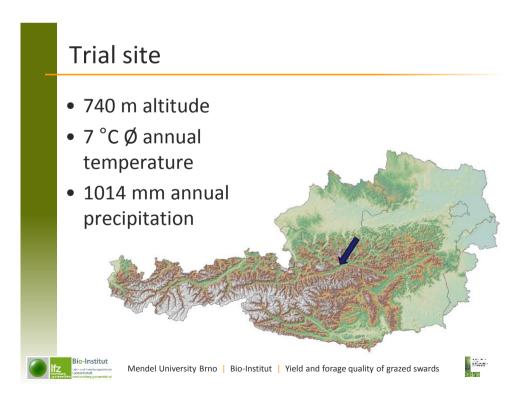
OR EIN EBENSWERTI






# Yield and forage quality of grazed swards in Middle Europe

Mendel University 30.04.2014, Brno

Walter Starz | Bio-Institut | www.raumberg-gumpenstein.at



### Reseeding of Poa pratensis



Mendel University Brno | Bio-Institut | Yield and forage quality of grazed swards

kaliose-

## Botany changes

Bio-Institut

|                    |      | Variant           |                   |                     |     |         |                |  |  |
|--------------------|------|-------------------|-------------------|---------------------|-----|---------|----------------|--|--|
| Parameter          | Unit | cutting           | grazing           | grazing +<br>reseed | SEM | p-value | S <sub>θ</sub> |  |  |
|                    |      | LSMEAN            | LSMEAN            | LSMEAN              |     |         |                |  |  |
| Grass              | %    | 73.5              | 67.9              | 70.8                | 1.6 | 0.0840  | 1.4            |  |  |
| Dactylis glomerata | %    | 15.2 <sup>a</sup> | 7.4 <sup>b</sup>  | 8.0 <sup>b</sup>    | 2.0 | 0.0200  | 4.4            |  |  |
| Lolium perenne     | %    | 5.6               | 7.1               | 6.6                 | 0.6 | 0.1671  | 4.6            |  |  |
| Poa trivialis      | %    | 16.3 <sup>a</sup> | 6.4 <sup>b</sup>  | 5.1 <sup>b</sup>    | 1.5 | 0.0003  | 5.3            |  |  |
| Poa pratensis      | %    | 11.1 °            | 17.6 <sup>b</sup> | 26.6ª               | 1.5 | <0.0001 | 1.9            |  |  |
| Legumes            | %    | 3.5 <sup>b</sup>  | 15.2 <sup>a</sup> | 13.9 <sup>ª</sup>   | 1.6 | 0.0002  | 4.3            |  |  |
| Herbs              | %    | 18.0 <sup>a</sup> | 13.5 <sup>b</sup> | 11.8 <sup>b</sup>   | 0.7 | <0.0001 | 4.3            |  |  |

LSMEAN: least square mean; SEM: standard error;  $\mathbf{s}_{e}$ : residual standard deviation

- Grazed paddocks showed highest portion of *Trifolium repens* and lowest percentage of herbs
- Dactylis glomerata and Poa trivilalis decreases during grazing
- *Poa pratensis* increases in grazed and grazed + reseeded variants significantly



### Botany



## Leaf area index LAI

|                    | Variant                                                                                            |                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |                                                        |  |
|--------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Unit               | cutting                                                                                            | grazing                             | grazing +<br>reseed                                    | SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p-value                                                                                                                                                                                                                                                                       | Se                                                     |  |
|                    | LSMEAN                                                                                             | LSMEAN                              | LSMEAN                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |                                                        |  |
| m² m <sup>-2</sup> | 4.8 <sup>b</sup>                                                                                   | 5.2 <sup>ab</sup>                   | 5.5 <sup>ª</sup>                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0336                                                                                                                                                                                                                                                                        | 0.7                                                    |  |
| m² m²²             | 3.1                                                                                                | 3.0                                 | 3.6                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1080                                                                                                                                                                                                                                                                        | 0.8                                                    |  |
| m² m²²             | 1.5                                                                                                | 1.5                                 | 1.1                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1619                                                                                                                                                                                                                                                                        | 0.7                                                    |  |
|                    | m <sup>2</sup> m <sup>-2</sup><br>m <sup>2</sup> m <sup>-2</sup><br>m <sup>2</sup> m <sup>-2</sup> | m² m² 4.8 b   m² m² 3.1   m² m² 1.5 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{ c c c c } \hline \textbf{Unit} & \textbf{cutting} & \textbf{grazing} & \textbf{grazing} \\ \hline \textbf{LSMEAN} & \textbf{LSMEAN} & \textbf{LSMEAN} \\ \hline \textbf{m}^2 \ \textbf{m}^$ | Unit cutting grazing grazing + reseed semiclassimal   LSMEAN LSMEAN LSMEAN LSMEAN SEM   m <sup>2</sup> m <sup>2</sup> 4.8 <sup>b</sup> 5.2 <sup>ab</sup> 5.5 <sup>a</sup> 0.1   m <sup>2</sup> m <sup>2</sup> 3.1 3.0 3.6 0.2   m <sup>2</sup> m <sup>2</sup> 1.5 1.5 1.1 0.2 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |  |

Highest LAI was measured in reseed variant in comparison to cutting system

 It indicates a denser sward as well as a higher portion of leafs and tillers in *Poa pratensis* dominated sward

Bio-Institut

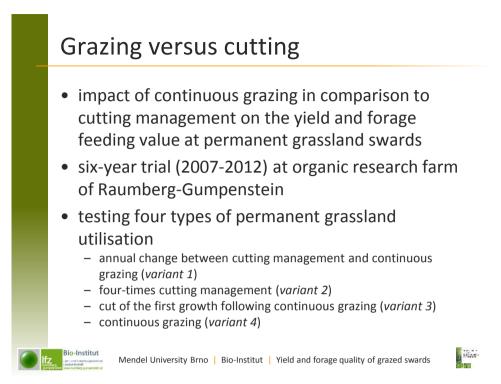


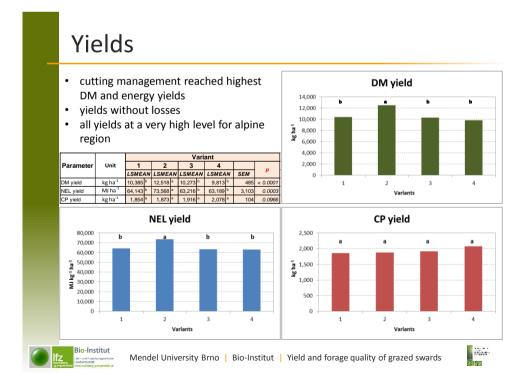
## Yield and forage quality

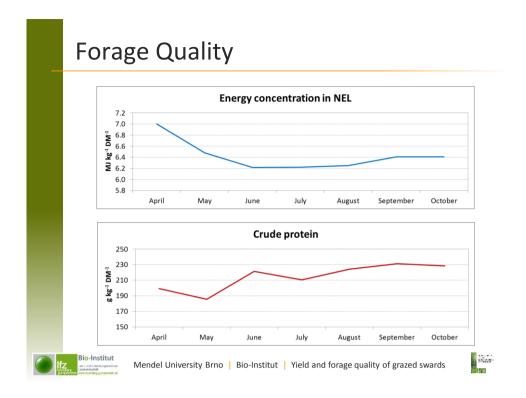
|                   |                                      | Variant            |                    |                     |       |         |                |  |
|-------------------|--------------------------------------|--------------------|--------------------|---------------------|-------|---------|----------------|--|
| Parameter         | Unit                                 | cutting grazing    |                    | grazing +<br>reseed | SEM   | p-value | S <sub>0</sub> |  |
|                   |                                      | LSMEAN             | LSMEAN             | LSMEAN              |       |         |                |  |
| DM yield          | kg ha <sup>-1</sup>                  | 10,110             | 9,879              | 10,416              | 249   | 0.3413  | 705            |  |
| CP yield          | kg ha⁻¹                              | 1,335 <sup>♭</sup> | 1,328 <sup>b</sup> | 1,475 <sup>ª</sup>  | 40    | 0.0394  | 114            |  |
| NEL yield         | MJ ha⁻¹                              | 56,627             | 56,862             | 59,525              | 1,380 | 0.2907  | 3,903          |  |
| CP concentration  | g kg <sup>-1</sup> DM <sup>-1</sup>  | 132 <sup>b</sup>   | 144 <sup>a</sup>   | 144 <sup>a</sup>    | 2     | <0.0001 | 8              |  |
| NEL concentration | MJ kg <sup>-1</sup> DM <sup>-1</sup> | 5.60 <sup>b</sup>  | 5.75 <sup>a</sup>  | 5.70ª               | 0.03  | 0.0073  | 0.08           |  |

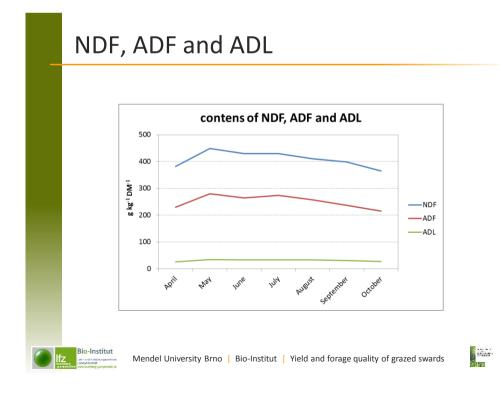
LSMEAN: least square mean; SEM: standard error; se: residual standard deviati

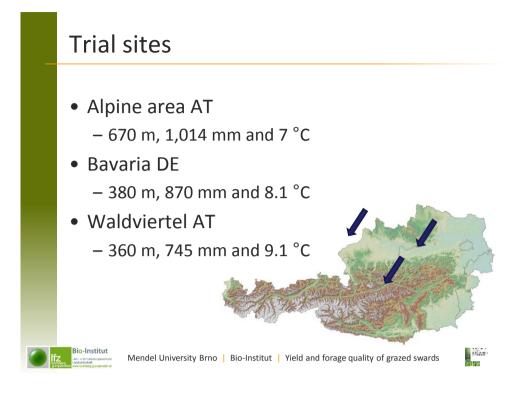
**Bio-Institut** 


- No significant differences between variants were measured
- Highest crude protein yield was assessed in reseed variant
- Energy an crude protein concentration reached highest levels in both grazed variants in comparison to 3-time cutting variant



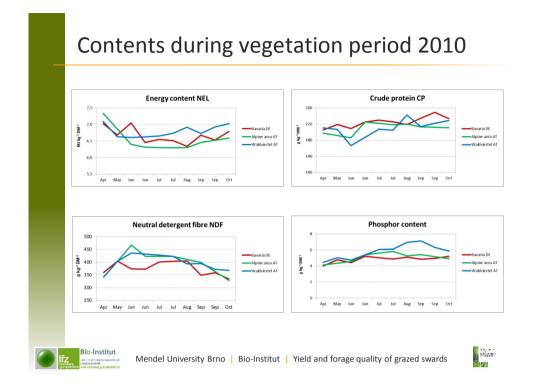



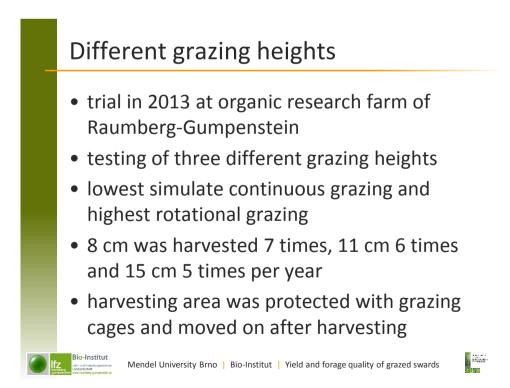


in the second


Mendel University Brno | Bio-Institut | Yield and forage quality of grazed swards










# Yields and grass growth 2010

| Parameter                                                                             | Unit                             | Bavaria DE<br>LSMEAN | SEM     | Alpine area AT<br>LSMEAN | SEM     | Waldviertel AT<br>LSMEAN | SEM      | P-value                             | Se       |
|---------------------------------------------------------------------------------------|----------------------------------|----------------------|---------|--------------------------|---------|--------------------------|----------|-------------------------------------|----------|
| DM yield                                                                              | kg ha-1                          | 8,768 <sup>ab</sup>  | 474     | 10,193 <sup>a</sup>      | 422     | 7,956 <sup>b</sup>       | 567      | 0.0194                              | 1,089    |
| NEL yield                                                                             | MJ ha-1                          | 58,496 <sup>ab</sup> | 3,337   | 66,776 <sup>a</sup>      | 2,961   | 54,166 <sup>b</sup>      | 3,897    | 0.0429                              | 7,272    |
| CP yield                                                                              | kg ha⁻¹                          | 2,003 <sup>a</sup>   | 134     | ,.138 <sup>a</sup>       | 120     | 1,681 <sup>a</sup>       | 152      | 0.0637                              | 270      |
| kg DM ha-1 day-1                                                                      | 100<br>80<br>60<br>40<br>20<br>0 | P                    | gras    | growth 201               |         |                          | —Ba      | pine area<br>Ivaria DE<br>aldvierte |          |
|                                                                                       | 17 Mar 08 F                      | or nay nay           | Jun 261 | un 16 101 06 Aug 26 h    | AUR 165 | 29 0Ct 100 26 1004       |          |                                     |          |
| Bio-Institut<br>Lan- and Pendhurganehum<br>Landwisschell<br>weiszunder gerrerotein at | Mendel L                         | Iniversity Brno      | Bio-I   | nstitut   Yield a        | nd fora | age quality of gra       | ized swa | ırds                                | initian- |

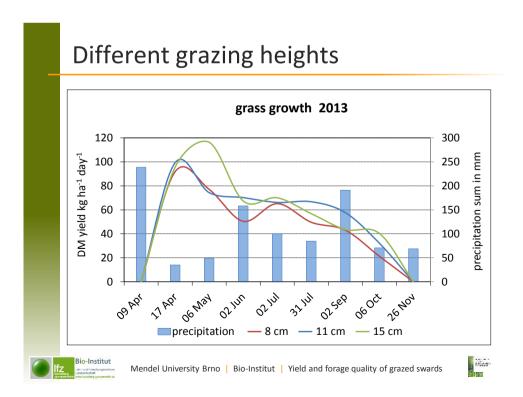


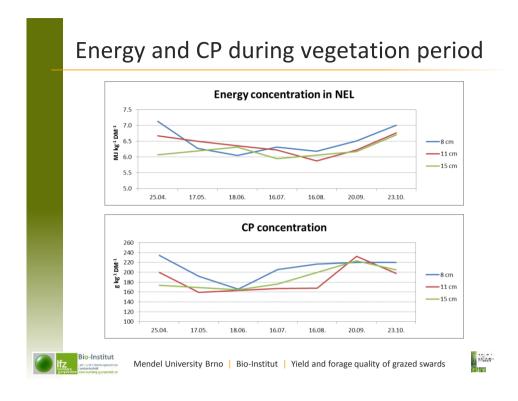


## Different grazing heights

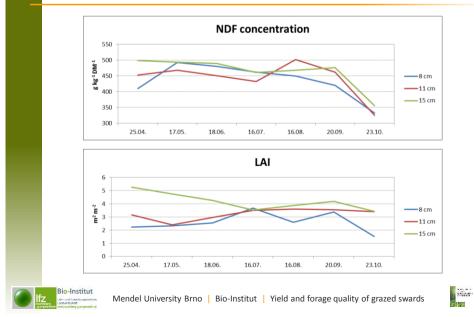


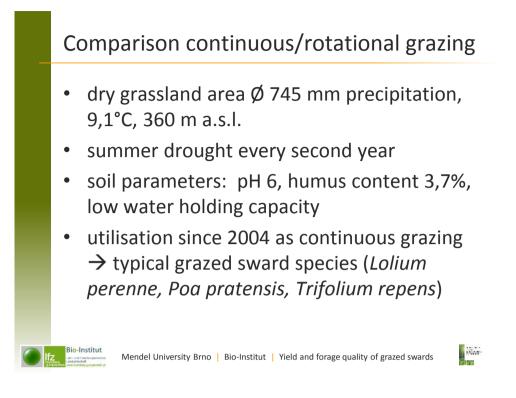
# <section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

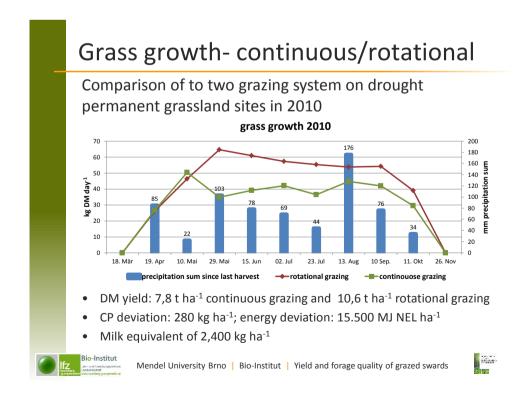

in the second

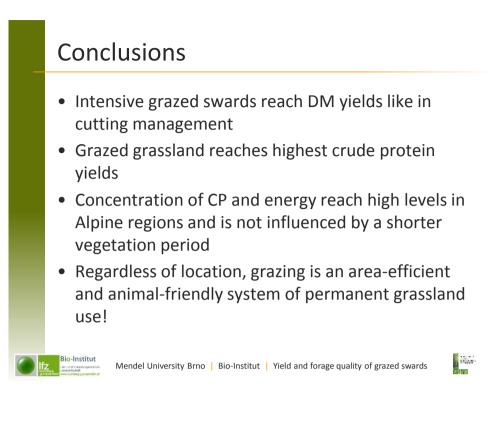

### Different grazing heights

Bio-Institut


- higher swards provides more grass
- area productivity is highest at rotational grazing
- But the management is more complex


|  |                      |                                                                | Forage height       |       |                  |       |                  |       |          |       |
|--|----------------------|----------------------------------------------------------------|---------------------|-------|------------------|-------|------------------|-------|----------|-------|
|  | Parameter            | Unit                                                           | 8 cm                |       | 11 cm            |       | 15 cm            |       | р        | Se    |
|  |                      |                                                                | LSMEAN              | SEM   | LSMEAN           | SEM   | LSMEAN           | SEM   | P        |       |
|  | DM yield             | kg ha-1                                                        | 10,343 <sup>b</sup> | 341   | 12,119ª          | 341   | 12,581ª          | 346   | 0.0007   | 892   |
|  | NEL yield            | MJ ha-1                                                        | 66,426 <sup>b</sup> | 2,069 | 77,031ª          | 2,068 | 78,131ª          | 2,102 | 0.0010   | 5,120 |
|  | CP yield             | kg ha-1                                                        | 2,129ª              | 82    | 2,255ª           | 82    | 2,326ª           | 83    | 0.1238   | 171   |
|  | harvesting<br>height | RPM cm                                                         | 4.9 <sup>c</sup>    | 0.2   | 6.3 <sup>b</sup> | 0.2   | 8.6ª             | 0.2   | <0.0001  | 0.6   |
|  | sward<br>density     | kg DM Click <sup>-1</sup><br>cm <sup>-1</sup> ha <sup>-1</sup> | 319ª                | 8     | 332ª             | 8     | 315°             | 8     | 0.3251   | 22    |
|  | LAI                  | m² m-²                                                         | 2.6 <sup>c</sup>    | 0.1   | 3.3 <sup>b</sup> | 0.1   | 4.1 <sup>ª</sup> | 0.1   | < 0.0001 | 0.3   |
|  |                      |                                                                |                     |       |                  |       |                  |       |          |       |
|  |                      |                                                                |                     |       |                  |       |                  |       |          |       |




# NDF and LAI during vegetation period









### Thank you for your attention!



