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Abstract
There is an increasing interest in non-destructive measurements for comprehensive grassland monitoring. 
The present study aims to assess the ability of crop height (CH), leaf area index (LAI), chlorophyll 
content (CC) and mean developmental stage measurements to estimate dry matter yield (DMY), crude 
protein content (CP) and neutral detergent fibre content (NDF) of permanent grassland. Therefore, 
LAI from hyperspectral reflectance acquired by a field spectrometer and from the AccuPAR LP-80 was 
recorded weekly during an entire growing season. CH was measured with a rising plate meter (RPM) and 
a yardstick (YS) before destructive sampling for DMY, CP and NDF determination. The most abundant 
grass species were cut for measuring mean developmental stage and CC. Starting with a null model, the 
best predictors for DMY, CP and NDF using an exhaustive search were determined. Including design 
effects and the cuts in a mixed model approach, CH and LAI showed an R2 of 0.93 for DMY estimation. 
CC from Alopecurus pratensis and CH were the best predictors for CP (R2=0.86) and CC along with 
mean developmental stage from A. pratensis for NDF (R2=0.81). The tested parameters and in particular 
parameter combinations led to promising results for DMY, CP and NDF estimation.
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Introduction
Grassland swards are well known for their high spatial and temporal variability due to abiotic and biotic 
influences during each growth (Schut et al., 2002). To guarantee optimal and comprehensive grassland 
management during the entire growing period, information about yield and quality development are of 
utmost importance (Wachendorf et al., 2018). Non-destructive methods for the estimation of yield and 
forage quality have become more common in recent years. These methods offer the possibility to monitor 
growth characteristics within particular cuts and thus optimise grassland management. Non-destructive 
observations mostly refer to the relationship of sward height, phenological stage, species composition 
or the interaction between leaves and radiation with yield and forage quality. In situ measurements 
provide valuable information at the local level, but are not very suitable for large scale observations due 
to their mostly labour-intensive execution (Ali et al., 2016). In recent years, satellite data have proved to 
be very helpful for observing grasslands regionally. Especially the freely available Sentinel-2 data provide 
a sufficiently high temporal and spatial resolution (Drusch et al., 2012). Few methods, and especially 
method combinations for the estimation of DMY, CP and NDF have been tested for species-rich 
permanent-grassland vegetation. This research aims to test common non-destructive measurements for 
their ability to predict the yield and quality of permanent grassland during an entire vegetation period.

Materials and methods
A field experiment was conducted in 2018 on permanent grassland in the Enns Valley, Austria (47°30’35.4’ 
N; 14°05’03.5’E; 643 m above sea level). The experimental setup was established as a split-plot design 
with three replicates (2.25 m2 per plot) before the start of the growing period in 2018. The sampling was 
carried out at weekly intervals during the entire vegetation period, which resulted in 32 campaigns, each 
following a precise workflow.
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Initially, CH was measured using an RPM and a YS. Four hyperspectral reflectance measurements were 
acquired by a field spectrometer (HandySpec/tec5), and three AccuPAR readings were obtained at each 
plot. The hyperspectral reflectance data were resampled into Sentinel-2 bands according to the Spectral 
Response Functions (ESA, 2018). After resampling, LAI was calculated using a neural net algorithm 
from Baret et al. (2010). This algorithm is specifically tailored for Sentinel-2 data and was trained 
with radiative transfer simulations from the PROSPECT and SAIL models ( Jacquemoud et al., 2009; 
Verhoef, 1984). Following the non-destructive measurements, an area of one square meter was harvested 
on each plot. After drying the samples for DMY determination, CP and NDF were analysed chemically. 
Representing the abundance of the three most dominating species in the sward, fifteen individual plants 
of Alopecurus pratensis, ten of Dactylis glomerata and five of Festuca pratensis were manually cut on the 
remaining edges of the harvested plots for the following analyses. CC measurements were carried out 
using a chlorophyll meter (SPAD 502) and were then separated into observations on the flag leaf and 
observations on randomly selected leaves. Subsequently, the mean developmental stage of each grass 
species according to the BBCH-scale (Meier et al., 2009) was calculated by the following two equations:

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑆𝑆𝑖𝑖 ∗  𝑁𝑁𝑖𝑖
𝐶𝐶

𝑖𝑖=1
where MSC = mean stage count, Si = growth stage index, Ni = number of plants in stage Si and C = total 
number of plants in the sample population (Moore et al., 1991).

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑆𝑆𝑖𝑖 ∗  𝐷𝐷𝑖𝑖
𝑊𝑊

𝑖𝑖=1
where MSW = mean stage weight, Si = growth stage index, Di = weight of plants in stage Si and W = 
total weight of plants in the forage sample (Fick and Mueller, 1989). The best and the two best predictor 
variables were determined using exhaustive search from the function ‘regsubsets’ of the ‘leaps’ R-package. 
The response variables were DMY, CP and NDF. Explanatory variables included in the models were: crop 
height (RPM and YS), LAI from AccuPAR and field spectrometer, CC from A. pratensis, D. glomerata and 
F. pratensis (flag leaves and random leaves of each species), MSC and MSW of A. pratensis, D. glomerata 
and F. pratensis and average MSC and MSW of all three species. After defining the best explanatory 
variables, a mixed model regression was set up using the function ‘lmer’ of the ‘lme4’ R-package. The 
dataset was split into 67% training data and 33% test data for the calculation of RMSE and R2.

Results and discussion
CH (RPM) was identified by the exhaustive search method to be the best predictor for DMY. It showed 
an R2 of 0.90 and an RMSE of 434 when testing the mixed model regression on the test data set. The two 
best response variables for DMY estimation were CH (RPM) and LAI from AccuPAR. The predictor 
combination led to an improved RMSE (Figure 1). The combination of CH (RPM) and LAI from 
field spectrometer showed a high prediction accuracy as well (R2=0.92, RMSE=363), indicating the 
high potential of remote sensing data for grassland yield estimation. CH (YS) was the best predictor 
for CP (R2=0.75, RMSE=22). The combination of the two best predictors, CH (YS) and CC from 
A. pratensis (random leaves) improved the prediction accuracy again (Figure 1). MSC from F. pratensis 
served as the best predictor for NDF (R2=0.55, RMSE=50) whereas MSW from A. pratensis and CC 
from A. pratensis (random leaves) were the best predictors for NDF. The parameter combination again 
improved the prediction accuracy (R2=0.81, RMSE=42). The prediction accuracy increased in all three 
cases (DMY, CP and NDF) when two explanatory variables were included in the model. This shows that 
the combination of morphological, phenological and optically sensed parameters significantly improves 
the model performance. LAI, CC, CH, mean developmental stage and in particular, their combination 
prove their ability for the prediction of yield and forage quality.
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Conclusions
Non-destructive measurements on high abundant plants, as well as on the total sward, and a combination 
of both, show a high ability to estimate cost-efficiently and expeditiously some important yield and quality 
parameters of species-rich permanent grassland. The results demonstrate the possibility of continuous 
and comprehensive growth monitoring from small plots to regional scale. The planned extension of the 
experiment to several sites will provide reliable and robust results for a larger range of grasslands.

References
Ali I., Cawkwell F., Dwyer E., Barrett B. and Green S. (2016) Satellite remote sensing of grasslands: from observation to management. 

Journal of Plant Ecology 9, 649-671.
Baret F., Weiss M., Bicheron P. and Berthelot B. (2010) Sentinel-2 MSI products WP1152 algorithm theoretical basis document for 

product group B. INRA-EMMAH, Avignon, France.
Drusch M. et al. (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of 

Environment 120, 25-36.
ESA (2018) Sentinel-2 spectral response functions. Available at: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/

document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses.
Fick G.W. and Mueller S.C. (1989) Alfalfa: quality, maturity, and mean stage of development. Information Bulletin Cornell University 

217, 16.
Jacquemoud S. et al. (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of 

Environment 113, 56-66.
Meier U. et al. (2009) The BBCH system to coding the phenological growth stages of plants – history and publications. Journal für 

Kulturpflanzen 61, 41-52.
Moore K.J., Moser L.E., Vogel K.P., Waller S.S., Johnson B.E. and Pedersen J.F. (1991) Describing and quantifying growth stages of 

perennial forage grasses. Agronomy Journal 83, 1073-1077.
Schut A.G.T., Ketelaars J.J.M.H., Meuleman J., Kornet J.G. and Lokhorst C. (2002) AE – automation and emerging technologies: 

novel imaging spectroscopy for grass sward characterization. Biosystems Engineering 82, 131-141.
Verhoef W. (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing 

of Environment 16, 125-141.
Wachendorf M., Fricke T. and Möckel T. (2018) Remote sensing as a tool to assess botanical composition, structure, quantity and 

quality of temperate grasslands. Grass and Forage Science 73, 1-14.

Figure 1. Observed vs predicted dry matter yield (DMY) kg ha‑1 using rising plate meter (RPM) and leaf area index (LAI) from AccuPAR (left) 
and observed vs predicted crude protein (CP) g kg‑1 dry matter (DM) using crop height and chlorophyll content (CC) from Alopecurus pratensis 
(random leaves) on the right side.
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