

# Long-term assessment of greenhouse gas emissions in Austria The methane problem will be solved! What about the others?

Kraftfôrmøtet 07-09-2022, Oslo, Fornebu

Dr. Thomas Guggenberger
AREC Raumberg-Gumpenstein
Institute of Animal Science



#### Similarities: Norway – Austria

- Well developed
- High GHG-emission
- High renewable
- Much grassland
- Much ruminants

# Comperative advantages

| Country                                                |                 | Norway                           | Austria            |  |  |  |  |
|--------------------------------------------------------|-----------------|----------------------------------|--------------------|--|--|--|--|
| The people                                             |                 |                                  |                    |  |  |  |  |
| Residents                                              | Million         | 5.4                              | 8.9                |  |  |  |  |
| Human Development Index                                | [0,1]           | 0.957                            | 0.922              |  |  |  |  |
| Energy sources                                         |                 |                                  |                    |  |  |  |  |
| Hydro power                                            | TWh/year        | 133                              | 73                 |  |  |  |  |
| Other                                                  | TWh/year        | high potential, low exploitation |                    |  |  |  |  |
| Fossil energy                                          |                 | +++                              | -                  |  |  |  |  |
| Total Emission to air CO <sub>2</sub> e <sub>100</sub> |                 |                                  |                    |  |  |  |  |
| Total                                                  | Million t       | 49.1                             | 79.8               |  |  |  |  |
|                                                        | t per person    | 9.1                              | 8.9                |  |  |  |  |
|                                                        | top 20 emitters |                                  |                    |  |  |  |  |
| Agriculture                                            | Million t       | 4.6                              | 7.1                |  |  |  |  |
|                                                        | %               | 9.3                              | 8.9                |  |  |  |  |
| Data to Agriculture CRF Sector 3                       |                 |                                  |                    |  |  |  |  |
| Landuse in agriculture                                 |                 |                                  |                    |  |  |  |  |
| Temporay or permantent grass                           | land ha         | 740,000                          | 993,000            |  |  |  |  |
| Cropland for feed production                           | ha              | 135,000                          | 242.000            |  |  |  |  |
| Cropland for food/other produ                          | 201,942         | 1,079,000                        |                    |  |  |  |  |
| Ruminants                                              |                 | 000 000                          | 4 000 000          |  |  |  |  |
| Cattle                                                 |                 | 800,000                          | 1,900,000          |  |  |  |  |
| Cows                                                   | n               | 229,000                          | 528,000            |  |  |  |  |
| Suckler cows                                           | n               | 75,000<br>911,000                | 190,000<br>393,000 |  |  |  |  |
| Sheep                                                  |                 | 911,000                          | 333,000            |  |  |  |  |

#### Cognition: The current discussion at GHG in Austria does not solve future problems.





1:1

#### Our goal: Downscaling the global GHG calculation to the national level because ...



• ... some global aspects over-/underestimate the local situation.

• ... this leads to a weak development strategy.

... it was time to get a full (cradle to grave) picture.



#### What happens at and after the time of emission?



The overal effect of GHG-Emission depends on

- the ammount of emissions over time
- 2. the individual degradation path of GHG's
- 3. the radiative forcing power of GHG's

#### The results: Picture I = The long periode impact wave → This will happen!



#### Global warming is like a Tsunami: A future on a higher temparature-level



#### The results: Picture II = The triggering impact wave → Our responsibility!



#### Going deeper inside: The effects

$$RF_t$$
 = Emission quantity<sub>MT</sub> x degradation effect<sub>%</sub> x radiative efficiency<sub>mWm²/MT</sub>

#### Knowledge I: The historical emissions pathways in Austria



#### Knowledge II: The degradation pathway of one unit of emission



CO<sub>2</sub>:1

 $N_2O: 0.3$ 

CH<sub>4</sub>: 0.029

#### **Knowledge III: The radiative efficiency**



#### Going deeper inside: The effects

 $RF_t$  = Emission quantity<sub>MT</sub> x degradation effect<sub>%</sub> x radiative efficiency<sub>mWm²/MT</sub>

| targets.                        |  |  |  |  |  |
|---------------------------------|--|--|--|--|--|
| analysis and set own future     |  |  |  |  |  |
| recommendation: Split the       |  |  |  |  |  |
| misused for differentiation. My |  |  |  |  |  |
| common assessment is always     |  |  |  |  |  |
| GHG to CO2 is so large that a   |  |  |  |  |  |
| The difference of short-lived   |  |  |  |  |  |

Ratio

|                            |         |        | Natio   |                 |
|----------------------------|---------|--------|---------|-----------------|
|                            |         | $CO_2$ | $N_2O$  | CH <sub>4</sub> |
| Emission quantity          | MT      | 1      | 0,00025 | 0,00625         |
| Degradation effect [1,860] | %       | 1      | 0,3     | 0,029           |
| Radiative efficiency       | mWm²/MT | 1      | 241     | 83              |
|                            | ·       | •      |         |                 |

#### The single impact wave and its interpretation: CO<sub>2</sub>



#### Impact wave CO<sub>2</sub>

- strong in aggregation
- long effective duration
- dramatic RF (quantity driven)
- punishment forever

#### The impact wave and its interpretation: N<sub>2</sub>O



#### Impact wave N<sub>2</sub>O

- remarkable in aggregation
- media effective duration
- recognisable RF (quantity/quality)
- punishment for generations

#### The impact wave and its interpretation: CH<sub>4</sub>



### Impact wave CH<sub>4</sub>

- low aggregation
- low effective duration
- recognisable RF (quantity/quality)
- Net-Zero-Situation

## What do we need to do urgently?





Collapse of the economy very high warming

Renewable economy, high warming

#### Possible pathways for Austria



The success of an implementation path is not imaginable



The path is defined and implementable!

#### My recommendations

- Do the "Giant Leap".
- Prevent the abuse of the GWP-Accounting and change GHG-Accounting von GWP to GTP.
- Development of own future targets for long- or short-lived greenhouse gases.
- Establish an site-adapted agriculture.



Thank you for your attention