

Weidehaltung am Bio-Grünlandbetrieb

Unterrichtsfach Biologische Landwirtschaft 7. März 2017

Walter Starz, Bio-Institut – HBLFA Raumberg-Gumpenstein

Stellschrauben in der Weidenutzung

- Pflanzenbestand
- Graszuwachs
- Weidesystem
- Weidepflege

Pflanzenbestand

- in weidebasierten Fütterungssystemen wird die Fläche zum Futtertisch
- je dichter der Bestand desto mehr Futter steht den Weidetieren zur Verfügung
- kontinuierliche Nutzung führt zu raschen Änderung in der Zusammensetzung des Grünlandbestandes
- damit die Veränderung gelenkt passiert, sind Übersaaten, mit an die Weide angepassten Gräsern, das Mittel der Wahl

Bio-Landwirtschaft 2017 | Bio-Institut | Bio-Weidehaltung

Pflanzenbestand

- Nutzungsversuch am Bio-Institut 2007-2012
- Schnitt- und Weidesysteme im Vergleich
- Endbonitur im Frühling 2013 in Flächenprozent

	Variante								
Parameter	4-Schnittnutzung/ Kurzrasenweide	4-Schnittnutzung	Mähweide	Kurzrasenweide	SEM	p-Wert			
Englisches Raygras	21,3	21,5	24	21	1,9	0,4796			
Knaulgras	2,3 ^b	22,5°a	2,8 ^b	3 ^b	1,3	<0,0001			
Gemeine Rispe	6,5 ^b	18ª	6,3 b	4,5 b	1,4	0,0001			
Wiesenrispengras	13,9 ^b	7,6°a	15 ^b	16,4 ^b	1,5	0,0027			
Wiesenschwingel	19	15,8	16,5	15,8	1,4	0,3167			
Weißklee	12,7ª	1,5 b	9,5 ab	14,5ª	1,9	0,0020			

SEM: Standardfehler; p-Wert: Signifikanzniveau

MINISTERIUM FOR EIN LEBENSWERTES OSTERREICH HBLFA RAUMBERG - GUMPENSTEIN

Pflanzenbestand

- wird begonnen eine Wiese zu beweiden, stellt sich der Bestand bereits im ersten Jahr um
- entstehende Lücken sind optimal, um Übersaaten durchzuführen
- je oberflächlicher die Saat, desto schneller entwickeln sich die Sämlinge
- gerade Wiesenrispengras verträgt keine tiefe Saat
- durch Übersaaten werden auch moderne Sorten eingebracht
- je dichter die Weidenarbe, desto mehr Blätter nehmen die Tier pro Bissen auf

Bio-Landwirtschaft 2017 | Bio-Institut | Bio-Weidehaltung

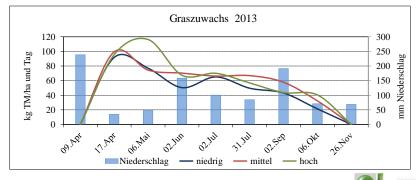
Pflanzenbestand

• Übersaat zu drei Terminen mit je 10 kg/ha in Kombination mit intensiver Kurzrasenweide durch Jungvieh (Bio-Institut 2008-2011)

Anteile Wiesenrispengras 30 25 20 26,6 17,6 10 5 0 Schnitt Weide Weide + ÜS

Bio Institut

Pflanzenbestand



Bio-Landwirtschaft 2017 | Bio-Institut | Bio-Weidehaltung

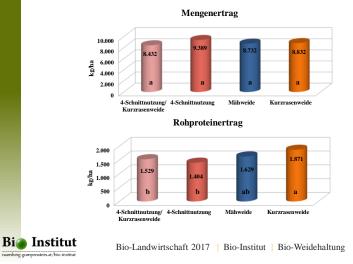
Graszuwachs

- Niederschläge in der Hauptwachstumsphase beeinflussen stark das Graswachstum
- Graszuwachskurven zeigen sehr große Schwankungen zwischen den Jahren

Bio Institut

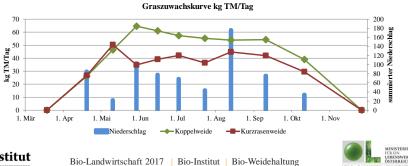
Graszuwachs

Wuchshöhenmessung ist wichtiges Kontrollinstrument


Bio Institut

Bio-Landwirtschaft 2017 | Bio-Institut | Bio-Weidehaltung

Graszuwachs


• vier unterschiedliche Nutzungssysteme im Vergleich auf einer inneralpinen Dauergrünlandfläche (Nettoerträge)

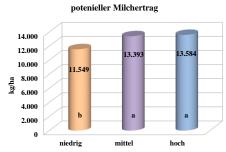
Weidesystem

- Systemvergleich auf trockenheitsgefährdeten Standort 2010
- TM-Ertrag: 7,8 t/ha Kurzrasenweide: 10,6 t/ha Koppelweide
- XP Differenz: 280 kg/ha, Energie Differenz: 15.500 MJ NEL/ha
- Höchste Flächenleistung am Standort (360 m, mittel 745 mm) erreichte die Koppelweide

Bi Institut

Weidesystem

- Versuch 2013: Unterschiedliche Weideaufwuchshöhen
- Versuch am Bio-Institut (680 m, 1.014 mm): Einfluss unterschiedlicher Eintriebshöhen
- Höhe niedrig 8 cm, mittel 10 cm und hoch 12 cm


	simulierte Kurzrasenweide					ide	simulierte Koppelweide					
	Parameter	Einheit		niedrig	SEM	Futterhöhe mittel	SEM		hoch	SEM	p-Wert	
	TM-Ertrag	kg/ha		10.343 ^b	341	12.119ª	341		12.581ª	346	0,0007	
	NEL-Ertrag	MJ/ha		66.426 ^b	2.069	77.031 ^a	2.068		78.131ª	2.102	0,001	
	XP-Ertrag	kg/ha	١	2.129ª	82	2.255ª	82	١	2.326ª	83	0,1238	
SEM: Standardfehler; p-Wert: Signifikanzniveau												

Weidesystem

- Berechnung im Rahmen einer Masterarbeit (BOKU Weißenbach, 2016)
- höchste Energie- und Rohproteinerträge in Wuchshöhe mittel und hoch und daher auch in diesen der höchste potenzielle Milchertrag
- auch in Gebieten mit höheren Niederschlagssummen erreicht das Koppelsystem höhere Erträge, bei entsprechendem Management

Bio Institut

Bio-Landwirtschaft 2017 | Bio-Institut | Bio-Weidehaltung

Weidepflege

- Ausgewachsene Geilstellen müssen abgemäht werden, damit wieder neue Blätter gebildet werden und im Anschluss die Flächengröße anpassen
- Damit ein gut entwickelter
 Weidebestand langfristig hohe Erträge
 und Qualitäten liefert, ist auf eine
 regelmäßige Düngung zu achten
- 15-20 m³/ha Rottemist im Herbst oder 10-15 m³/ha Gülle im Frühling und ein weiteres Mal während der Weidezeit fördern das Graswachstum und halten die Erträge stabil

Moderne Weidenutzung

- Lenkung des Pflanzenbestandes durch geeignete Übersaaten ist die Basis eines jeden Weidesystems
- regelmäßiges Messen der Aufwuchshöhe ist notwendig um das Futterangebot optimal zu nutzen
- Kurzrasen- und Koppelweide sind beides ertragsstarke Systeme, sofern die entsprechenden Spielregeln beachtet werden
- Eine moderne Weidenutzung erfordert eine professionelle Planung und eine betriebsangepasste Umsetzung, damit die möglichen Erträge und Futterqualitäten am jeweiligen Standort auch erreicht werden können!

Bio-Landwirtschaft 2017 | Bio-Institut | Bio-Weidehaltung

Danke für die Aufmerksamkeit!

