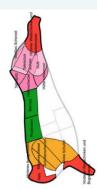


Fleisch-Marmorierung als Qualitätsmerkmal von Rindfleisch – Grundlegendes

Dr. Margit Velik

HBLFA Raumberg-Gumpenstein, Institut für Nutztierforschung 47. Viehwirtschaftliche Fachtagung

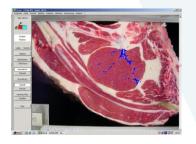
1. April 2020, 8952 Irdning-Donnersbachtal


Einleitung: Was ist Fleischqualität?

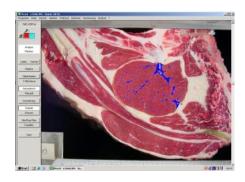
Schlachtkörperqualität

- = Schlachtkörperzusammensetzung
 - Muskelausprägung (EUROP-Fleischklasse)
 - Fettansatz (Fettklasse)
 - Gewebeanteil (Fleisch, Fett, Knochen)
 - Teilstück-Anteile, ...

Quelle: vereinfacht nach Brandscheid et al. 2007


Prozessqualität

- = Art und Weise wie Fleisch produziert wird
 - Fütterung, Haltung (Weide, Alm), Schlachtung, Tierwohl ...

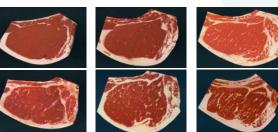

Fleischqualität

- = innere Qualität von Fleisch
 - Intramuskuläres Fett, Zartheit, Farbe, Inhaltsstoffe, Saftverluste, Haltbarkeit

Einleitung: Intramuskuläres Fett (IMF)

- = im Fleisch eingelagertes Fett, Fleischmarmorierung, Marbling
- Eines von mehreren Fleischqualitätsmerkmalen

- Prinzipieller Zusammenhang: je höher IMF, desto höher Genusswert von Rindfleisch (Zartheit, Saftigkeit, Geschmack)
 - positive Korrelation nicht immer feststellbar
 (Quelle: Muir et al. 1998, Dufey und Chambaz 1999)
- Zuerst wird Auflagen- und Körperhöhlenfett gebildet, dann intermuskuläres
 Fett und zum Schluss IMF


Einleitung: Bezahlung Schlachtkörper

- In Ö. und EU Bezahlung nach Rinderkategorie, Alter,
 Schlachtgewicht, Fleisch- und Fettklasse
 - von ÖFK durchgeführt

Quelle: Monteils et al. 2017

- International (USA, Australien, Japan etc.) komplexe Systeme der Klassifizierung
 - Fleischmarmorierung mitberücksichtigt

- Wissenschaftliche Publikation von INRA (Frankreich): zusätzlich zu EUROP-System 5 Indikatoren in Schlachtkörperbewertung aufnehmen
 - Hinterviertelgewicht, verkaufsfähiger Fleischanteil
 - Rückenmuskelgröße Fleischfarbe, Fleischmarmorierung

Einflussfaktoren Fleischmarmorierung – Allgemein

- Tierspezifisch
 - Rasse/Genetik
 - Geschlecht/Rinderkategorie

Quellen:

Augustini 1987

Branscheid et al. 2007

Dufey und Chambaz 1999

- Produktionsspezifisch
 - Fütterungsintensität, Ausmastgrad, kompensatorisches Wachstum
 - Mastendgewicht, Schlachtalter
- Zusätzliche Faktoren aus koreanischer Übersichtsarbeit Quelle Park et al. 2018
 - Managementfaktoren (Absetzalter, Umwelt)
 - Fütterungsfaktoren (Grundfutter-/Kraftfutteranteil, Energie- und Proteingehalt der Ration, Mastphasenfütterung, Vitaminversorgung A, D, C)

Einflussfaktoren Fleischmarmorierung (1)

Rinderkategorie

- IMF: Kalb < Jungrind < Stier < Ochse < Kalbin
- gut konditionierte Altkühe häufig hohe IMF-Gehalte

Genetik/Rasse

- Generell beeinflusst Genetik/Rasse fast alle Merkmale der Fleischqualität
- nach Park et al. (2018): Heritabilität (h², Erblichkeit)
 für Merkmal Marmorierung = 0,37 (0,30-0,57)
 - h² = 0,37 bedeutet: 37 % macht Genetik aus, 63 % die Umwelt
 - h² in Wagyu, Angus, Braham besonders hoch

Einflussfaktoren Fleischmarmorierung (2)

- Rasse/Genetik
 - generell: spätreif weniger IMF als frühreif
 - milchbetont höheres IMF als fleischbetont
 - hohe Marmorierung: Wagyu, Angus, Grauvieh Quelle: Frickh et al. 2003
- Mastendgewicht (Schlachtalter)
 - Mastendgewicht ↑ -> IMF ↑
 - höheres Alter nicht automatisch mehr IMF Quelle: Augustini und Temisan 1986
- Je nach Genetik/Rasse wird zu unterschiedlichem Zeitpunkt (Alter, Gewicht) optimale physiologische Schlachtreife erreicht

Einflussfaktoren Fleischmarmorierung (3)

- Fütterungsintensität
 - steigende Fütterungsintensität (d.h. höherer Energiegehalt, mehr Kraftfutter) -> IMF 个
 - grünland- und weidebasierte Mast: Endmast (2-4 Monate) oft sinnvoll

Geschlecht Kategorie

> Rasse Genetik

Fütterung

Ausmast

Schlachtgewicht Alter

Beurteilung Marmorierung / IMF-Gehalt

- Unterschiedliche Methoden zur digitalen, objektiven Beurteilung
 - Videobildanalyse

- Röntgenstrahlung

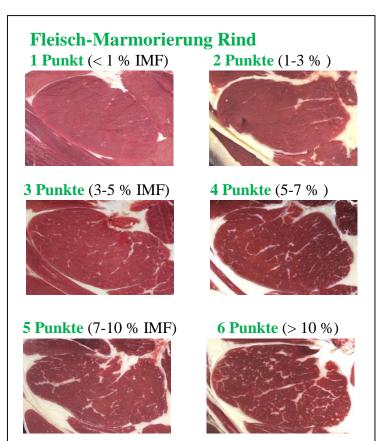
Hyperspektrale Bildgebung

- Ultraschall usw.
- Derzeit kein handliches, digitales, preiswertes Gerät zur Marmorierungs-Beurteilung am Markt
 - deutsche Fa. eplusv: Gerät "VBG 2000" (stationär, vollautomatisch, hochpreisig)
 - Einsatz in Schlachtlinie, Beurteilung der Schlachtkörperzusammensetzung
 - dänische Fa. Frontmatec: Prototyp "Hyperspektralkamera"
- Bildkarten zur subjektiven Beurteilung (USA, Australien, Japan etc.)

Beurteilungsschema IMF – Ristic 1987

Quelle: Ristic 1987

Punkte	Ausprägung	Beschreibung	IMF, %
1	keine sichtbare	blaues Fleisch	< 1
2	schwache	Existenz einiger sichtbarer Marmorierungspunkte	1-3
3	mittelmäßig	gut sichtbar eingelagertes Fett	3-5
4	stark	bereits dickere Fettfaszien	5-7
5	sehr stark	zahlreiche Fetteinlagerungen	7-10
6	zu stark	abnorme übermäßige Fetteinlagerung, Fettinfiltration	> 10


regelmäßige Fett-Verteilung erwünscht; Größe, Feinheit, Dicke von Fett(-faszien) berücksichtigen!

Marmorierungsbildkarten – Frickh et al. 2003

Pkt	Ausprägung	Beschreibung	IMF, %
1	keine	blaues Fleisch	<1
	sichtbare		
2	schwache	Existenz einiger sichtbarer	1-3
		Marmorierungspunkte	
3	mittelmäßig	gut sichtbar eingelagertes Fett	3-5
4	stark	bereits dickere Fettfaszien	5-7
5	sehr stark	zahlreiche Fetteinlagerungen	7-10
6	zu stark	abnorme übermäßige	> 10
		Fetteinlagerung,	
		Fettinfiltration	

Quelle: Ristic 1987

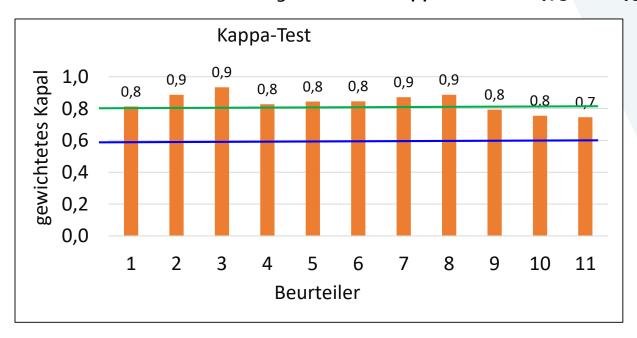
Quelle: FRICKH et al. 2003*

Laufendes Forschungsprojekt zur Fleischmarmorierung

- Ziele
 - (1) Ableiten von Zusammenhängen zwischen
 Marmorierung / IMF-Gehalt und
 - Schlachtkörpermerkmalen
 - Fleischqualitätsmerkmalen
 - (2) Praktischer Einsatz von
 Marmorierungskarten (Frickh et al. 2003)
- Literaturrecherche
- Auswertungen anhand von 18 österreichischen Mastversuchen

Ergebnis: Bildkarten und Konsumentenbeurteilung (1)

- Beurteilung Marmorierung von 35 Fleischproben-Fotos
 - von 11 Instituts-Mitarbeitern anhand Bildkarten und Ristic-Tabelle
 - davor 30 Min. Einschulung
 - Referenzwerte = Analysewerte



Ergebnis: Bildkarten und Konsumentenbeurteilung (2)

Ergebnis

Grad der Übereinstimmung hoch: laut Kappa-Test zw. 0,75 und 0,93

- Interpretation
 - > o,8 sehr guteÜberstimmung
 - > o,6 gute Übereinstimmung

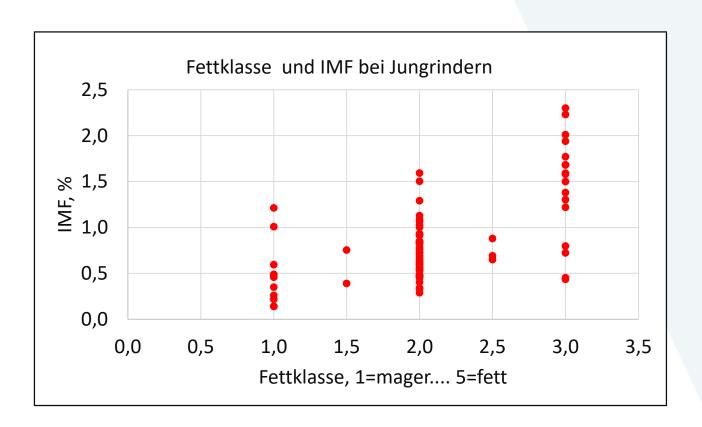
Eventuell f
ür Klasse 2 und 6 noch aussagekr
äftigere Bildkarten w
ählen

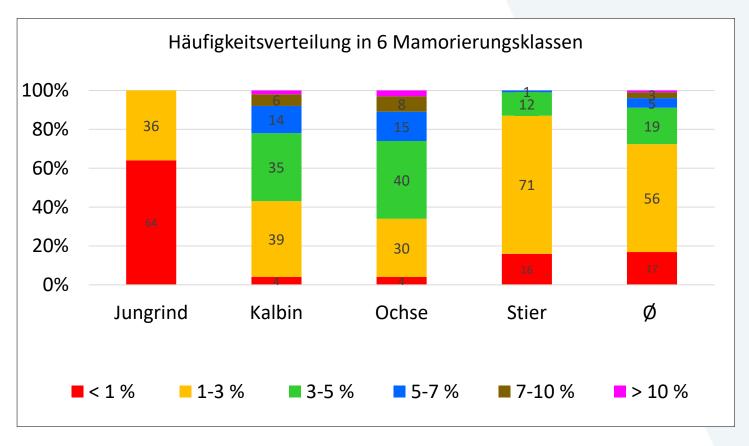
Ergebnis: Zusammenhang IMF und Fettklasse (1)

- Auswertung 18 Mastversuche
- **Korrelationen (r)** 0,3 = schwacher, r = 0,5 moderater, r = 0,8 enger Zusammenhang (*Quelle: Held 2010*)

Korrelationen IMF und Fettklasse

- r = 0,2 bis 0,7
- in keinem Versuch r ≥ 0,8
- bei 5 der 18 Mastversuche r ≥ 0,5
- bei 5 Versuchen 0,3 > r < 0,5
- bei 8 Versuchen r < 0,3




- Korrelationen IMF und Nierenfettanteil
 - geringfügig höher als für IMF und Fettklasse, bei 8 Versuchen r ≥ 0,5

Ergebnis: Zusammenhang IMF und Fettklasse (2)

Auswertung: 90 Jungrinder aus 2 Mutterkuh-Versuchen (Rassen: FVxLI, LI)

Ergebnis: IMF österreichisches Rindfleisch

Datengrundlage: 90 Jungrinder, 161 Kalbinnen, 136 Ochsen, 510 Stiere

IMF-Gehalt nach Soxhlet bzw. NIRS bestimmt; im Englischen (Rostbraten, Beiried)

Zusammenfassung (1)

 Generell gilt: höherer IMF im Fleisch = besserer Genusswert (Zartheit, Saftigkeit, Geschmack)

- Fleischmarmorierung in EU im Gegensatz zu anderen Ländern nicht in Schlachtkörper-Beurteilung und -Bezahlung berücksichtigt
- Tier- und produktionsspezifische Einflussfaktoren auf die Fleisch-Marmorierung

 Von Ristic (1987) und Frickh et al. (2003) wurden IMF-Klassen mit dazugehörigen Beispielfotos veröffentlicht

Zusammenfassung (2)

- Österreichisches Rindfleisch (Stier, Ochse, Kalbin)
 im Ø 2- 4 % IMF
 - Jungrindfleisch häufig unter 1 %
 - über 4,5 % IMF mit herkömmlicher Fütterung,
 Rasse kaum/nicht erreicht
 - Korrelationen (r) zwischen IMF-Gehalt und Fettklasse in einzelnen Mastversuchen zwischen 0,2 und 0,7

 Bei nächster Viehwirtschaftlichen Fachtagung 2021 werden detaillierte Ergebnisse des Marmorierungs-Projektes vorgestellt

Danke für's Zuhören!

Dr. Margit VelikHBLFA Raumberg-Gumpenstein
margit.velik@raumberg-gumpenstein.at

Quelle Fotos: USDA 8843 (1981): Official USDA marbling photograph2. (gescannt: Velik) Quelle IMF-Gehalte: 1998 - Beef Research Report - IOWA State University, A.S. Leaflet R 1529, (Wilson, D.E., Rouse, g.H., Greiner, S.) 4,0 - 5,7 % IMF 5,8 - 7,6 % IMF 2,3 - 3,9.% IMF *1,3-1,6 % IMF *6,9-8,2 % IMF +1,5-3,0 % IMF 7,7 - 9,7 % IMF 9,9-12,1% IMF > 12;3 % IMF *ILaut PicEd Cora (Fa. Jomesa), (Kitzer 2013) Zusammengestellt: HBLFA Raumberg-Gumpenstein, Institut für Nutztierforschung