Effizienz bei Milchkühen – Einfluss von Rasse, Laktationszahl und Laktationsstadium

Univ.-Doz. Dr. Leonhard Gruber

Nutztierforschung HBLFA Raumberg-Gumpenstein

Dipl.-Ing. Martin Stegfellner

Österreichischer Bundesverband für Schafe und Ziegen

Übersicht

- Problemstellung
- Material und Methoden
 - Datenerhebung
 - Datenaufbereitung
- Forschungsfragen
- Statistisches Modell
- Ergebnisse und Diskussion
 - Einfluss der Rasse
 - Einfluss der Laktationszahl
 - Einfluss des Laktationsstadiums
 - Korrelationen zwischen Lebendmasse, K\u00f6rperma\u00dfen, BCS sowie Milchleistung und Milcheffizienz
- Schlussfolgerungen

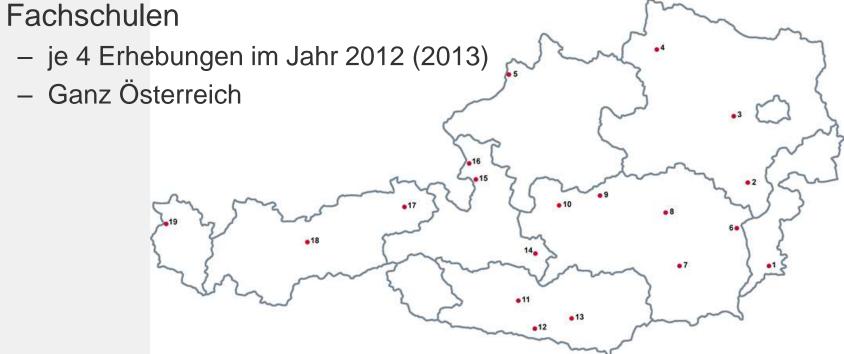
Problemstellung

- Milchleistung steigt kontinuierlich
 - 1950: Ø 3.000 kg/Kuh und Laktation
 - 2010: Ø 6.850 kg/Kuh und Laktation
 - seit 2012: Ø über 7.000 kg/Kuh und Laktation
- Zuchtfortschritt, verbesserte Fütterung und Haltung
 - → führt zu einer Erhöhung von
 - Futteraufnahme
 - > Lebendgewicht
 - > Erhaltungsbedarf
 - > Futterkosten/Kuh

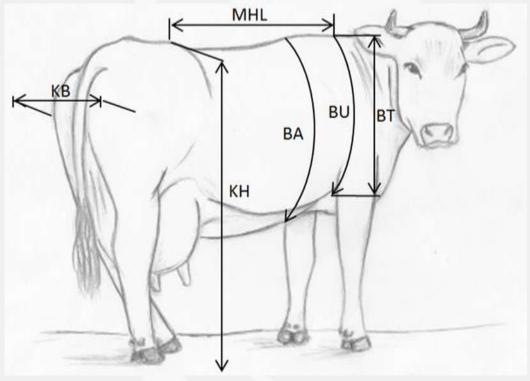
(GFE 2001, STEINWIDDER 2009)

- Auswirkung auf Stoffwechsel
 - · Anfälligkeit auf Krankheiten steigt

(GRUBER 2013)


Welche Auswirkungen hat diese Entwicklung auf die Effizienz?

Datenerhebung [1]


- 713 Kühe
- 7 Rassen (FV, BV, PI, BS, RH, HF) und Kreuzungen

Erhebungen und Messungen an 19 Landwirtschaftlichen

Datenerhebung [2]

- Messung der K\u00f6rperma\u00dfe mittels
 Viehmessstock und Ma\u00dfband durch Personal der Schule
 - an sechs genau definierten Punkten:

Datenerhebung [3]

- Erhebung der Lebendmasse mittels Viehwaage
- Bewertung der Körperkondition nach EDMONSON et al. (1989) durch Mitarbeiter HBLFA Raumberg-Gumpenstein
- Milchleistungsdaten von der ZuchtData GmbH zur Verfügung gestellt
- Statistische Auswertung
 - mit dem Programm SAS 9.4

Datenaufbereitung

- Einteilung der Rassen nach Genanteil der Eigenrasse
 - FV 100-87.5
 - FV 87.5-50
 - BV 100/PI 100-87.5
 - PI 87.5-50
 - BS 100-50
 - RH 87.5-50
 - HF 100/RH 100-87.5

- => Fremdgenanteil bis 12,5 %
- => Fremdgenanteil 12,5 50 %
- => Fremdgenanteil bis 12,5 %
- => Fremdgenanteil 12,5 50 %
- => Fremdgenanteil bis 50 %
- => Fremdgenanteil 12,5 50 %
- => Fremdgenanteil bis 12,5 %
- Berechnung drei Effizienzparameter
 - g Milch/kg Lebendmasse
 - g Energie-korrigierte Milch/kg Lebendmasse
 - g Fett- und Eiweißmenge/kg Lebendmasse

Forschungsfragen

- Welchen Einfluss haben Rasse, Laktationszahl und Laktationsstadium auf die Milchleistung, Lebendmasse und Milcheffizienz von Milchkühen?
- Welche Auswirkung hat eine verstärkte Zucht auf Milchleistung auf die Lebendmasse und Effizienz?

Statistisches Modell

$$Y_{ijklmn} = \mu + R_i + L_j + Z_k + S_l + (R \times L)_{ij} + (R \times Z)_{ik} + (L \times Z)_{jk} + K(S)_m + \mathcal{E}_{ijklmn}$$

Y_{ijklmn} = Beobachtungswert des abhängigen Parameters

 μ = Intercept

 R_i = fixer Effekt der Rasse i (i = 1-7)

 L_i = fixer Effekt der Laktationszahl j (j = 1 - \geq 5)

 Z_k = fixer Effekt der Zeit k (k = 1-13)

 S_l = fixer Effekt der Schule (l = 1-19)

 $(R \times L)_{ij}$ = Wechselwirkung zwischen Rasse i und Laktationszahl j

 $(R \times Z)_{ik}$ = Wechselwirkung zwischen Rasse i und Laktationsstadium k

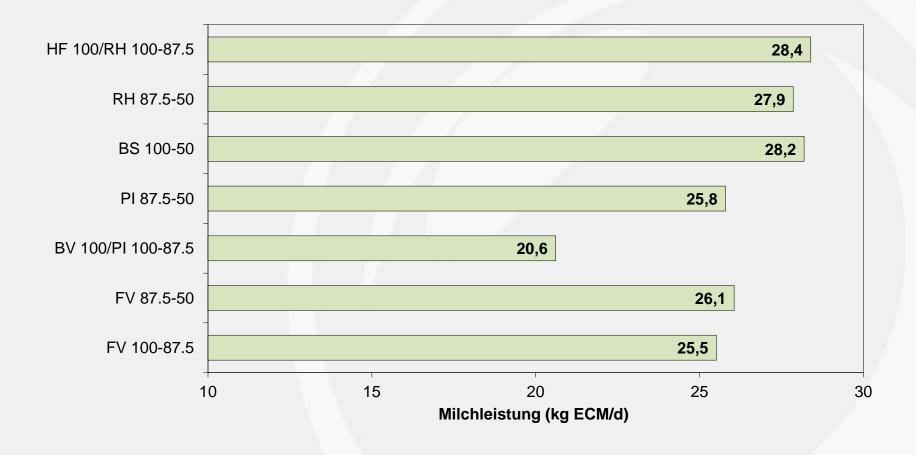
 $(L \times Z)_{jk}$ = Wechselwirkung zwischen Laktationszahl j und Laktationsstadium k

 $K(S)_m$ = zufälliger Effekt Tier (Kuh) genestet in der Schule

 \mathcal{E}_{ijklmn} = Restkomponente

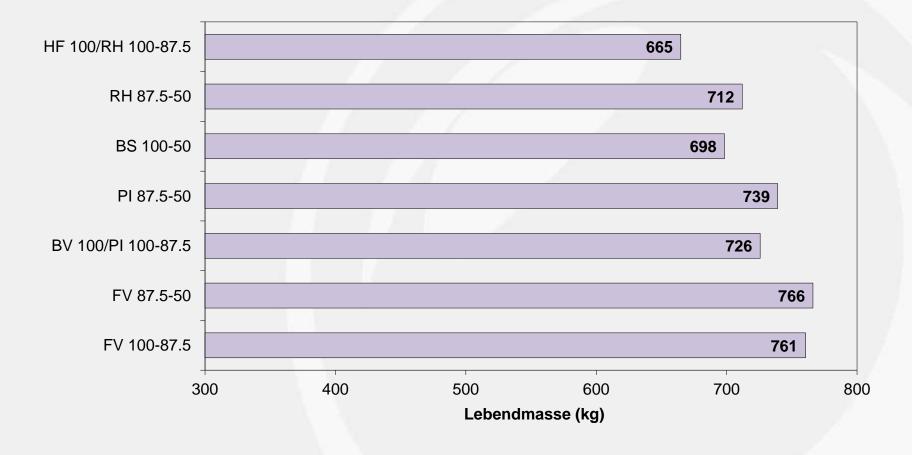
Ergebnisse und Diskussion

EINFLUSS DER RASSE

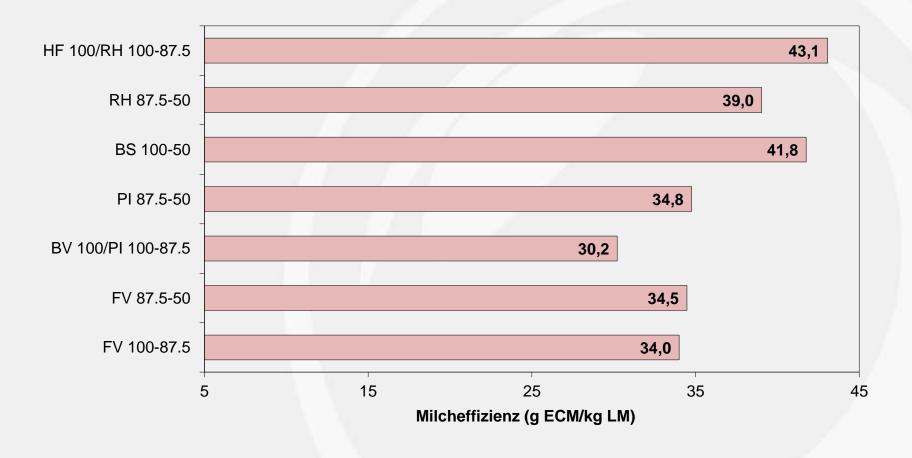


Übersicht Einfluss der Rasse

Parameter I	Einheiten	Rasse (R)								P-Wert
		1	2	3	4	5	6	7		R
Milchleistung										
Milch	kg	24,4 ^b	25,1 ^{bc}	20,8 ^a	25,8 ^{bcd}	27,5 ^{cd}	27,6 ^{cd}	28,2 ^d	3,70	<0,001
Fett	%	4,37	4,34	3,85	4,11	4,22	4,19	4,19	0,54	0,140
Eiweiß	%	3,53	3,51	3,46	3,42	3,48	3,40	3,40	0,23	0,267
Fett	kg	1,07 ^b	1,09 ^b	0,82 ^a	1,05 ^b	1,17 ^b	1,14 ^b	1,17 ^b	0,21	<0,001
Eiweiß	kg	0,86 ^b	0,87 ^{bc}	0,72 ^a	0,87 ^{bc}	0,95 ^c	0,92 ^{bc}	0,94 ^c	0,13	<0,001
Fett und Eiweiß	kg	1,92 ^b	1,96 ^b	1,54 ^a	1,92 ^b	2,11 ^b	2,07 ^b	2,11 ^b	0,31	<0,001
ECM	kg	25,5 ^b	26,1 ^{bc}	20,6 ^a	25,8 ^{bc}	28,2 ^c	27,9 ^{bc}	28,4 ^c	4,00	<0,001
Milcheffizienz										
Milch/LM	g/kg	32,5 ^a	33,3 ^a	30,7 ^a	34,9 ^a	40,8 ^{bc}	38,8 ^b	43,1°	5,40	<0,001
ECM/LM	g/kg	34,0 ^{ab}	34,5 ^{ab}	30,2 ^a	34,8 ^b	41,8 ^{cd}	39,0°	43,1 ^d	5,60	<0,001
Fett- und Eiweiß/LM	g/kg	2,56 ^{ab}	2,58 ^b	2,24 ^a	2,58 ^b	3,13 ^{cd}	2,90 ^c	3,20 ^d	0,43	<0,001
Lebendmasse und Kö	örpermaße	,								
LM	kg	761 ^d	766 ^d	726 ^{bcd}	739 ^{cd}	698 ^b	712 ^{bc}	665 ^a	37,0	<0,001
BU	ст	215 ^{cd}	216 ^d	212 ^{bcd}	213 ^{bcd}	210 ^{ab}	211 ^{bc}	207 ^a	5,00	<0,001
BA	ст	260 ^b	266 ^c	259 ^{ab}	261 ^{bc}	255 ^a	258 ^{ab}	254 ^a	8,00	<0,001
BT	ст	78,7 ^a	79,7 ^b	77,6 ^a	80,1 ^b	78,9 ^{ab}	79,7 ^b	79,0 ^{ab}	2,70	0,049
KH	ст	144 ^{ab}	145 ^{ab}	142 ^a	145 ^b	148 ^c	146 ^{bc}	145 ^b	2,00	<0,001
MHL	ст	95,2 ^b	96,3 ^{bc}	91,3 ^a	96,1 ^{bc}	96,3 ^{bc}	96,1 ^{bc}	97,5°	4,70	<0,001
KB	ст	56,5	56,2	55,3	56,7	54,8	55,9	55,8	3,20	0,078
BCS	Punkte	3,50 ^{cd}	3,46 ^c	3,70 ^d	3,42 ^c	2,91 ^a	3,15 ^b	2,97 ^{ab}	0,26	<0,001



Milchleistung



Lebendmasse

Milcheffizienz

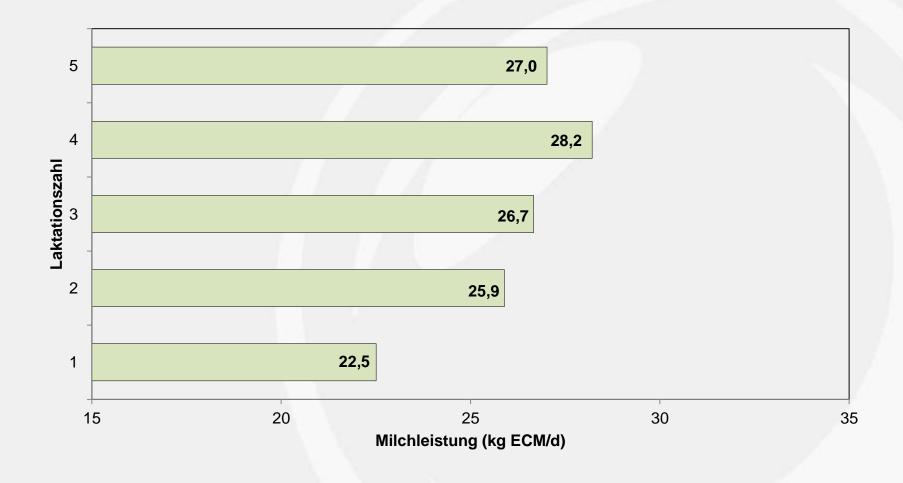
Zusammenfassung

Einfluss der Rasse

- Hochsignifikanter Einfluss in nahezu allen Kriterien (Lebendmasse, Milchleistung, Milcheffizienz)
- Milchleistung:
 - Bei kombinierten Zweinutzungsrassen sehr ähnlich
 - Bei milchbetonten Rassen auf einem signifikant höheren Niveau
 - Kein signifikanter Unterschied bei Milchinhaltsstoffen
- Lebendmasse:
 - Geht mit dem Grad der Milchbetonung zurück
- Körpermaße und Body Condition Score
 - Relativ zur Lebendmasse sind milchbetonte Kühe höher und schmäler sowie auch länger
 - Milchbetone Kühe weisen eine niedrigere Körperkondition auf
- Milcheffizienz:
 - kombinierte Kuhtypen geringere Effizienzwerte als milchbetonte
 - mit steigender Milchbetonung erhöht sich die Milcheffizienz

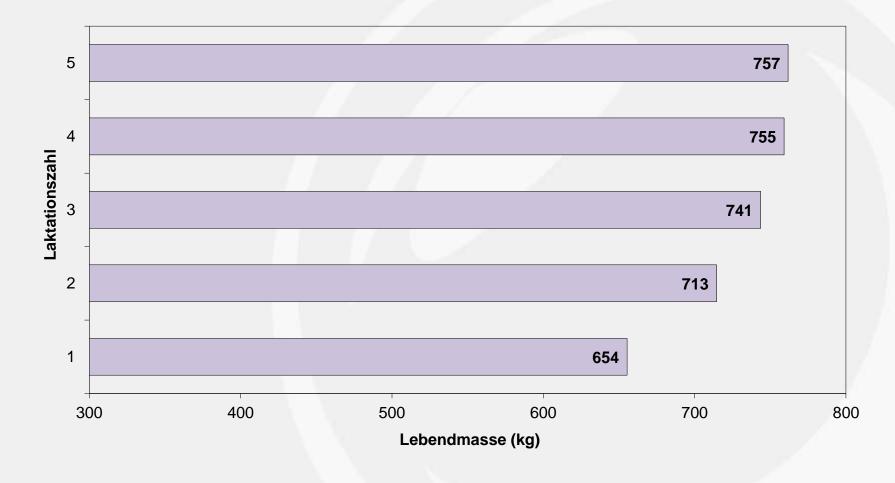
Ergebnisse und Diskussion

EINFLUSS DER LAKTATIONSZAHL



Übersicht Einfluss der Laktationszahl

Parameter		Lal	RMSE	P-Wert				
		1	2	3	4	≥5		L
Milchleistung								
Milch	kg	22,2 ^a	25,3 ^b	26,2 ^{bc}	27,7 ^c	26,6 ^{bc}	3,70	<0,001
Fett	%	4,13	4,19	4,23	4,19	4,17	0,54	0,736
Eiweiß	%	3,45	3,49	3,43	3,46	3,45	0,23	0,736
Fett	kg	0,92 ^a	1,07 ^b	1,10 ^{bc}	1,16 ^c	1,11 ^{bc}	0,21	<0,001
Eiweiß	kg	0,77 ^a	0,88 ^b	0,89 ^c	0,94 ^d	0,90 ^c	0,13	<0,001
Fett und Eiweiß	kg	1,68 ^a	1,94 ^b	1,99 ^{bc}	2,10 ^c	2,02 ^{bc}	0,31	<0,001
ECM	kg	22,5 ^a	25,9 ^b	26,7 ^{bc}	28,2 ^c	27,0 ^{bc}	4,00	<0,001
Milcheffizienz								
Milch/LM	g/kg	35,2	36,4	36,6	37,9	35,5	5,40	0,111
ECM/LM	g/kg	35,4 ^a	37,1 ^{ab}	37,1 ^{ab}	38,4 ^b	35,9 ^a	5,60	0,047
Fett- und Eiweiß/LM	g/kg	2,64 ^a	2,77 ^{bc}	2,76 ^{abc}	2,86 ^c	2,67 ^{ab}	0,43	0,045
Lebendmasse und Körperm	aße							
LM	kg	654 ^a	712 ^b	741 ^c	755 ^c	757 ^c	37,0	<0,001
BU	cm	204 ^a	211 ^b	213 ^c	216 ^d	216 ^d	5,00	<0,001
BA	ст	249 ^a	257 ^b	262 ^c	263 ^c	264 ^c	8,00	<0,001
ВТ	ст	75,9 ^a	78,6 ^b	79,8 ^c	80,8 ^d	80,5 ^{cd}	2,70	<0,001
кн	cm	144 ^a	145 ^{bc}	145 ^{bc}	146 ^c	145 ^{ab}	2,00	<0,001
MHL	ст	91,9 ^a	95,2 ^b	95,8 ^{bc}	97,7 ^d	97,2 ^{cd}	4,70	<0,001
KB	cm	53,8 ^a	56,0 ^b	56,2 ^{bc}	57,0°	56,4 ^{bc}	3,20	<0,001
BCS	Punkte	3,26 ^a	3,34 ^b	3,39 ^b	3,31 ^{ab}	3,21 ^a	0,26	0,003



Milchleistung

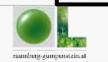
Lebendmasse

Milcheffizienz

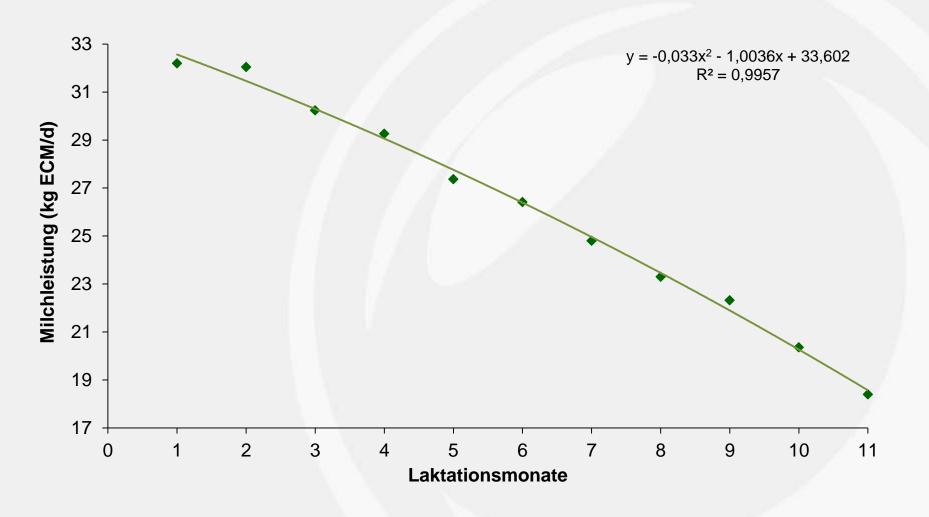
Zusammenfassung

Einfluss der Laktationszahl

- Milchleistung:
 - Signifikanter Einfluss der Laktationszahl
 - Steigt mit zunehmendem Alter
 - Anstieg wird von Laktation zu Laktation geringer
 - Kein Unterschied in den Milchinhaltsstoffen
- Lebendmasse:
 - Signifikanter Einfluss der Laktationszahl
 - Steigt mit zunehmendem Alter
 - Anstieg wird von Laktation zu Laktation geringer
- Körpermaße:
 - Mit zunehmendem Alter werden die Tiere breiter und länger
- Milcheffizienz:
 - Geringe Veränderung in der Effizienz
 - Milcheffizienz geht ab der vierten Laktation wieder zurück

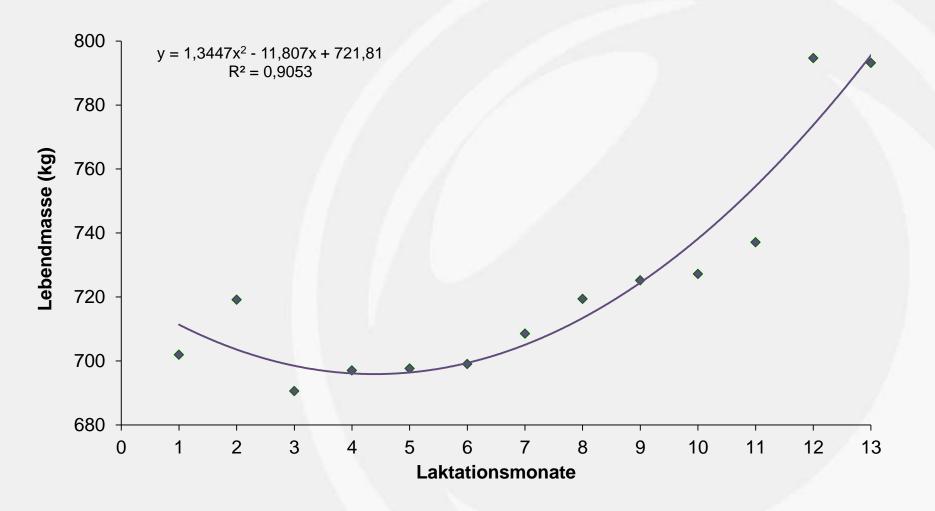

Ergebnisse und Diskussion

EINFLUSS DES LAKTATIONSSTADIUMS

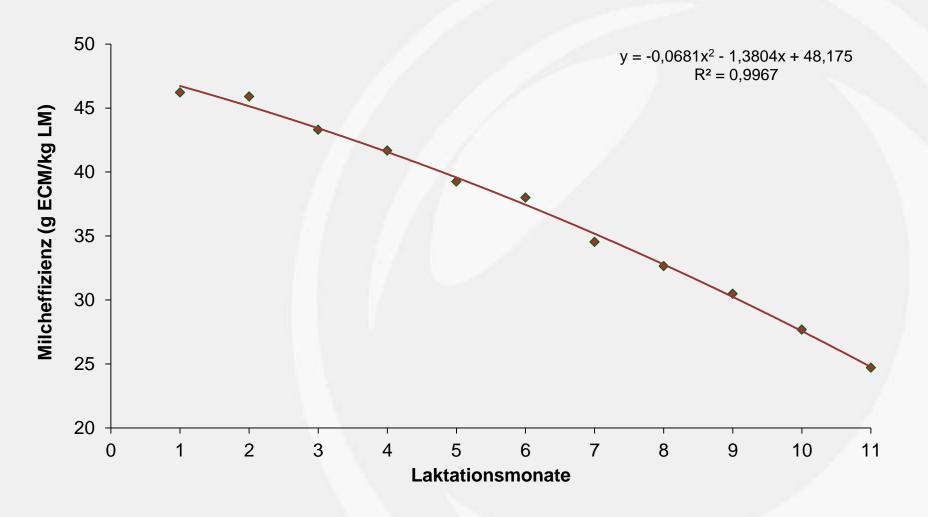


Übersicht Einfluss des Laktationsstadiums

Parameter	Einheiten		Laktationsstadium									RMSE	P- Werte			
			Laktationsz (in Monate)									enstehz. onate)				
		1	2	3	4	5	6	7	8	9	10	11	12	13		Z
Milchleistung																
Milch	kg	31,5	33,1	30,4	29,4	27,4	26,1	24,1	22,8	21,2	19,4	16,4			3,7	<0,001
Fett	%	4,17	3,88	4,09	4,06	4,05	4,08	4,19	4,16	4,24	4,35	4,73			0,54	<0,001
Eiweiß	%	l '	3,09	3,2	3,29	3,39	3,43	3,51	3,56	3,63	3,66	3,91			0,23	<0,001
Fett	kg	1,34	1,30	1,25	1,20	1,11	1,08	1,02	0,95	0,92	0,84	0,79			0,21	<0,001
Eiweiß	kg	1,06	1,03	0,97	0,97	0,93	0,90	0,85	0,81	0,77	0,71	0,64			0,13	<0,001
Fett und Eiweiß	kg	2,40	2,33	2,22	2,16	2,03	1,97	1,87	1,75	1,70	1,55	1,42			0,31	<0,001
ECM	kg	32,2	32,0	30,2	29,3	27,4	26,4	24,8	23,3	22,3	20,4	18,4			4,0	<0,001
Milcheffizienz																
Milch/LM	g/kg	45,5	47,6	43,8	42,1	39,2	37,6	33,8	32,1	29,1	26,4	22,0			5,4	<0,001
ECM/LM	g/kg	46,2	45,9	43,3	41,7	39,3	38,0	34,5	32,6	30,5	27,7	24,7			5,6	<0,001
Fett- und Eiweiß/LM	g/kg		3,33	3,18	3,08	2,92	2,83	2,59	2,45	2,31	2,10	1,92			0,43	<0,001
Lebendmasse und h	Körpermaß	e														
LM	kg	702	719	691	697	698	699	709	719	725	727	737	795	793	37	<0,001
BU	ст	210	209	209	209	210	211	211	213	212	211	213	219	221	5	<0,001
ВА	ст	252	258	253	253	256	256	258	257	260	260	263	273	268	8	<0,001
ВТ	ст	78,0	78,7	77,9	77,9	78,5	79,1	78,8	79,1	79,2	79,9	80,0	80,8	80,6	2,7	<0,001
KH	ст	145	146	145	145	145	145	145	145	145	145	145	145	146	2	0,566
MHL	ст	94,1	94,5	95,1	95,1	95,7	95,1	95,4	95,4	95,8	96,3	95,8	96,4	97,5	4,7	0,07
KB	ст	55,4	55,3	54,7	55,3	56,0	55,2	56,2	56,1	56,0	56,2	56,3	56,8	56,9	3,2	0,004
BCS	Punkte	3,30	3,16	3,11	3,18	3,22	3,13	3,16	3,27	3,29	3,26	3,48	3,67	3,69	0,26	<0,001



Milchleistung



Lebendmasse

Milcheffizienz

Zusammenfassung

Einfluss des Laktationsstadiums

- Milchleistung:
 - Sinkt signifikant im Laufe der Laktation
 - Gehalt an Milchinhaltsstoffen steigt im Laufe der Laktation
- Lebendmasse:
 - Nach einem Abfall zu Laktationsbeginn steigt die Lebendmasse an
 - > Aufgrund Wiederauffüllung der Körperreserven und fötales Wachstum
- Körpermaße:
 - Alle K\u00f6rperma\u00dfe nehmen im Laufe der Laktation zu (Ausnahme Kreuzh\u00f6he)
- Milcheffizienz:
 - Gegenteilige Entwicklung von Milchleistung und Lebendmasse führt zu einem starken Abfall der Milcheffizienz

Ergebnisse und Diskussion

KORRELATIONEN ZWISCHEN LEBENDMASSE, KÖRPERMAßEN, BCS SOWIE MILCHLEISTUNG UND MILCHEFFIZIENZ

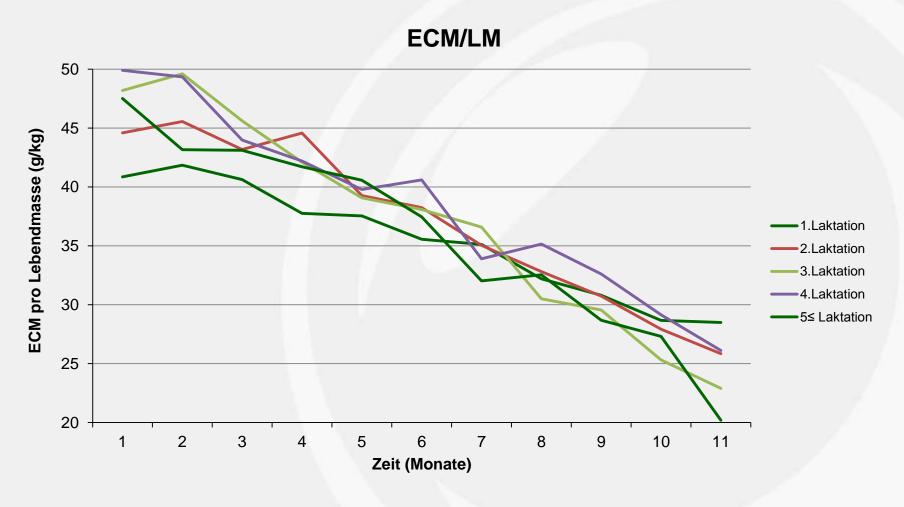
Partielle phänotypische Korrelationen

Mile	chleistung (k	(g/d)		Milcheffizienz (g ECM/kg LM)			
Milch	ECM	FettEiw		Milch	ECM	FettEiw	
0,126	0,153	0,160		-0,289	-0,260	-0,249	
0,049	0,088	0,099		-0,235	-0,190	-0,181	
0,127	0,153	0,161		-0,125	-0,090	-0,083	
0,098	0,119	0,123	1	-0,098	-0,070	-0,065	
0,092	0,093	0,094		-0,068	-0,060	-0,057	
0,093	0,102	0,102		-0,026	-0,010	-0,010	
0,003	0,006	0,006		-0,137	-0,130	-0,129	
-0,157	-0,112	-0,096		-0,305	-0,267	-0,251	
	Milch 0,126 0,049 0,127 0,098 0,092 0,093 0,003	Milch ECM 0,126 0,153 0,049 0,088 0,127 0,153 0,098 0,119 0,092 0,093 0,093 0,102 0,003 0,006	0,126 0,153 0,160 0,049 0,088 0,099 0,127 0,153 0,161 0,098 0,119 0,123 0,092 0,093 0,094 0,093 0,102 0,102 0,003 0,006 0,006	Milch ECM FettEiw 0,126 0,153 0,160 0,049 0,088 0,099 0,127 0,153 0,161 0,098 0,119 0,123 0,092 0,093 0,094 0,093 0,102 0,102 0,003 0,006 0,006	Milch ECM FettEiw Milch 0,126 0,153 0,160 -0,289 0,049 0,088 0,099 -0,235 0,127 0,153 0,161 -0,125 0,098 0,119 0,123 -0,098 0,092 0,093 0,094 -0,068 0,093 0,102 0,102 -0,026 0,003 0,006 0,006 -0,137	Milch ECM FettEiw Milch ECM 0,126 0,153 0,160 -0,289 -0,260 0,049 0,088 0,099 -0,235 -0,190 0,127 0,153 0,161 -0,125 -0,090 0,098 0,119 0,123 -0,098 -0,070 0,092 0,093 0,094 -0,068 -0,060 0,093 0,102 0,102 -0,026 -0,010 0,003 0,006 0,006 -0,137 -0,130	

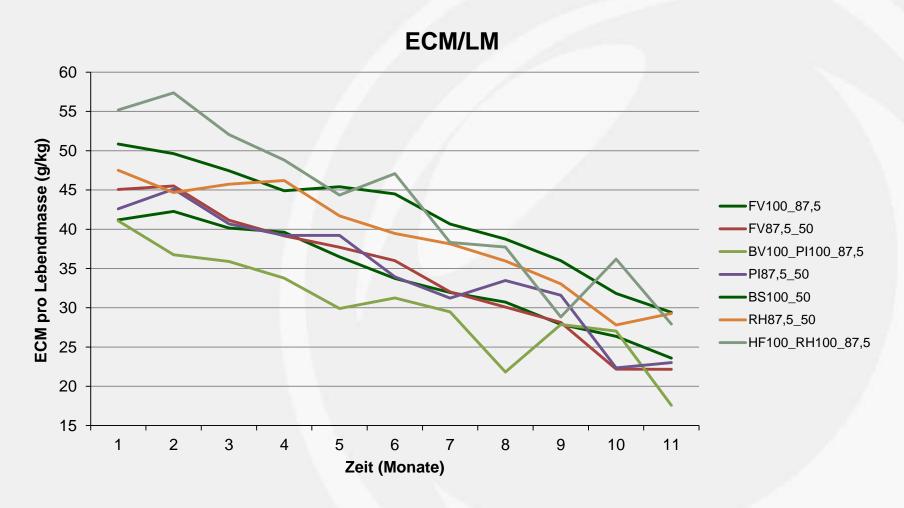
Schlussfolgerungen [1]

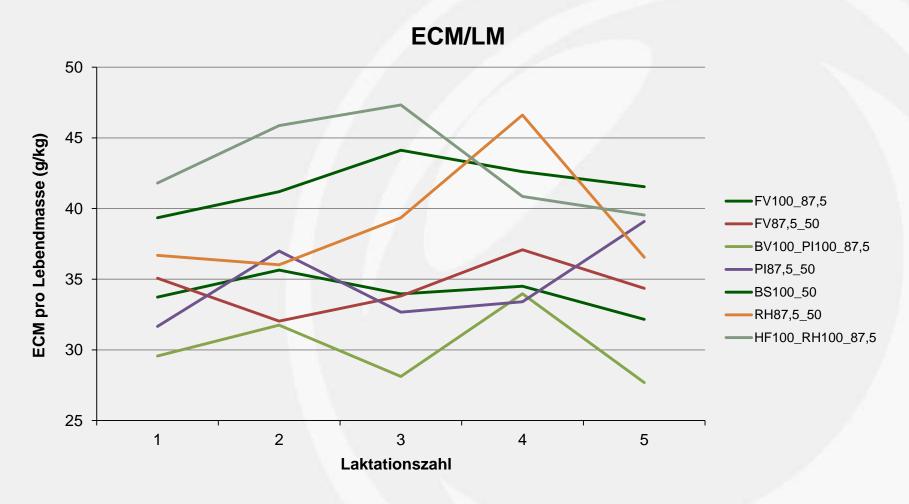
- » Rasse, Laktationszahl und Laktationsstadium haben einen großen Einfluss auf die Milchleistung, Effizienz und die Lebendmasse.
 - » Signifikanter Unterschied zwischen kombinierten und milchbetonten Zweinutzungs-Rassen
 - » Tiere der 1. Laktation zeigen eine signifikant niedrigere Milch-, ECM-Leistung und LM
 - » Während Milch-, ECM-Leistung und die Effizienz sinken, steigt die LM im Laufe der Laktation

Schlussfolgerungen [2]


- » Größere, schwerere Tiere zeigen tendenziell eine höhere Milchleistung als kleinere, leichtere Tiere.
- » Die Milcheffizienz sinkt aber tendenziell mit steigender Lebendmasse und zunehmenden Körpermaßen.
- » Somit muss der LM im Zuchtprogramm eine entscheidende Bedeutung beigemessen werden.

Literaturverzeichnis


- EDMONSON, A.J., I.J. LEAN, L.D. WEAVER, T. FARVER und
 G. WEBSTER, 1989: A body condition scoring chart for Holstein dairy cows.
 J. Dairy Sci. 72, 68 78.
- GFE (GESELLSCHAFT für ERNÄHRUNGSPHYSIOLOGIE AUSSCHUSS BEDARFSNORMEN) 2001: Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere, Nr. 8: Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLG-Verlag, Frankfurt am Main, 135 S.
- GRUBER, L., 2013: Grundfutterqualität, Kraftfutterniveau und genetisches Potenzial als Schlüsselfaktoren für die Höhe der Milchleistung. Tagungsband ZAR-Seminar, 21.03.2013, Salzburg, 21-40.
- STEINWIDDER, A., 2009: Modellrechnungen zum Einfluss der Lebendmasse von Milchkühen auf Futtereffizienz und Kraftfutterbedarf. Band 2 – Tierhaltung, Agrarpolitik und Betriebswirtschaft, Märkte und Lebensmittel. 10. Wissenschaftstagung Ökologischer Landbau 11. – 13. Febr. 2009, Eidgenössische Technische Hochschule Zürich, 30-33.


Wechselwirkungen [1]

Wechselwirkungen [2]

Wechselwirkungen [3]

