 4 mehr oder weniger gleich hoch war (6.734, 6.830 bzw. 6.739 kg). Nur die Beginngruppe 3 lag mit 6.329 kg um etwa 500 kg ECM niedriger.

3.2.4 Auswirkungen der einzelnen Phasen auf Milchleistung und Milchinhaltsstoffe

Wie aus den *Tabellen 8a* und *8b* ersichtlich, wurden in der Vor-(Stall-) phase mit einer täglichen Milchleistung von 26,66 kg, einem Fettgehalt von 4,79 % und einem Eiweißgehalt von 3,2 % eine Milchleistung von 1.736 kg ECM ermolken. In der doch deutlich längeren Weidephase brachte man es mit einer durchschnittlichen täglichen Milchmenge von 21,61 kg und einem Fett- bzw. Eiweißgehalt von 4,48 bzw. 3,29 % auf eine Leistung von 4.315 kg ECM. Während in der Vorphase ein durchschnittlicher Harnstoffgehalt von 19 mg/ 100 ml gemessen wurde, lag er in der Weidephase bei durchschnittlich 36 mg/ 100 ml.

3.2.4.1 Auswirkungen der unterschiedlichen Ergänzungsfütterung auf Milchleistung und Milchinhaltsstoffe in den einzelnen Fütterungsphasen

Untersucht man die Auswirkungen der unterschiedlichen Ergänzungsfütterung auf die Milchleistung in den einzelnen Phasen, so lassen sich trotz eines hohen Bestimmtheitsma-Bes keine signifikanten Unterschiede feststellen (Tabellen 8a und 8b). Die Milchleistung nach ECM unterscheidet sich in der Vorphase in den Gruppen Vollweide, Heu und Maissilage nur um 60 kg. In der Kraftfuttergruppe lag hingegen die Milchleistung mit 1.892 kg ECM um ca. 200 kg über jener der anderen Gruppen, obwohl bis zum 56. Laktationstag alle Versuchsgruppen gleich gefüttert wurden. Die Milchleistung in der Weidephase wiederum war in den Gruppen Vollweide, Mais und Kraftfutter auf einem ähnlichen Niveau, wobei sie in der Maisgruppe mit 4.659 kg ECM noch um 180 bzw. 260 kg höher lag als in der Vollweide- bzw. Kraftfuttergruppe. In der Heugruppe konnte hingegen nur eine Milchleistung von 3.715 kg ECM, das sind um rund 750 kg weniger als in der Kraftfutter- und Vollweidegruppe und um fast 950 kg weniger als in der Maisgruppe ermolken werden. In der Weidephase waren die Eiweißgehalte mit 3,36 bzw. 3,40 % in der Mais- bzw. der Kraftfuttergruppe am höchsten, signifikant höher waren diese Werte jedoch nicht. Ein ähnliches Bild beim Harnstoffgehalt: Während in der Vorperiode alle 4 Gruppen ähnliche Harnstoffwerte zeigten (zwischen 17 mg/ 100 ml in der

Tabelle 9a: Milchleistung, Anteil der Einzelfuttermittel an der Milchbildung und Tiergewichte in Abhängigkeit der Gruppe

				Jahr			Grı	ірре	
		Mittelwert	2005	2006	2007	Vollweide	Heu	Maissilage	KF
Milchleistung									
Kalkulierte Milchleistung aus Futteren	ergie kg/Tag	23,45	23,26	23,46	23,63	22,53	22,84	23,06	25,36
Tatsächliche Milchleistung									
Milchleistung/Periode	kg	6.340	6.750	6.189	6.081	6.367	5.770	6.570	6.652
ECM/Periode	kg	6.658	6.969	6.613	6.392	6.778	5.798	7.089	6.966
Milchleistung/Tag	kg	21,2	22,1	21,0	20,5	20,8	20,6	21,6	21,7
ECM/Tag	kg	22,2	22,8	22,4	21,5	22,2	20,7	23,3	22,7
Fett	%	4,54	4,46	4,66	4,49	4,66	4,26	4,76	4,47
Eiweiß	%	3,26	3,12	3,32	3,36	3,28	3,10	3,33	3,35
Lactose	%	4,69	4,69	4,72	4,65	4,63	4,67	4,75	4,69
Zellzahl	x 1.000	179	150	183	203	223	202	162	129
Harnstoff	mg/100 ml	29,8	33,4	27,4	28,6	32,1	30,0	29,4	27,7
Anteil Milch aus									
Rauhfutter	%	10,7	12,0	10,1	10,1	10,0	17,9	5,9	9,2
Grassilage	%	20,5	17,6	21,0	22,7	21,4	18,0	21,3	21,1
Maissilage	%	7,7	8,2	8,0	6,8	5,0	6,1	14,8	4,7
Weide	%	44,1	46,4	43,0	43,0	49,9	42,9	44,3	39,4
Grundfutter	%	83,0	84,2	82,1	82,6	86,4	84,9	86,3	74,4
Kraftfutter	%	17,0	15,8	17,9	17,4	13,6	15,1	13,7	25,6
Erhaltung									
Lebendgewicht	kg	605	607	592	615	624	594	596	605
Tageszunahmen	g/Tag	-33,4	-116,8	18,6	-2,1	41,2	-82,3	-48,1	-44,4

Kraftfuttergruppe und 20,5 mg/ 100 ml in der Heugruppe), unterschieden sich die Harnstoffwerte in der Weidephase stärker. So ging der durchschnittliche Harnstoffgehalt der Milch von der Vollweidegruppe mit 38,7 mg/ 100 ml, über 36,2 in der Heugruppe auf 34,5 in der Mais- und 32,8 in der Kraftfuttergruppe zurück.

3.2.4.2 Auswirkungen der unterschiedlichen Abkalbetermine auf Milchleistung und Milchinhaltsstoffe in den einzelnen Fütterungsphasen

Die unterschiedlichen Abkalbezeiten schlugen sich deutlich auf die Milchleistungen in den einzelnen Phasen nieder (Tabelle 8b). Je früher die Kühe abkalbten, desto höher war die Milchleistung in der Vorphase. Während allerdings die Vorphase unterschiedlich lange dauerte, war die Weidephase immer gleich lang, d.h. die geringere Milchmenge in der Weidephase war eine Folge der niedrigeren Tagesmilchleistung in den Beginngruppen 3 und 4. So konnten von den Tieren der Beginngruppe 1 mit einer durchschnittlichen Milchmenge von 26,3 kg ECM fast 5.000 kg! (4.928 kg) ECM während der Weidephase ermolken werden, während die Tiere der Beginngruppe 4 mit einer durchschnittlichen Milchmenge von 19,5 kg ECM nur eine um 1.200 kg ECM (3.747 kg) niedrigere Weidemilchleistung erbrachten. Dafür zeichneten sich die Tiere der Beginngruppen 3 und 4 durch höhere Eiweißgehalte in der Milch aus.

3.2.5 Anteil der einzelnen Futtermittel an der Milchbildung

Zur Berechnung des Milchbildungspotenzials eines Einzelfutters wurde von dessen Energiesumme ein aliquoter Anteil für die Erhaltung abgezogen. Der verbleibende Rest wurde durch 3,2 (NEL-Bedarf pro kg Milch) dividiert um die, energetisch, aus dem Futter mögliche Menge zu berechnen. Anschließend wurden Einzelmengen über die

Gesamtmenge in Prozentanteile umgerechnet. Dies steigert die Vergleichbarkeit der Ergebnisse.

In den *Tabellen 9a* und *9b* und in den *Abbildungen 13* und *14* wird dieser Milchbildungswert dargestellt. Im Mittel stammten 44,1 % der Milch aus Weidefutter und nur 17 % aus dem Kraftfutter. Zwischen den einzelnen Versuchsjahren zeigten sich nur geringe Unterschiede. So lag der Anteil der aus dem Weidefutter gebildeten Milch im Jahr 2005 bei 46,4 %, während er in den Jahren 2006 und 2007 nur jeweils 43 % betrug. Dadurch stieg in diesen beiden Jahren der Anteil der Milch aus dem Kraftfutter von 15,8 % im Jahr 2005 auf 17,9 bzw. 17,4 %.

3.2.5.1 Auswirkungen der unterschiedlichen Ergänzungsfütterung auf den Anteil der einzelnen Futtermittel an der Milchbildung

Die unterschiedliche Ergänzungsfütterung beeinflusste hoch signifikant die Milchbildung aus den einzelnen Futtermitteln (Tabellen 9a und 9b, Abbildungen 13 und 14). Der Anteil der Grassilage an der Milchbildung war mit 21,4 %, 18,0 %, 21,3 % bzw. 21,1 % in allen Gruppen annähernd gleich hoch. Unterschiede zeigten sich sowohl beim Raufutter und bei der Maissilage als auch beim Weide- und Kraftfutter. Während in den Gruppen Vollweide, Maissilage und Kraftfutter nur 10,0 %, 5,9 % bzw. 9,2 % der Milch aus dem Raufutter stammten, betrug der Anteil der Milch aus Raufutter in der Heugruppe 17,9 %. Ähnlich verhielt es sich bei der Maissilage, die in den Gruppen Vollweide. Heu und Kraftfutter mit nur 5,0 %, bzw. 6,1 % und 4,7 % aber in der Maisgruppe mit 14,8 % an der Milchbildung beteiligt war. In der Vollweidegruppe stammte 49,9 % der produzierten Milch aus Weidefutter und nur 13,6 % aus dem Kraftfutter. Deutlich niedriger war der Anteil der Milchbildung aus Weidefutter mit 42,9 %, 44,3 % und 39,4 % in den Gruppen Heu, Maissilage und Kraftfutter.

Tabelle 9b: Milchleistung, Anteil der Einzelfuttermittel an der Milchbildung und Tiergewichte in Abhängigkeit der Gruppe

			Beg	inn				Statistik		
		1	2	3	4	Jahr	Gruppe	Beginn	Std	\mathbb{R}^2
Milchleistung										
Kalkulierte Milchleistung aus Futterenergie	kg/Tag	23,68	23,46	22,57	24,08	0,963	0,024	0,546	1,757	0,586
Tatsächliche Milchleistung										
Milchleistung/Periode	kg	6.482	6.457	6.197	6.224	0,584	0,232	0,904	889	0,510
ECM/Periode	kg	6.734	6.830	6.329	6.739	0,709	0,041	0,771	877	0,635
Milchleistung/Tag	kg	21,0	21,0	21,2	21,6	0,751	0,827	0,985	2,7	0,479
ECM/Tag	kg	21,8	22,2	21,6	23,3	0,820	0,307	0,853	2,7	0,569
Fett	%	4,44	4,63	4,34	4,73	0,549	0,050	0,488	0,34	0,690
Eiweiß	%	3,24	3,24	3,16	3,42	0,492	0,307	0,608	0,28	0,372
Lactose	%	4,69	4,59	4,73	4,74	0,743	0,438	0,331	0,15	0,435
Zellzahl	x 1.000	181	199	169	166	0,883	0,527	0,969	133	0,376
Harnstoff	$mg/100 \ ml$	30,2	31,7	29,7	27,8	0,134	0,284	0,492	4,3	0,622
Anteil Milch aus										
Raufutter	%	11,0	11,3	10,8	9,9	0,000	0,000	0,006	0,534	0,994
Grassilage	%	25,2	22,2	14,6	19,8	0,077	0,063	0,000	2,625	0,892
Maissilage	%	6,4	8,1	8,0	8,2	0,270	0,000	0,082	1,262	0,967
Weide	%	41,1	41,7	49,0	44,8	0,202	0,000	0,001	2,855	0,901
Grundfutter	%	83,6	83,3	82,4	82,7	0,049	0,000	0,245	1,188	0,977
Kraftfutter	%	16,4	16,7	17,6	17,3	0,049	0,000	0,245	1,188	0,977
Erhaltung										
Lebendgewicht	kg	596	589	611	623	0,788	0,759	0,780	60	0,411
Tageszunahmen	g/Tag	60,3	-101,9	-48,3	-43,8	0,585	0,664	0,522	199,3	0,465

Der Anteil des Kraftfutters an der Milchbildung war in den Gruppen Heu und Maissilage mit 15,1 % bzw. 13,7 % annähernd gleich hoch wie in der Vollweidegruppe. In der Kraftfuttergruppe hingegen war das Kraftfutter mit 25,6 % an der Milchbildung beteiligt.

3.2.5.2 Auswirkungen der unterschiedlichen Abkalbetermine auf den Anteil der einzelnen Futtermittel an der Milchbildung

Der unterschiedliche Abkalbetermin beeinflusste die Milchbildung aus den einzelnen Futtermitteln deutlich weniger (Tabelle 9b, Abbildungen 13 und 14). So war der Anteil des Raufutters an der Milchbildung mit 11,0 %, 11,3 %, 10,8 % bzw. 9,9 % in allen Gruppen annähernd gleich hoch. Etwas größere Unterschiede zeigten sich bei der Grassilage, wo sich der Anteil an der Milchbildung von 25,2 % bzw. 22.2 % in den Beginngruppen 1 und 2 auf 14.6 % bzw. 19,8 % in den Beginngruppen 3 und 4 reduzierte und auch beim Milchbildungsanteil des Weidefutters. Hier erhöhte sich der Anteil an der Milchbildung ausgehend von 41,1 % und 41,7 % in den Beginngruppen 1 und 2 auf 48,9 % und 44,8 % in den Beginngruppen 3 und 4. Der Anteil der Maissilage bzw. des Kraftfutters an der Milchbildung war mit 6,4 %, 8,1 %, 8,0 % und 8,2 % bzw. 16,4 %, 16,7 %, 17,6 % und 17,3 % in den Beginngruppen 1, 2, 3 und 4 annähernd gleich hoch.

3.3 Lebendmasse und Gewichtsentwicklung

Bei der Entwicklung der Lebendmasse und den Tagesab- bzw. -zunahmen konnten mit Ausnahme der Werte in den einzelnen Phasen keine statistisch gesicherten Unterschiede ermittelt werden. Insgesamt entsprachen die Tiere mit durchschnittlich 605 kg den Anforderungen, die man an Weidekühe stellt – sie waren eher kleiner und leichter. Während der Versuchsperiode verloren die Tiere durchschnittlich täglich 33 g an Gewicht. Umgerechnet auf die Laktation bedeutet das, dass sie zu Versuchsende um etwa 10 kg leichter waren als zu Beginn des Versuches. Allerdings unterschieden sich die einzelnen Jahre. Während 2005 die Tiere im Schnitt 117 g/ Tag abnahmen (ca. 35 kg Lebendgewicht weniger zu Versuchsende), erreichten sie 2007 wieder annähernd ihr Anfangsgewicht (-2 g/ Tag) bzw. legten im Jahr 2006 um ca. 6 kg zu (ca. 19 g/ Tag).

Die *Tabellen 8a*, *8b*, *9a* und *9b* und die *Abbildungen 15* und *16* zeigen das durchschnittliche Lebendgewicht in Abhängigkeit von Gruppe, Abkalbedatum und Fütterungsphase.

4. Diskussion

Obwohl ökonomische Berechnungen zeigen, dass bei Weidehaltung die Futterkosten im Vergleich zur Vorlage von konserviertem Futter verringert werden können (GREIMEL 1999), ist in Mitteleuropa ein Rückgang der Weidehaltung bzw. der Umstieg auf Halbtags- bzw. Stundenweide bei Milchkühen zu beobachten. Laut KLOVER und MULLER (1998) sind mit Ganztagsweide keine hohen Einzeltierleistungen möglich. Ursachen dafür dürften sowohl die begrenzte Nährstoffdichte, die jahreszeitlichen Schwankungen der Nährstoffkonzentration und die Schwierigkeit einer gezielten Beifütterung als auch die physikalischen und physiologischen Grenzen in der Weidefutteraufnahme und die klimatisch bedingten Futteraufnahmeschwankungen sein (MAYNE und PEYRAUD 1996, UNGAR 1996, ZEILER 2000).

Im vorliegenden Versuch konnte in der Vollweidegruppe mit einer Kraftfuttermenge von 502 kg Trockenmasse (verabreicht bis zum 120. Laktationstag) eine Milchleistung von 6.778 kg ECM ermolken werden, wobei fast 50

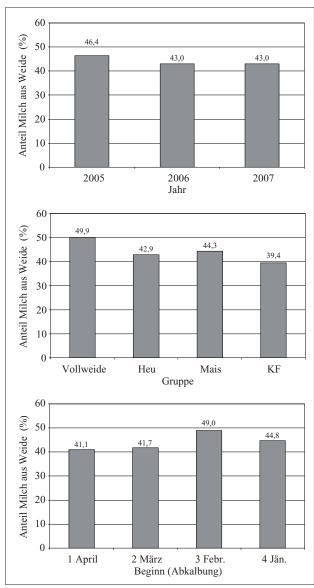


Abbildung 13: Anteil der Milch aus der Weide

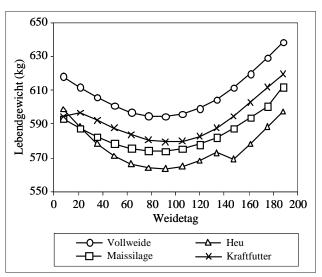


Abbildung 15: Lebendgewicht im Verlauf der Weidesaison

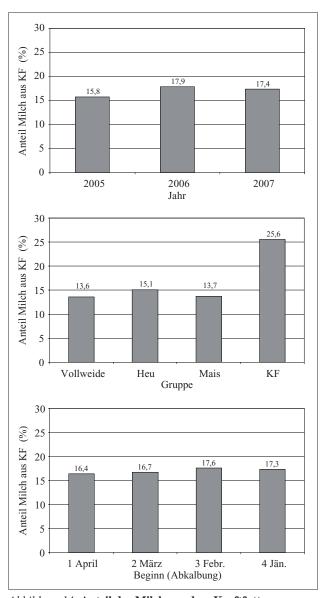


Abbildung 14: Anteil der Milch aus dem Kraftfutter

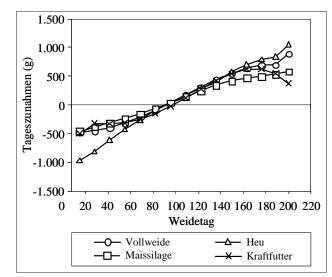


Abbildung 16: Tageszunahmen im Verlauf der Weidesaison

% dieser Milch aus der Weide stammte. Die Beifütterung von etwa 535 kg T Maissilage erhöhte die Milchleistung auf 7.089 kg ECM, während 527 kg zusätzliches Kraftfutter nur eine Milchleistung von 6.966 kg ECM ergaben. Eine Ergänzungsfütterung mit 403 kg zusätzlichem Heu führte zu einem Rückgang der Milchleistung auf 5.798 kg ECM. Diese Werte waren signifikant und decken sich mit den Berechnungen der INRA (1989), die bei Rationen aus Grünfutter bzw. Weide Milchleistungen bis zu 6.000 kg beobachteten.

Das volle Potential der Weide zeigt sich, wenn man eine Trennung zwischen Weide- und Stallfütterung durchführt. Während der Vor-(Stall-) fütterungsphase unterschieden sich die Milchleistungen nach ECM mit Ausnahme der Kraftfuttergruppe kaum. In der Kraftfuttergruppe lag die Milchleistung in der Vorphase mit 1.892 kg ECM um ca. 200 kg über jener der anderen Gruppen, was sich aber mit einer erhöhten Nährstoffaufnahme deckt. Während der Weidezeit konnten in der Vollweidegruppe mit Hilfe von 2.600 kg Weidefutter, aufgenommen in rund 200 Weidetagen (204 im Jahr 2005 und 193 in den Jahren 2006 und 2007) 4.480 kg ECM ermolken werden. Umgelegt auf einen Tag bedeutet das: eine Weidefutteraufnahme von ca. 13 kg T und eine Milchleistung von mehr als 22 kg ECM. Durch die Beifütterung von 406 kg T Silomais während der Weidezeit konnte die Milchmenge um 180 kg ECM erhöht werden, während die Beifütterung von 426 kg zusätzlichem Kraftfutter einen negativen Effekt auf die Milchleistung (-75 kg ECM) hatte. Die Beifütterung von 346 kg zusätzlichem Heu reduzierte die Milchmenge um mehr als 750 kg ECM.

Diese Ergebnisse decken sich mit den Beobachtungen einer Schweizer Untersuchung (MÜNGER 2007). Darin wird dargestellt, dass die Effizienz der Ergänzungsfütterung sehr stark vom Grasangebot (Futterquantiät und -qualität), vom Versorgungsniveau der Tiere aber auch von den Eigenschaften des Ergänzungsfutters (Nährstoffdichte und Nährstoffzusammensetzung) abhängt.

In unserem Fall führte die Zufütterung von Heu in der Weidephase sowohl zu einem Rückgang der Gesamtfutteraufnahme als auch zu einer niedrigeren Milchleistung und einem niedrigeren Milcheiweißgehalt (3,10 % gegenüber 3,28 % bei Vollweide). Beides sind Indizien für eine schlechtere Energieversorgung. Diese schlechtere Energieversorgung spiegelt sich auch in einem niedrigeren durchschnittlichen Körpergewicht und in einer stärkeren Gewichtsreduktion, vor allem am Beginn der Weidephase wider. So konnten die Tiere dieser Gruppe in der Weidephase im Schnitt nur um 16 g/Tag zulegen, während die Tiere der anderen Gruppen zwischen 72 und 129 g/Tag zunahmen. Auch die durchschnittliche Gewichtsabnahme am Beginn der Weidezeit war höher. Die Tiere dieser Gruppe nahmen bis zu einem Kilogramm pro Tag ab. Hier zeigt sich das Bemühen der Kühe, ihre Leistung an das Energieangebot anzupassen. Die Tiere der Heugruppe konnten durch ihre Leistungsverweigerung letztendlich sogar eine leichtes Plus von 4,4 MJ NEL in ihrer Gesamtbilanz (allerdings auf einem insgesamt niedrigerem Niveau) erreichen. Durch die Beifütterung von 350 kg Heu wurde während der Weidephase im Vergleich zur Vollweidegruppe fast 600 kg Weidefutter verdrängt. Wie weit die Gesundheit der Tiere dieser Gruppe durch die metabolische Belastung zu leiden hatte, wird die Auswertung der Blutproben zeigen.

MÜNGER führt als Faustregel für den Einsatz von Kraftfutter eine Milchleistungssteigerung von 1 kg Milch pro kg Kraftfutter an, wobei er eine große Variationsbreite einräumt. In unserem Versuch konnte durch den Einsatz von Kraftfutter die Milchleistung nur geringfügig gesteigert werden. Der Einsatz von 527 kg zusätzlichem Kraftfutter brachte eine Erhöhung der Laktationsleistung um ca. 200 kg ECM gegenüber der Vollweidegruppe. Allerdings stammten diese 200 kg zusätzliche Milch nicht aus der Weide-, sondern aus der Vor-(Stall-) fütterungsphase. Durch die höhere Kraftfutterergänzung ab dem 56. Laktationstag wurde kaum Grundfutter verdrängt, die Energiekonzentration der Ration stieg und das führte zur Erhöhung der Milchmenge in dieser Phase. Während der Weidephase konnte die Milchleistung durch zusätzliches Kraftfutter nicht gesteigert werden. Hier wurde durch den Einsatz von 426 kg zusätzlichem Kraftfutter 393 kg T hoch energetisches Weidefutter verdrängt. Theoretisch hätte sich durch die höhere Kraftfuttermenge und den (um 0,2 MJ NEL) höheren Energiegehalt der Ration trotzdem die Milchleistung – und zwar um rund 195 kg - erhöhen müssen. Praktisch führte die Kraftfutterergänzung jedoch sogar zu einer um 73 kg ECM niedrigeren Milchleistung als in der Vollweidegruppe. Auch MÜNGER konnte in einigen Fällen durch eine höhere Kraftfuttergabe keine Erhöhung der Milchmenge feststellen, während er in anderen Versuchen durchaus eine Milchleistungssteigerung notieren konnte. Er behauptet, dass bei gutem Grasangebot die Produktionsreaktion der Kuh auf zusätzliches Kraftfutter abnimmt und das dürfte auch im vorliegenden Projekt der Fall gewesen sein. Ein weiterer Grund für den geringen Kraftfuttereffekt dürfte in latent auftretenden Pansenacidosen zu suchen sein, die neben einem Rückgang der Futteraufnahme – in unserem Versuch war in dieser Gruppe nach dem Absetzen der übrigen Ergänzungsfuttermittel ein Einbruch in der Futteraufnahme zu beobachten – vor allem auch zu einer schlechteren Nährstoffaufschließung bzw. -aufnahme im Pansen führen (GASTEINER et al. 2008). Es ist bekannt, dass Kraftfutter in Kombination mit jungem, zuckerreichem Weidefutter – besonders im Frühjahr bzw. im Frühsommer und dann wieder im Herbst – sehr leicht diese Erkrankung hervorrufen kann. Dabei spielt allerdings sowohl die Kraftfuttermenge als auch die Kraftfutterzusammensetzung eine Rolle. Wir setzten aus diesem Grund ausschließlich pansenschonendes Energiekraftfutter mit einem hohen Körnermais-, Trockenschnitten- und Weizenkleieanteil ein. Bei der Untersuchung des Pansensaftes von pansenfistulierten Ochsen, die parallel zu den Kühen in den einzelnen Versuchsgruppen gehalten wurden, konnte ein etwas tieferer pH-Wert in dieser Gruppe festgestellt werden, allerdings müssen zur Absicherung dieser Daten noch weitere Untersuchungen mit verfeinerten Untersuchungsmethoden vorgenommen werden. Zusätzlich unterstützt wird der oben dargestellte Zusammenhang durch die niedrigsten Fett/Eiweiß-Quotienten (FEQ) in dieser Gruppe. Im Verlauf der Weidesaison wurden Durchschnittswerte ermittelt, die teilweise unter 1,2 lagen. FEQs unter 1,1 bis 1,2 können als Indikatoren für latente Pansenacidosen gewertet werden.

Die Zufütterung von Maissilage brachte eine Erhöhung der Milchmenge in der Weidephase um 179 kg ECM, wobei diese Erhöhung vor allem auf die besseren Milchinhaltsstoffe während der Weidephase (4,73 % Fett und 3,36 % Eiweiß) zurückzuführen war. Vor allem der höhere Eiweißgehalt in der Weidephase deutet auf eine gute Nährstoffversorgung dieser Gruppe hin. Dies deckt sich nicht exakt mit der Nährstoffkalkulation, die für die Maisgruppe einen Energiemangel von 3,5 MJ NEL auswirft. Mögliche Gründe sind im Verfahren der Schätzung der Weideaufnahme zu suchen. Durch die Beifütterung von 406 kg Maissilage wurde insgesamt nur 295 kg Weidefutter verdrängt. Zusätzlich liefert die Maissilage einen ähnlich hohen Energiegehalt wie das Weidefutter und damit eine ähnlich hohe Energiekonzentration im Futter, aber im Gegensatz zu Kraftfutter ausreichend Struktur. Durch ihren niedrigen Rohproteingehalt verbessert die Maissilage das Energie/Protein-Verhältnis der Ration und damit die ruminale Stickstoffbilanz (es wird mehr Stickstoff bzw. NH, im Pansen gebunden) – die Stoffwechselbelastung sinkt. Möglicherweise haben die Tiere dieser Gruppe in Folge auf der Weide tatsächlich mehr Futter aufgenommen (~0,75 kg T/Tag), als die Berechnung nach der Schätzformel ergab. Dies würde auch innerhalb der Schwankungsbreite der Formel liegen, und könnte eine Erklärung dafür sein, wieso in dieser Gruppe die Milchleistung um 179 kg ECM höher war als in der Vollweidegruppe, obwohl sie rein rechnerisch um etwa 130 kg niedriger hätte liegen müssen. Die gute Energieversorgung wird auch durch den hohen Eiweißgehalt der Milch und den harmonischen Lebendgewichtsverlauf bestätigt.

Das unterschiedliche Laktationsstadium brachte weder einen signifikanten Einfluss auf Futteraufnahme und Nährstoffversorgung, noch auf Milchmenge und Milchinhaltsstoffe. Zu beobachten war allerdings, dass die Beginngruppen 1 und 2 eine höhere tatsächliche Jahresmilchleistung (6.482 und 6.457 kg bzw. 6.197 und 6.224 kg) aufwiesen, als die Beginngruppen 3 und 4. Da aber im gleichen Ausmaß die Milchinhaltsstoffe mit Ausnahme der Gruppe 3 stiegen, war die Milchleistung nach ECM in den Beginngruppen 1, 2 und 4 in etwa gleich hoch (6.734, 6.830 und 6.739 kg). In der Beginngruppe 3 konnten allerdings nur 6.329 kg ECM ermolken werden. Daraus lässt sich – allerdings bedingt durch die geringe Tieranzahl doch mit einer gewissen Vorsicht – ablesen, dass die Tiere höhere Milchleistungen, allerdings mit niedrigeren Milchinhaltsstoffen erzielen können, wenn sie später abkalben und bereits frischlaktierend auf die Weide kommen.

Ein ähnliches Bild zeigen die Gesamtfutteraufnahmen. Während in der Beginngruppe 1 durchschnittlich 5.418 kg T Gesamtfutter aufgenommen wurde, reduzierte sich dieser Wert um 105, 510 bzw. 385 kg T in den Beginngruppen 2, 3 und 4. Das bedeutet, dass die Futteraufnahme umso geringer war, je früher die Kühe abkalbten. Erklären lässt sich dies möglicherweise mit der Energiedichte und auch dem Eiweißgehalt der Ration. Während jene Kühe, die früh abkalbten, in der Hochlaktation Grassilage als *ad libitum*-Futter erhielten, kamen jene Kühe, die spät abkalbten, bereits zu Laktationsbeginn auf die Weide und damit erhöhten sich sowohl die Energie- und die Proteinkonzentration der Ration (junges Weidefutter hat einen Energiegehalt von fast

7 MJ NEL und einen Rohproteingehalt zwischen 15 und 18 %) als auch die Futteraufnahme.

Noch deutlicher schlugen sich die unterschiedlichen Abkalbezeiten auf die Milchleistungen in den einzelnen Phasen nieder. Je früher die Kühe abkalbten, desto höher war die Milchleistung in der Vorphase, während die Milchleistung in der Weidephase zurückging. So konnten von den Tieren der Beginngruppe 1 mit einer durchschnittlichen Milchmenge von 26,3 kg ECM fast 5.000 kg! (4.928 kg) ECM während der Weidephase ermolken werden, während die Tiere der Beginngruppe 4 mit einer durchschnittlichen Milchmenge von 19,5 kg ECM nur mehr 3.747 kg ECM produzierten. Allerdings muss dabei berücksichtigt werden, dass in den Beginngruppen 1 und 2 noch sehr viel Ergänzungsfutter während der Weidephase verabreicht wurde, weshalb in diesen beiden Gruppen sowohl der Anteil des Weidefutters an der Gesamtration als auch der Anteil des Weidefutters an der Milchproduktion geringer war als in den beiden anderen Gruppen.

5. Schlussfolgerungen

- Beachtet man die Umstellungsphase im Frühjahr langsame Anpassung an die Weideration – lässt sich bei Vollweide kein erhöhtes Acidoserisiko feststellen.
- Die Zufütterung von Heu in der Weidephase führt zu einer niedrigeren Energiekonzentration des Futters. Dies senkt die Gesamtfutteraufnahme und führt zu einem Rückgang der Milchleistung. Der Harnstoffgehalt der Milch wird geringfügig abgesenkt.
- Eine Ergänzungsfütterung mit Maissilage bringt ein ausgeglicheneres Protein-/Energieverhältnis der Ration und damit eine bessere Pansenbilanz und eine Reduktion des Harnstoffgehaltes der Milch. Dies führt zu einer Erhöhung der Milchmenge und bedingt durch die geringere Stoffwechselbelastung zu stabileren Milchinhaltsstoffen.
- Durch den Einsatz von Kraftfutter kann bei sehr gutem Weidemanagement die Milchleistung nicht gesteigert, allerdings der Harnstoffgehalt der Milch deutlich gesenkt werden. Die Zufütterung von Kraftfutter in der Weidephase erhöht das Acidoserisiko. Im Gegensatz zur Zufütterung von Maissilage reduziert sie die Weidefutteraufnahme und führt somit zu einer schlechten Kraftfuttereffizienz. Dies verbessert sich wieder, wenn die Qualität der Weide abnimmt. Um die Gefahr von Pansenacidosen zu minimieren, sollte in der Weidephase ohne zusätzliche andere Ergänzungsfuttermittel wie Heu oder Maissilage nicht mehr als maximal 2 3 kg Kraftfutter eingesetzt werden.
- Hohe Einzeltierleistungen erfordern entweder eine frühe Abkalbung und eine weitgehend bedarfsgerechte Fütterung im Stall (allerdings muss dabei deutlich mehr Kraftfutter eingesetzt werden, als im vorliegenden Versuch) oder aber eine späte Abkalbung mit einer ebenfalls hohen Ergänzungsfütterung im Stall, wobei hier vor allem auch Maissilage (im Sommer eher schwierig) zum Einsatz kommen müsste. Allerdings sinkt dadurch sowohl der Anteil des Weidefutters an der Ration, als auch der Anteil des Weidefutters an der Milchbildung.

 Hohe Weidemilchleistungen verlangen eine radikale Umsetzung der Vollweidestrategie, d.h. jede Beifütterung auf der Weide reduziert die Weidefutteraufnahme und damit den Anteil des Weidefutters an der Milchbildung. So weit sich aus diesem Versuch abschätzen lässt, sind unter Vollweidebedingungen bis zu 4.000 kg Milch aus Weidefutter möglich.

6. Zusammenfassung

Von 2005 bis 2007 wurde in einem Fütterungsversuch mit insgesamt 32 Milchkühen im Institut für Nutztierforschung des LFZ Raumberg-Gumpenstein das Thema Ergänzungsfütterung intensiv behandelt.

Bis zum 56. Laktationstag wurden alle Kühe gleich gefüttert. Neben Heu und Grassilage wurde in dieser Periode auch Maissilage (3,5 kg T pro Tag) und Kraftfutter (max. 7 kg Frischmasse pro Tag und max. 2 kg FM pro Teilgabe) eingesetzt. Erst danach änderte sich das Fütterungsregime in den 4 Gruppen. Ab Beginn der Vegetationszeit kamen die Tiere aller 4 Gruppen gemeinsam auf die Weide. Als Weidesystem wurde eine intensive Standweide (Kurzrasenweide) gewählt.

In den Gruppen Kontrolle (Vollweide), Heu und Maissilage wurden bis zum 120. Laktationstag 500 kg T Kraftfutter pro Kuh und Laktation eingesetzt. In der Kraftfuttergruppe verdoppelte sich diese Menge. Während die Tiere der Vollweidegruppe in den Sommermonaten ausschließlich geweidet wurden, erhielten die Tiere der anderen Gruppen entweder zusätzlich Heu (durchgehend 3,5 kg T pro Tag), Maissilage (max. 3,5 kg T pro Tag) oder Kraftfutter (durchschnittlich 3,5 kg T pro Tag).

Die unterschiedliche Ergänzungsfütterung in den vier Versuchsgruppen brachte sowohl einen signifikanten Einfluss auf die Futteraufnahme und die Nährstoffversorgung als auch auf die Milchleistung. In der Vollweidegruppe konnte mit einem Weideanteil am Grundfutter von 55,5 % eine Milchleistung von 6.778 kg ECM ermolken werden, wobei ca. 50 % dieser Milch aus dem Weidefutter stammten. Durch die Beifütterung von Maissilage erhöhte sich die Milchleistung auf 7.089 kg ECM (Anteil der Milch aus der Weide: 44 %). Die Beifütterung von zusätzlichem Kraftfutter brachte eine Milchleistung von 6.966 kg ECM, wobei sich dabei der Anteil der Milch aus dem Weidefutter auf 39 % veringerte. Eine Ergänzungsfütterung mit Heu führte zu einem Rückgang der Milchleistung auf 5.798 kg ECM und einem Milchbildungsanteil des Weidefutters von 43 %.

In der Vorphase gab es zwischen den einzelnen Gruppen kaum Unterschiede, weder in der Futteraufnahme, noch in der Milchleistung nach ECM. Lediglich die Kraftfuttergruppe lag bedingt durch eine etwas höhere Kraftfuttergabe in dieser Phase (ca. 70 kg T) mit einer Milchleistung von 1.892 kg ECM um ca. 200 kg über den anderen Gruppen. Die Milchleistung in der Weidephase wiederum war trotz der unterschiedlichen Rationszusammenstellung in den Gruppen Vollweide, Mais und Kraftfutter auf einem ähnlichen Niveau, wobei sie in der Maisgruppe mit 4.659 kg ECM um 180 bzw. 260 kg höher lag als in der Vollweidebzw. Kraftfuttergruppe. In der Heugruppe konnte in dieser Phase hingegen nur eine Milchleistung von 3.715 kg ECM

ermolken werden. Der Weidefutteranteil reduzierte sich ausgehend von 77 % des Gesamtfutters in der Vollweidegruppe über 70 % in der Maissilagegruppe auf je 65 % in den Gruppen Heu und Kraftfutter.

Während in der Vorperiode alle 4 Gruppen ähnliche Harnstoffwerte zeigten (zwischen 17 mg/ 100 ml in der Kraftfuttergruppe und 20,5 mg/ 100 ml in der Heugruppe), unterschieden sich die Harnstoffwerte in der Weidephase stärker. So ging der durchschnittliche Harnstoffgehalt der Milch von der Vollweidegruppe mit 38,7 mg/ 100 ml, über 36,2 in der Heugruppe auf 34,5 in der Mais- und 32,8 in der Kraftfuttergruppe zurück. Obwohl keine signifikanten Werte gefunden werden konnten, dürften sich doch gewisse Trends abzeichnen. So traten bei Vollweide im Lauf der Weidesaison Harnstoffwerte auf, die sich zwischen 50 bis 70 mg/ 100 ml bewegten, der durchschnittliche Spitzenwert lag bei etwa 55 mg! Die Zufütterung von Heu brachte eine leichte Reduktion dieses Wertes, deutlicher konnten die Werte durch die Beifütterung von Maissilage bzw. Kraftfutter gesenkt werden. Allerdings brachte auch die Ergänzungsfütterung mit Kraftfutter noch Werte um ca. 40 mg/ 100 ml.

Das unterschiedliche Laktationsstadium brachte keinen signifikanten Einfluss auf Futteraufnahme, Nährstoffversorgung, Milchmenge und Milchinhaltsstoffe. Zu beobachten war allerdings, dass die tatsächliche Jahresmilchleistung von 6.482 kg in der Beginngruppe 1 auf 6.197 bzw. 6.224 kg in den Beginngruppen 3 und 4 zurückging. Im gleichen Ausmaß stiegen aber – mit Ausnahme der Beginngruppe 3 – die Milchinhaltsstoffe, so dass die Milchleistung nach ECM in den Beginngruppen 1, 2 und 4 mehr oder weniger gleich hoch war. Nur die Beginngruppe 3 lag um etwa 500 kg ECM niedriger. Eine Begründung liefern die niedrigeren Gesamtfutteraufnahmen in den Gruppen 3 und 4, die mit 4.908 bzw. 5.033 kg T deutlich tiefer lagen als in den Grupen 1 und 2 mit 5.418 bzw. 5.312 kg T. Die unterschiedlichen Abkalbezeiten schlugen sich sowohl auf die Futteraufnahmen als auch auf die Milchleistungen in den einzelnen Phasen nieder. Je früher die Kühe abkalbten, desto höher waren die Futteraufnahme und die Milchleistung in der Vorphase. In der Weidephase zeigte sich ein genau gegensätzliches Bild. So konnten von den Tieren der Beginngruppe 1 mit Hilfe einer Gesamtfutteraufnahme von 3.449 kg T und einer durchschnittlichen Milchmenge von 26,3 kg ECM fast 5.000 kg! ECM während der Weidephase ermolken werden, während die Tiere der Beginngruppe 4 mit einer Futteraufnahme von 3.108 kg und einer durchschnittlichen Milchmenge von 19,5 kg ECM nur eine um 1.200 kg ECM (3.747 kg) niedrigere Weidemilchleistung erbrachten. Genau dazwischen lagen sowohl die Futteraufnahmen als auch die Milchleistungen der Gruppen 2 und 3. Allerdings erhöhte sich in der Weidephase durch die frühere Abkalbung der Anteil des Weidefutters am Gesamtfutter von 63 % in Beginngruppe 1 auf 65 %, 75 % und 76 % in den Beginngruppen 2, 3 und 4.

7. Literatur

BUTRIS, G.Y. und C.J.C. PHILLIPS, 1987: The effect of herbage surface water and the provision of supplementary forage on intake and feeding behaviour of cattle. Grass and Forage Sci. 42, 259-264.

- CAIRD, L. und W. HOLMES, 1986: The prediction of voluntary intake of grazing dairy cows. J. agric. Sci. Camb. 107, 43-54.
- COMBELLAS, J. und J. HODGSON, 1979: Herbage intake and milk production by grazing dairy cows. 1. The effects of variation in herbage allowance in a short-term trial. Grass and Forage Sci. 34, 209-214.
- CUSHNAHAN, A. et al., 1994: zitiert nach MAYNE, C. und J.L. PEY-RAUD, 1996.
- DE BRABANDER, D.L., J.L. DE BOEVER, J.M. VANACKER, C.V. BOUCQUE und S.M. BOTTERMAN, 1999: Evaluation of physical strucure in dairy cattle nutrition. Ed. P.C. GARNSWORTHY und J. WISMAN, Nottingham University Press, Rec. Adv. Anim. Nutr. 1999, 111-145.
- DEMMENT, M.W., J.L. PEYRAUD und E.A. LACA, 1995: Herbage intake at grazing: a modelling approach. Proc. IVth Intern. Symp. Nurtr. of Herbivores, 11.-15 Sept 1995, Clermont-Ferrand, 121-141.
- GASTEINER, J., M. FALLAST, M. ROSENKRANZ, J. Häusler, K. SCHNEIDER, M. SCHWAB und T. GUGGENBERGER, 2008: Möglichkeiten zur Messung des pH-Wertes im Pansen. Nutztierpraxis aktuell 25, 14-22.
- GfE (Gesellschaft für Ernährungsphysiologie) Ausschuss für Bedarfsnormen, 1991: Leitlinien für die Bestimmung der Verdaulichkeit von Rohnährstoffen an Wiederkäuern. J. Anim. Physiol. a. Anim. Nutr. 65, 229-234.
- GfE (Gesellschaft für Ernährungsphysiologie) Ausschuss für Bedarfsnormen, 1998: Formeln zur Schätzung des Gehaltes an Umsetzbarer Energie in Futtermitteln aus Aufwüchsen des Dauergrünlandes und Mais-Ganzpflanzen. Proc. Soc. Nutr. Physiol. 7, 141-150.
- GREIMEL, M., 1999: Ganzjahresstallhaltung im Vergleich zur Weidehaltung aus betriebswirtschaftlicher Sicht. 5. Alpenländisches Expertenforum, 18.–19. März 2000. BAL-Tagungsbericht, 79-80.
- GRUBER, L., T. GUGGENBERGER, A. STEINWIDDER, A. SCHAUER und J. HÄUSLER, 2001: Prediction of feed intake of dairy cows by statistical models using animal and nutritional factors. Proc. Soc. Nutr. Physiol. 10, 125.
- GRUBER L., F.J. SCHWARZ, D. ERDIN, B. FISCHER, H. SPIEKERS, H. STEINGASS, U. MEYER, A. CHASSOT, T. JILG, A. OBER-MAIER und T. GUGGENBERGER, 2004: Vorhersage der Futteraufnahme von Milchkühen – Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs und der Schweiz. 116. VDLUFA-Kongress 2004, 484-504.
- GRUBER, L., H. SPIEKERS, T. GUGGENBERGER und F.J. SCHWARZ, 2007: Vorhersage der Futteraufnahme von Milchkühen: Futteraufnahmeschätzformel Grundlagen und praktische Anwendung in der Rationsberechnung. Der Fortschrittliche Landwirt 85 (Heft 23), ÖAG-Sonderbeilage, 49-56.
- HÄUSLER, J., T. GUGGENBERGER, R. RESCH und J. WILDLING, 2008: Ergebnisse zur Ergänzungsfütterung bei Ganztagesweidehaltung von Milchkühen. Tagungsband 4. Bio Fachtagung, 81-96.
- HARVEY, W.R., 1987: User's Guide for LSMLMW PC-1 Version, mixed model least-squarees and maximum likelihood computer programm, Ohio State University, 59 S.

- HOLDEN, L.A., L.D. MULLER, G.A. VARGA und P.J. HILLARD, 1994: Ruminal digestion and duodenal nutrient flows in dairy cows consuming grass as pasture, hay or silage. J. Dairy Sci. 77, 3034-3042.
- INRA (Institut National de la Recherche Agronomique), 1989: Ruminant Nutrition. Recommended Allowences and Feed. Tables INRA. Paris, 389 S.
- KLOVER, E.S. und L.D. MULLER, 1998: Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 81, 1403-1411.
- KOHLER, S., T. BLÄTTLER, K. WANNER, H. SCHÄUBLIN, C. MÜLLER und P. SPRING, 2004: Projekt Opti-Milch: Gesundheit und Fruchtbarkeit der Kühe. Agrarforschung 11, 80-85.
- MANUSCH, P., 1992: Untersuchungen zur Futteraufnahme und Milchleistung von Kühen bei Weidegang bzw. Grasfütterung im Stall. Dissertation der Technischen Universität München, Fakultät für Landwirtschaft und Gartenbau, 145 S.
- MAYNE, C. und J.L. PEYRAUD, 1996: Recent advances in grassland utilization under grazing and conservation. Grassland and Land use systems. 16th EGF Meeting 1996, 347-360.
- MEIJS, J.A.C. und J.A. HOEKSTRA, 1984: Concentrate supplementation of grazing dairy cows. 1. Effect of concentrate intake and herbage allowance on herbage intake. Grass and Forage Sci. 39, 59-66.
- MÜNGER, A., 2003: Intensive Milchproduktion und maximale Weidenutzung: Möglichkeiten, Grenzen, spezielle Fütterungsaspekte. Tagungsband 30. Viehwirtschaftliche Fachtagung, 65-70.
- MÜNGER, A., 2007: Energiebetonte Kraftfutterergänzung zu Vollweide. Vortrag ALP-Tagung 2007.
- ROHR, K., 1976: Futteraufnahme und Nährstoffversorgung von Milchkühen bei Weidegang bzw. Grünfütterung. Übers. Tierernährg. 4, 133-154.
- STEHR, W. und M. KIRCHGESSNER, 1975: Zum Einfluß von Angebot und Nährstoffgehalt des Grases auf die Futteraufnahme von Milchkühen auf der Weide. Bayr. Landw. Jahrbuch 52, 285-291.
- STEINWIDDER A., 2003: Aspekte zur Weidehaltung von Milchkühen. Tagungsband 28. Viehwirtschaftliche Fachtagung, 53-68.
- STEINWIDDER A., 2008: Untersuchungen zur Vollweidehaltung von Milchkühen unter alpinen Produktionsbedingungen. Tagungsband 4. Bio Fachtagung, 5-78.
- THOMET, P., S. LEUENBERGER und T. BLÄTTLER, 2004: Projekt Opti-Milch: Produktionspotential des Vollweidesystems. Agrarforschung 11, 336-341.
- UNGAR, E.D., 1996: Ingestive Behavior. In: The Ecology and Management of Grazing Systems. Ed. J. Hodgson u. A.W. Illius. CAB International, 185-218.
- WEISS, D., MEISEL, I., KIENBERGER, H. und EICHINGER, H., 2005: Fettsäuremuster im Milchfett in Abhängigkeit der gewählten Fütterungsstrategie. Vortrag.
- ZEILER, E., 2000: Einfluss von Weide- oder Stallhaltung auf die Grünfutteraufnahme von Milchkühen; Diplomarbeit.

Tabellenanhang:

Tabelle 3a: Weender-Nährstoffe und Energiebewertung der im Stall eingesetzten Futtermittel

Futtermittel Jahr	Jahr	Wert Anz	Wert Anzahl Proben			Weend	Weender-Nährstoffe	,e				Energ	Energiebewertung		
				IM	RP	RFE	RFA	RA	NFE	SO	dRFE	dRFA	MOD	ME	NEL
Raufutter	2005	Mittelwert Std.	13	888,0 21,1	141,2 17,5	20,7	285,4 20,6	79,3 9,8	473,4 25,8	920,7 9,8	0,3102	0,6506	0,6627	9,20 0,38	5,38
	2006	Mittelwert Std.	13	887,0 <i>13,3</i>	123,5 <i>I</i> 5,9	18,5 3,3	287,4 24,0	70,9 <i>13,2</i>	499,7 28,1	929,1 <i>13,2</i>	0,3495 0,0346	0,6443	0,6671	9,30 0,39	5,45
	2007	Mittelwert Std.	15	900,0	103,6 6,8	16,3	$300,0 \\ I8,4$	61,5	518,5 20,1	938,5 6,6	0,3344	0,6340 0,0186	0,6545	9,15 0,31	5,34
Grassilage	2005	Mittelwert Std.	∞	385,5 35,3	158,7 <i>1</i> 8,8	34,4 3,0	259,5 35,0	93,0 21,3	454,3 21,9	907,0 21,3	0,6480	0,7597 0,0488	0,7231	10,16 0,48	6,06
	2006	Mittelwert Std.	18	459,3 71,8	129,6 25,7	28,3 5,6	268,9 31,5	82,8 <i>13,8</i>	490,4 49,8	917,2 <i>1</i> 3,8	0,6357	0,7494	0,7156 0,0347	10,03 0,54	5,97
	2007	Mittelwert Std.	17	440,1 51,8	123,0 11,7	29,2 2,4	282,4 20,8	76,4 10,1	489,0 20,3	923,6 10,1	0,6151 0,0355	0,7321 0,0298	0,7030	9,90	5,87
Maissilage	2005	Mittelwert Std.	11	334,8 25,5	87,2	34,8 3,1	217,2 26,8	46,0 6,9	614,8	954,0 6,9	0,7692 0,0145	0,5986 0,0081	0,7167	10,55 0,36	6,33
	2006	Mittelwert Std.	14	300,5 <i>16</i> ,8	81,3 9,4	33,1 2,5	227,8 <i>1</i> 8,9	46,4 5,0	611,5 24,9	953,6 5,0	0,7634 0,0103	0,6018	0,7087 0,0143	10,39	6,21 0,17
	2007	Mittelwert Std.	15	341,2 22,0	81,5	32,2 2,2	219,0 <i>15</i> ,8	48,6 6,3	618,8 21,4	951,4 6,3	0,7679	0,5993 0,0049	0,7148 0,0123	10,45 0,22	6,26 0,16
Kraftfutter Sommer	2005	Mittelwert Std. Mittelwert	L L	877,1 10,6 881,0	136,9 22,1 122,3	24,2 1,3 30,9	70,0 12,0 58,4	39,3 2,7 31,4	729,6 25,7 757,0	960,7 2,7 968,6	0,7403 0,0000 0,7403	0,5934 0,0000 0,5934	0,8487 0,0000 0,8487	12,56 0,04 12,71	7,87 0,02 7,97
	2007	Mittelwert Std.	9	882,3 4,6	113,2 2,0	27,4 4,6	60,3 3,9	34,6 1,2	764,5 2,8	1,2 965,4 1,2	0,7403 0,0000	0,5934 0,0000	0,8487 0,0000	12,61 0,06	7,91
Kraftfutter Winter	2005	Mittelwert Std.	S.	880,5 17,2	177,6 45,5	25,2 0,6	63,1 4,2	42,4 9,2	691,6	957,6 9,2	0,6582	0,5893	0,8548	12,68 0,04	7,94
	2006	Mittelwert Std.	9	879,1 <i>15,3</i>	153,9 51,9	28,0	68,6 <i>14,0</i>	35,0 4,7	714,4 66,4	965,0 4,7	0,6582	0,5893	0,8548	12,75 0,10	7,99
	2007	Mittelwert Std.	∞	903,1 6,5	184,4 30,8	30,7	71,0	46,4 7,5	667,5 34,7	953,6 7,5	0,6582	0,5893	0,8548	12,70	7,95

Tabelle 3b: Struktur, Mineralstoffe und Proteinfraktionen der im Stall eingesetzten Futtermittel

Futtermittel Jahr	.Iahr	Wert Anzahl Proben	ahl Prohe		Struktur			M	Mineralstoffe					Proteinfraktioner	aktionen		
				NDF	ADF	ADL	Ca	Ь	Mg	K	Na	dRP	RDP	UDP	nXP	MP	RNB
Raufutter	2005	Mittelwert <i>Std.</i>	13	536,5 20,4	316,8 <i>II,7</i>	33,4 2,5	6,1 0,8	2,5	2,0	19,9 2,1	0,3 0,1	79,8 1,0	112,6 <i>14,2</i>	28,5 3,6	126,5 5,7	97,1 4,4	2,4 2,1
	2006	Mittelwert Std.	13	535,2 25,0	333,4 22,8	34,6 4,7	5,8 1,4	3,2 1,6	2,6	18,3 4,8	0,2	80,8 <i>I</i> ,9	99,9 13,9	23,6	123,2	98,8	0,1
	2007	Mittelwert Std.	15	539,7 16,5	329,9 17,4	38,7 4,1	6,1	2,7	2,4	16,9 2,0	0,2	79,9 <i>1,5</i>	82,9 5,8	20,8	118,1 2,9	96,7	-2,3 1,0
Grassilage	2005	Mittelwert <i>Std.</i>	∞	469,2 49,2	304,3 35,2	32,6 4,1	6,2 <i>I</i> ,3	2,8	2,0	23,6 <i>I</i> ,8	0,3	85,0 0,0	134,9 <i>16</i> ,0	23,8	135,3	110,8	3,7
	2006	Mittelwert <i>Std.</i>	18	476,9 23,9	311,6 23,8	34,6 6,2	7,7 I,I	2,4	2,9	20,7 5,7	0,2 0,1	85,0 0,0	110,1 21,9	19,4 3,9	129,4 7,3	109,4 5,8	0,0
	2007	Mittelwert Std.	17	499,6 26,0	316,5 21,2	33,0 3,8	7,4 <i>I</i> ,8	3,2	2,7	19,7 2,8	0,4	85,0 0,0	104,6 9,9	18,5 <i>I</i> ,8	127,0 4,6	108,0 3,6	-0,6 <i>I</i> ,5
Maissilage	2005	Mittelwert <i>Std.</i>	11	414,2 34,7	238,1 23,7	25,8	2,0 0,4	2,1 0,4	1,2	12,8 <i>I</i> ,8	0,1	75,0 0,0	65,4 4,1	21,8 <i>I</i> ,4	130,4 3,3	107,9	-6,9 1,0
	2006	Mittelwert Std.	14	460,8 25,7	265,1 <i>1</i> 8,5	25,7 3,1	2,4	2,2	1,6	13,1 3,2	0,1	75,0 0,0	61,0 7,1	20,3	127,2 3,2	106,2 2,3	-7,3 <i>1</i> ,2
	2007	Mittelwert Std.	15	443,9 32,5	242,8 17,9	23,8 2,6	2,7	2,8	1,5	12,8 0,6	$0,1 \\ 0,I$	75,0	61,1	20,4 <i>I,I</i>	127,8	106,9	-7,4 0,7
Kraftfutter Sommer	2005	Mittelwert Std. Mittelwert	L L	229,4 15,6 214,3	6,4 6,8 76,8	12,9 2,4 12,6	2,1 0,2 2,6	4,1 0,6 3,3	1,6 0,1 2,0	10,4 1,1 10,7	0,9 0,1 0,8	65,5 0,0 65,5	89,7 14,5 80,2	47,2 7,6 42,2	168,9 8,1 165,2	120,3 0,4 121,7	-5,1 2,2 -6,9
	2007	Mittelwert Std.	9	223,3 7,0	71,2 2,8	12,3 2,2	2,7 2,7 0,3	4,2 0,6	1,2 0,2	7,7 10,9 0,4	0,9 0,2 0,2	65,5 0,0	74,2 1,3	39,0 0,7	160,9 0,4	1,0 0,6	2,2 -7,6 0,3
Kraftfutter Winter	2005	Mittelwert <i>Std.</i>	5	221,6 <i>19,6</i>	78,5	15,1 3,6	3,2 1,5	4,7	1,7	10,6	0,8 0,3	0,09	122,5 31,4	55,1 <i>14,1</i>	181,2 <i>14</i> ,5	124,5 0,4	-0,6 5,0
	2006	Mittelwert Std.	9	195,4 6,5	81,8 <i>13,4</i>	15,6 3,5	3,1 1,9	3,9	2,1 <i>I,I</i>	10,3 <i>I</i> ,9	0,9	0,0	106,2 35,8	47,7 <i>16,1</i>	174,3 <i>17</i> ,4	125,1 $I,0$	-3,3 5,5
	2007	Mittelwert Std.	∞	207,0 13,4	84,6	15,4 3,8	2,2	5,8 <i>I</i> ,3	2,5	12,4 0,9	1,4	0,0	127,2 21,2	57,2 9,5	183,6 10,1	124,7 <i>I</i> ,0	0,1

Tabelle 4a: Weender-Nährstoffe und Energiebewertung des Weidefutters im Jahr 2005

Jahr	Jahr Vegetationstag	Wert			Wee	Weender-Nährstoffe	ffe				Ene	Energiebewertung	5.I	
			TM	RP	RFE	RFA	RA	NFE	SO	dRFE	dRFA	MOD	ME	NEL
2005	11	Mittelwert Std	291,4 5,3	150,9 1,7	21,1	208,5 0,5	75,0 0,8	544,4 2,2	925,0 0,8	0,5359 0,0011	0,7751	0,7791 0,0003	10,96	6,66
	17	Mittelwert Std	203,7 34,3	194,6 <i>1</i> 7,9	22,8	170,4 <i>16,4</i>	86,2 4,3	526,0 6,9	913,8 4,3	0,7100	0,8157 0,0176	0,8228	11,62 0,29	7,16
	24	Mittelwert Std	186,9 <i>I</i> ,2	205,7 1,4	23,5	167,1 0,9	90,1 0,7	513,6 3,2	9,606 7,0	0,7150	0,8175 0,0016	0,8245 0,0018	11,64 0,03	7,17
	31	Mittelwert Std	183,1 <i>I,1</i>	210,0 <i>I</i> ,3	24,0 0,2	170,1 0,9	92,3 0,7	503,7 2,9	7,706 7,0	0,6889	0,8124 0,0016	0,8185 0,0018	11,53	7,09
	41,5	Mittelwert Std	177,9	215,5 2,1	24,7 0,3	174,2 <i>I</i> ,6	95,2 1,1	490,3 5,0	904,8 <i>I,1</i>	0,6494 0,0157	0,8049	0,8096	11,38	6,98
	55,5	Mittelwert Std	171,8 <i>I</i> ,7	221,6 <i>I</i> ,6	25,5 0,2	179,1 <i>I</i> ,4	98,5 0,9	475,2 4,0	901,5 0,9	0,5978 0,0151	0,7958	0,7979	11,19	6,83
	70	Mittelwert Std	159,7 6,5	218,4 4,8	26,2 0,2	185,7 2,6	99,6 0,7	470,1 3,0	900,4 0,7	0,5408 0,0185	0,7862 0,0032	0,7847	10,97	6,66
	84,5	Mittelwert Std	148,4	217,8	26,8	189,3 0,6	100,9	465,3 2,0	899,1 0,5	0,4963 0,0113	0,7798	0,7747	10,81	6,54
	102,5	Mittelwert Std	142,5 <i>I</i> ,3	219,9	27,4 0,2	191,8 0,9	102,3	458,5 <i>I</i> ,9	897,7 0,4	0,4493 0,0164	0,7741 0,0019	0,7643	10,64	6,42
	124,5	Mittelwert Std	142,1 <i>I, I</i>	219,9	28,0 0,1	194,7 0,8	102,8 0,1	454,7 0,5	897,2 0,1	0,3971 0,0144	0,7686 0,0014	0,7526 0,0032	10,46 0,05	6,28
	146,5	Mittelwert Std	149,5 3,3	216,9 <i>I</i> ,3	28,2 0,0	197,4 0,8	101,8	455,8 <i>I,1</i>	898,2 0,5	0,3663	0,7656	0,7453	10,35 0,01	6,20 0,01
	169	Mittelwert Std	165,1 5,9	210,5 2,5	28,2 0,1	199,8 0,7	99,0 1,1	462,5 3,0	901,0 <i>I,1</i>	0,3642 0,0003	0,7652 0,0001	0,7441 0,0002	10,35	6,20
	187	Mittelwert Std	191,1 16,3	204,4	27,7	203,6	96,6	467,7	903,4	0,3615	0,7646	0,7422	10,33	6,18

 $\it Tabelle~4b: {\bf Struktur, Mineral stoffe~und~Protein fraktion en~des~Weide futters~im~Jahr~2005}$

Jahr V	Jahr Vegetationstag	Wert		Struktur			Min	Mineralstoffe					Proteinfraktioner	ctionen		
	D D		NDF	ADF	ADL	Ca	Ь	\mathbf{Mg}	K	Na	dRP	RDP	UDP	nXP	MP	RNB
2005	11	Mittelwert Std	364,9 0,6	208,1	25,8 0,0	7,9 0,0	1,6 0,1	3,0	23,9 0,2	229,1 2,9	86,2 0,0	130,0 <i>I</i> ,5	20,9	141,9	120,4	1,4
	17	Mittelwert Std	362,3 2,3	171,5 <i>17</i> ,0	14,8 4,9	8,3 0,1	4,1 <i>I</i> ,0	3,7 0,3	24,5 0,3	374,6 66,9	86,8 0,3	169,0 16,0	25,6 1,9	154,6 5,4	128,2 3,4	6,4
	24	Mittelwert Std	367,5 1,9	173,5	14,9 0,6	8,3	4,5 0,0	3,6	25,5 0,3	376,1 7,4	86,9 0,0	178,6 <i>I</i> ,2	27,0 0,2	156,2 0,1	128,4 0,4	7,9
	31	Mittelwert Std	373,5 1,8	181,9	16,9 0,6	8,3	4,5	3,5	26,4 0,3	353,4 6,5	86,8	182,2 <i>I,I</i>	27,7 0,2	155,8 0,2	127,2 0,4	8,7
	41,5	Mittelwert Std	381,7 3,1	193,2 4,3	19,6 1,0	8,3	4,5 0,0	3,2 0,1	27,6 0,4	325,3 10,1	86,7 0,0	186,9 1,7	28,7 0,3	155,0 0,3	125,5 0,7	9,7
	55,5	Mittelwert Std	391,5 2,7	206,4 3,6	22,8 0,9	8,3	4,5	3,0 0,1	28,9 0,4	297,5 6,6	86,6 0,0	191,9 <i>I</i> ,3	29,7 0,3	153,8 0,4	123,2 0,6	10,8
	70	Mittelwert Std	395,7 1,7	220,0	25,4 0,6	8,0	4,5	2,8	29,5 0,2	255,9 21,2	86,5	188,8	29,5 0,5	151,2 <i>I</i> ,3	120,8	10,8
	84,5	Mittelwert Std	400,0 1,7	228,8 <i>I</i> ,8	26,9 0,4	7,8	4,5	2,6	29,9 0,1	240,1 0,9	86,4	188,2	29,6 0,1	149,4 0,3	118,9	10,9
	102,5	Mittelwert Std	407,2 2,5	235,0 <i>I</i> ,8	28,1 0,3	7,6 0,1	4,6 0,0	2,4 0,1	30,3 0,1	253,2 7,8	86,4	189,9	30,0 0,1	147,9 0,5	117,0	11,5
	124,5	Mittelwert Std	415,2 2,3	239,2 0,7	28,9 0,1	7,3 0,1	4,6 0,0	2,3 0,1	30,3 0,1	292,7 15,6	86,3	189,8	30,1	146,0 0,6	115,0	11,8
	146,5	Mittelwert Std	422,4 2,0	239,3	28,8 0,2	7,0 0,1	4,6 0,0	2,1	29,8	359,0 23,6	86,2 0,0	187,1 <i>I</i> ,2	29,8	144,5 0,2	113,8 0,1	11,6
	169	Mittelwert Std	428,8 <i>I</i> ,7	235,2 2,0	27,8 0,4	6,6 0,1	4,5 0,0	2,0	28,7 0,4	455,1 33,3	86,2 0,0	181,5 2,1	29,0 0,3	143,6 0,3	113,7	10,7
	187	Mittelwert Std	439,2 10,6	233,9 6,9	26,1 0,7	6,5	4,3 0,1	1,8	27,6	531,3 <i>18</i> ,8	86,2 0,1	176,1 1,0	28,3 0,3	142,6 0,3	113,5	9,9

Tabelle 5a: Weender-Nährstoffe und Energiebewertung des Weidefutters im Jahr 2006

Jahr	Jahr Vegetationstag	Wert			Wee	Weender-Nährstoffe	offe				En	Energiebewertung	ng	
	D D		TM	RP	RFE	RFA	RA	NFE	SO	dRFE	dRFA	MOD	ME	NEL
2006	11	Mittelwert Std	156,7 0,6	153,3 <i>I,1</i>	18,1 0,1	191,8	110,4	526,4 1,5	889,6	0,5807	0,7854 0,0008	0,7903	10,70	6,53
	17	Mittelwert Std	164,0 9,4	163,5 11,5	18,5 0,1	190,7 5,8	104,0 8,3	523,3 3,0	896,0 8,3	0,5899	0,7880	0,7927 0,0093	10,84	6,62 0,18
	24	Mittelwert Std	176,7 0,5	182,6 <i>I,1</i>	19,0	183,5	91,9 0,1	523,0 2,0	908,1 0,1	0,6331 0,0051	0,7986	0,8039	11,19	6,86 0,01
	31	Mittelwert Std	175,1 0,5	186,0 <i>I</i> ,0	19,8 0,2	185,3 0,5	92,2 0,1	516,7 1,8	907,8 0,1	0,6163	0,7956	0,8001	11,15 0,01	6,82
	41,5	Mittelwert Std	172,7 1,0	190,4 <i>I</i> ,6	20,9	187,8	92,5 0,1	508,5 3,1	907,5 0,1	0,5903	0,7913	0,7943 0,0023	11,08	6,76
	55,5	Mittelwert Std	169,8	192,2 3,6	22,0 0,3	193,6 4,6	94,0 <i>I</i> ,6	498,2 3,4	906,0 <i>I</i> ,6	0,5418 0,0251	0,7830 0,0051	0,7829	10,91 0,12	6,63
	70	Mittelwert Std	166,1 1,0	198,6	23,1 0,2	192,9 0,6	93,3 0,1	492,1 <i>I</i> ,9	906,7 0,1	0,5191	0,7812 0,0014	0,7786 0,0024	10,87	6,60
	84,5	Mittelwert Std	166,6	197,4	23,3	199,5 8,1	94,2 0,9	485,6	905,8	0,4696	0,7737	0,7664 0,0087	10,68	6,45 0,11
	102,5	Mittelwert Std	163,7 3,9	199,1 2,3	23,7 0,3	200,0	94,3 0,2	482,9 2,1	905,7 0,2	0,4348	0,7708	0,7590	10,57 0,10	6,37
	124,5	Mittelwert Std	165,6	196,3 0,6	$23,1 \\ 0,I$	203,6	94,9 0,2	482,2 1,0	905,1 0,2	0,3865	0,7662	0,7477 0,0021	10,38	6,23 0,03
	146,5	Mittelwert Std	162,3 <i>I,I</i>	192,9 <i>I</i> ,5	22,3 0,3	200,9 1,1	96,0	487,9	904,0	0,3644	0,7652 0,0002	0,7440 0,0005	10,30	6,18
	169	Mittelwert Std	157,8 <i>1</i> ,5	186,2 2,5	20,9	196,0 <i>I</i> ,8	97,9	499,1 4,1	902,1 0,7	0,3676	0,7660	0,7465 0,0010	10,30	6,18
	190,5	Mittelwert Std	152,7 <i>1</i> ,5	176,8	19,0	189,4	100,4	514,5	899,6	0,3727	0,7671	0,7500	10,29	6,19

Tabelle 5b: Struktur, Mineralstoffe und Proteinfraktionen des Weidefutters im Jahr 2006

Jahr Ves	Lahr Vegetationstag	Wert		Struktur			Min	Wineralstoffe					Proteinfraktioner	ctionen		
	0		NDF	ADF	ADL	Ca	Ь	Mg	K	Na	dRP	RDP	UDP	nXP	MP	RNB
2006	11	Mittelwert Std	361,8 <i>I,I</i>	229,6 0,2	30,4 0,1	5,5 0,1	4,4 0,0	2,2	25,1 0,1	169,6 0,3	86,3 0,0	132,3 0,9	21,0	139,3 0,1	117,7 0,1	2,2
	17 1	Mittelwert Std	361,0	218,4 <i>19,9</i>	28,9 <i>I</i> ,9	5,8 0,1	4,6 0,2	2,2	25,4 0,1	233,7 110,7	86,4 0,1	141,2 <i>10</i> ,2	22,3 <i>I</i> ,3	142,2 4,3	119,2 3,0	$^{3,4}_{I,I}$
	24	Mittelwert Std	353,5 1,4	192,2 <i>I</i> ,3	26,0 0,1	6,0 0,1	5,0	2,2	25,8 0,1	382,3 6,3	86,5	158,0 0,9	24,6 0,2	148,6 0,0	123,3 0,1	5,4
	31	Mittelwert Std	357,9 <i>I</i> ,3	196,3 <i>1</i> ,2	25,8 0,1	6,4 0,1	5,0	2,3	26,0 0,1	363,0 5,7	86,5	160,9	25,1 0,2	148,6 0,0	122,8 0,2	6,0
	41,5	Mittelwert Std	364,3 2,5	$202,0 \\ 2,I$	25,6 0,1	6,9	5,2 0,0	2,5	26,4 0,1	337,7 9,3	86,5	164,6 <i>I</i> ,4	25,8 0,3	148,5 0,1	122,0 0,3	6,7
	55,5	Mittelwert Std	374,9 5,3	212,5	25,9 0,6	7,6	5,2 0,2	2,6	26,7 0,1	289,3 33,0	86,4 0,1	166,0	26,2	147,0 <i>I</i> ,7	120,0 1,4	7,2
	70	Mittelwert Std	379,8	213,8 <i>I</i> ,5	25,4 0,0	9,7 0,1	5,4	2,7	27,0 0,1	289,4 5,2	86,4	171,5	27,1 0,1	147,5 0,2	119,6 0,4	8,2
	84,5	Mittelwert Std	390,1 6,6	221,6 6,7	26,1 1,0	8,4 0,3	5,2 0,3	2,8	27,1 0,0	263,4 22,8	86,2	170,2 4,8	27,1 0,4	145,3 2,3	117,4 <i>I</i> ,8	8,3
	102,5	Mittelwert Std	396,6 4,6	223,2	26,3 0,7	8,5	5,3	2,8	27,1 0,0	271,4 2,9	86,2 0,1	171,7 2,1	27,4 0,1	144,4 <i>I</i> ,3	116,2 1,2	8,7
	124,5	Mittelwert Std	405,1 <i>I</i> ,4	225,6 0,4	27,6 0,3	8,4 0,1	5,1 0,0	2,8	26,9 0,1	296,6 11,4	86,2	169,1 0,5	27,2 0,1	142,1 0,5	114,1 0,4	8,7
	146,5	Mittelwert Std	408,9	223,3 1,0	28,8 0,4	7,8	5,1 0,0	2,7	26,5 0,2	342,7 <i>15</i> ,8	86,2 0,0	166,3 1,2	26,6	140,6 0,3	113,2 0,0	8,4
	169	Mittelwert Std	410,7	218,9 <i>I</i> ,6	30,4 0,6	6,7 0,4	5,0	2,5 0,1	25,8 0,3	405,3 21,2	86,3	160,7 2,1	25,5 0,4	139,5 0,4	113,2	7,5
	190,5	Mittelwert Std	410,5 0,4	212,8 <i>I</i> ,9	32,4 0,6	5,3 0,4	4,9 0,0	2,3 0,1	24,8 0,3	479,2 22,3	86,4 0,0	152,8 2,5	24,0 0,5	138,0 0,5	113,2	6,2

 $\it Tabelle~6a: We ender-N\"{a}hrstoffe~und~Energie bewertung~des~Weidefutters~im~Jahr~2007$

			D	D										
Jahr Ve	Jahr Vegetationstag	Wert		Ween	Weender-Nährstoffe	offe					Ene	Energiebewertung	5£	
			\mathbf{TM}	RP	RFE	RFA	RA	NFE	SO	dRFE	dRFA	МОР	ME	NEL
2007	18,5	Mittelwert Std	195,9	113,2 <i>I.9</i>	18,2	183,2 0,1	106,4	579,0 1.6	893,6	0,6250	0,7962	0,8015	10,82 0.01	6,64 0,01
	24	Mittelwert	197,8	127,1	19,8	182,2	105,9	565,0	894,1	0,6254	0,7968	0,8019	10,88	6,67
	31	Mittelwert Std	2,5 215,1 1,1	169,5 0,7	7,7 23,6 0,0	3,7 176,1 1,2	3,0 116,4 0,4	514,4 11,4 1,4	883,6 0.4	0,6375 0,0082	0,8005	0,8054 0,0019	0,03 0,02	6,71 0,02
	41,5	Mittelwert Std	203,9	164,1 <i>14,3</i>	23,2	182,5	109,6	520,7 21,7	890,4	0,5984	0,7932	0,7964	10,88	6,65
	55,5	Mittelwert Std	202,4 2,1	176,5 1,1	23,6	187,6 1,7	112,4	499,9	887,6	0,5505	0,7850	0,7852 0,0032	10,71 0,04	6,52
	70	Mittelwert Std	195,1	180,1 <i>I</i> ,0	23,6	192,8 1,4	110,6	492,9	889,4 0,5	0,5057 0,0129	0,7781	0,7748	10,58	6,41
	84,5	Mittelwert Std	188,0	183,2	23,6	197,0 1,0	109,1	487,1 <i>I</i> ,5	890,9	0,4667 0,0104	0,7730	0,7656 0,0025	10,47	6,33
	102,5	Mittelwert Std	178,6	188,2 2,8	24,5 1,2	197,7 4,2	104,3	485,3 6,1	895,7	0,4347	0,7708	0,7591	10,44 0,15	6,29
	124,5	Mittelwert Std	170,6	199,0 <i>I</i> ,6	26,6 0,1	192,6 0,3	99,4	482,4 2,1	9,006	0,4009	0,7694	0,7545	10,47	6,30
	146,5	Mittelwert Std	163,9 1,9	203,0	26,7 0,0	190,8 0,8	102,7 <i>I</i> ,3	476,8 <i>1</i> ,2	897,3 1,3	0,3716 0,0014	0,7668	0,7490	10,36 0,01	6,22 0,01
	169	Mittelwert Std	157,6 <i>I</i> ,8	204,1 0,1	26,5 0,1	187,1 <i>I</i> ,4	108,2	474,1 0,4	891,8	0,3732	0,7672	0,7504	10,32 0,01	6,20 0,01
	194,5	Mittelwert Std	151,1 2,0	201,9 <i>I</i> ,3	25,8 0,3	180,7 2,5	117,0	474,7	883,0	0,3771 0,0015	0,7680	0,7532 0,0011	10,26 0,02	6,17

Tabelle 6b: Struktur, Mineralstoffe und Proteinfraktionen des Weidefutters im Jahr 2007

Jahr Veg	Jahr Vegetationstag	Wert		Struktur			Min	Mineralstoffe					Proteinfraktioner	ktionen		
			NDF	ADF	ADL	Ca	Ь	Mg	K	Na	dRP	RDP	UDP	nXP	MP	RNB
2007	18,5	Mittelwert	448,8	208,8	37,3	5,7	3,1	2,2	21,4	142,5	86,5	6,76	15,3	134,9	119,1	-3,5
		Std	0,8	0,7	0,2	0,1	0,I	0,0	0,I	8,0	0,0	I,6	0,3	0,4	0,I	0,2
	24 I	Mittelwert	438,5	209,5	34,6	0,9	3,4	2,3	21,5	177,8	86,5	110,0	17,1	137,4	119,8	-1,7
		Std	19,0	5,7	5,4	0,2	0,2	0,2	0,7	84,5	0,I	15,9	2,4	3,I	9,0	2,4
	31	Mittelwert	399,2	199,5	23,1	6,5	4,0	2,7	20,6	361,2	9,98	146,7	22,7	144,0	120,6	4,1
		Std	6,1	1,5	0,4	0,0	0,I	0,0	0,3	4,3	0,0	9,0	0,I	0,I	0,3	0,I
	41,5	Mittelwert	416,2	210,3	27,8	9,9	4,2	2,6	22,2	289,2	86,5	141,9	22,2	142,6	119,7	3,4
		Std	13,1	8,9	4,5	0,I	0,2	0,2	9,0	85,4	0,0	12,3	1,9	I,4	8,0	2,1
	55,5	Mittelwert	418,7	214,1	27,3	9,9	4,6	2,7	23,8	319,7	86,4	152,5	24,0	142,6	117,8	5,4
		Std	2,9	2,2	0,7	0,0	0,I	0,0	0,5	5,8	0,0	6,0	0,2	0,2	0,4	0,2
	70 1	Mittelwert	427,8	221,0	29,4	9,9	4,8	2,7	25,2	302,2	86,3	155,4	24,7	141,8	116,4	6,1
		Std	2,6	6'I	9,0	0,0	0, I	0,0	0,4	4,6	0,0	0,8	0,2	0,2	0,4	0,2
	84,5	Mittelwert	435,2	226,6	31,2	6,5	5,0	2,7	26,3	289,9	86,2	158,0	25,2	141,1	115,1	6,7
		Std	I,9	I,4	0,5	0,0	0,I	0,0	0,3	2,8	0,0	0,7	0,I	0,2	0,3	0,2
	102,5	Mittelwert	435,2	231,9	32,3	8,9	5,3	2,7	26,7	273,4	86,2	162,3	25,9	141,5	114,8	7,5
		Std	10,0	6,0	1,2	0,4	0,I	0,0	6,0	11.6	0,I	2,5	0,3	I,8	1,7	0,3
	124,5	Mittelwert	419,0	232,6	30,8	7,4	5,5	2,8	26,1	282,4	86,3	171,8	27,2	143,1	115,1	8,9
		Std	I,I	0,3	0,0	0,0	0,0	0,0	0,0	2,6	0,0	I,4	0,2	0,3	0,5	0,3
	146,5	Mittelwert	414,3	230,0	30,6	7,2	5,5	2,8	25,9	313,1	86,4	175,3	27,7	142,4	113,9	7,6
		Std	1,7	I,3	0,1	0,I	0,0	0,0	0,I	10,5	0,0	0,7	0,I	0,0	0,I	0,I
	169	Mittelwert	407,4	224,0	30,1	7,0	5,4	2,8	25,3	354,4	86,4	176,4	27,7	142,1	113,6	6,6
		Std	2,3	2,3	0,2	0,I	0,0	0,0	0,3	14,0	0,0	0,I	0,I	0,2	0,I	0,0
	194,5	Mittelwert	397,4	213,0	29,2	6,5	5,2	2,8	23,9	413,6	86,5	174,6	27,2	141,0	112,9	7,6
		Std	3,6	4,2	0,3	0,2	0,1	0,0	0,5	21,1	0,0	I,I	0,2	0,5	0,2	0,I