Silageprojekt

(2003 und 2005)

Datensammlung und Befragung:

Arbeitskreisberatung Milchvieh und Fütterungsreferenten der Landwirtschaftskammern Niederösterreich, Oberösterreich, Kärnten und Steiermark in Zusammenarbeit mit dem Futtermittellabor Rosenau

Auswertung:

HBLFA Raumberg-Gumpenstein
Ing. Reinhard Resch Dr. Andreas Steinwidder

Einleitung

Im Zuge der Betriebsberatung sowie der Arbeitskreisberatung (Betriebszweigauswertung Milchproduktion) werden in Österreich regelmäßig Grundfutteruntersuchungen durchgeführt. Bereits im Jahr 2003 wurden bundesländerübergreifend einheitliche und umfangreiche Probennahmen und Befragungen zum Silagemanagement auf Milchviehbetrieben erfasst und statistisch ausgewertet. Insgesamt wurden dabei 761 Proben (Dauergrünland und Feldfutter) aus den Bundesländern Niederösterreich, Steiermark, Kärnten und Oberösterreich zur ersten Auswertung herangezogen. Um die Aussagekraft und Datenbasis zu erweitern, wurde von den Fütterungsberatern im Frühling 2005 eine neuerliche Silagedatenerfassung angeregt und diese im Sommer 2005, mit einem leicht modifizierten Erhebungsbogen, in Zusammenarbeit mit den Milchvieharbeitskreisberatern durchgeführt.

In der vorliegenden Arbeit werden die Ergebnisse der statistischen Auswertung der Daten aus dem Silageprojekt der Jahre 2003 und 2005 gemeinsam dargestellt. Die Dateneingabe wurde in den Bundesländern durchgeführt, die Datenzusammenführung und statistische Auswertung erfolgte an der HBLFA Raumberg-Gumpenstein (Dr. A. Steinwidder und Ing. Reinhard Resch) in Abstimmung mit den Fütterungsberatern.

Es ist das Ziel der Arbeit, vor allem die Zusammenhänge zwischen Managementfaktoren und Silagequalitätsparametern, unter Konstanz einiger weiterer Einflussfaktoren, darzustellen. Jedenfalls ist eine vorsichtige Interpretation der Ergebnisse notwendig – Verallgemeinerungen sind nur bedingt bzw. begrenzt möglich, eine entsprechende Kenntnis der Analytik und Erhebungsmethodik sowie der Grenzen von Praxisauswertungen ist erforderlich. Die Ergebnisse können jedoch, bei sorgfältiger Interpretation, in der Beratung eine wichtige Hilfestellung geben.

Bei der Umsetzung und Interpretation der Ergebnisse ist speziell zu berücksichtigen:

- Es handelt sich bei den Proben um Praxisproben und nicht um Daten aus wissenschaftlichen Versuchsanstellungen.
- Es konnten selbstverständlich nicht alle Einflussfaktoren, welche die Silagequalität beeinflussen, erhoben und statistisch analysiert werden (Beachte: Bestimmtheitsmaß).
- Der Probenzieher bzw. Datenerfasser musste sich auf die Angaben der Betriebsführer verlassen.
- Die Daten der Silageerhebung stammen aus zwei Erntejahren.

Die Erhebungsbögen der Jahre 2003 und 2005 sind auf den folgenden zwei Seiten dargestellt. Da einige Erhebungen 2005 leicht umgestellt wurden, war bei einigen Parametern ein Abgleich der Kategorien und Merkmale erfoderlich.

Erhebungsbogen Futterernte 2003

Wirtschaftsweise	¤ Bio (1) □ Verzicht (2) □	
Futterzusammensetzung:		(2) ¤ Grünland/Feldfutter50/50(3)
	¤ Rotklee (2	
		ras Grasanteil >25% (21)
	¤ Luzerne (. /
	¤ Luzernegr	ras Grasanteil >25% (23)
Aufwüchse: ¤ 1. Aufw. (1) Mischungen:	¤ 2. Aufw. (2) ¤ 3. Aufw. zB: 1.+2. (
Feldphase (Zeit Mäh – Silierbo	eginn): ¤ bis 6 Std. ₍₁₎ ¤ bis bis 24 Std. ₍₃₎ ¤ bis	cheiben (3) Messerbalken (4) is 12 Std.(2) is 36 Std.(4) Messerbalken (5)
Regen über 5 mm: ¤ ja (1) Schnitthöhe: ¤ unter 5 cm (7 cm (3)
		nal (3) mehr als zweimal (4)
9	häcksler (1)	
Siliersystem: ¤ Flachsilo (1)	¤ Hochsilo (2) ¤ Fixkamm	nerpresse (3) ¤ Variable Presse (4)
Theoretische Schnittlänge:	¤ bis 3 cm (1)	l bis 6 cm (2)
		0,1 bis 20 cm (4)
Entladeschichthöhe Fahrsi	lo: $m = 20 \text{ cm}_{(1)} \text{ m} = 20 \text{ sis}_{(1)}$	cm (2) ¤ darüber (3)
Füllgeschwindigkeit Fahrs i Füllgeschwindigkeit Rundba		füllzeit m³ Siloraum uer Ballenanzahl
	cm Ballendu	rchmesser
Zeitspanne gesamte Silobefü Zeitspanne Ende Verdicht Wickellagen: ¤ 4-fach (1) Höchsttemperatur bei Silol Walzgewicht: Tonner	en/Pressen bis Abdecken/ ¤ 6-fach (2)	Wickeln: Std.
Siliermittel: ¤ keine (1) ¤ (4)	Salze und Säuren (2) Ba	akterien (3)
Siliermittelverteilung:	¤ autom. Dosierung	¤ händisch
~ · · · · · · · · · · · · · · · · ·	¤ flüssig (10) ¤ fest (11)	Riussig (20) fest (21)
Vacuumverpackte Probe:	•	

Erhebungsbogen zur Futterernte 2005

Wirtschaftsweise: O Bio (1)	O Verzicht (2)	O Reduktion (3)	O konventione	ell ₍₄₎
Futterzusammensetzu O Dauergrünland (1) O Luzerne (rein – sonst 5)	O Rotklee (rein	– sonst 3) ₍₂₎ – Grasanteil > 25 % ₍₅₎	O Rotkleegras – Grasant	eil > 25 % (3)
Aufwüchse: O 1. Aufwuchs (1) Mischungen:	O 2. Aufwuchs (2) zB: 1	O 3. Aufwuchs (3) .+2. (12), 2.+3. (23), 1.+3. (13)	O weitere Auf	wüchse (4)
Mähgeräte: O Trommel (1)	O Scheiben (2)	○ Messerbalken (3	3)	
Feldphase (Zeit Mäh- bis S O bis 6 Std: (1)		O bis 24 Std. (3)	O bis 36 Std (4)	O über 36 Std. (5)
Regen über 5 mm: O nein (1)) ja (2)Schnit	t.		
Schnitthöhe: O unter 5 cm (1)) 5 bis 7 cm ₍₂₎	○ über 7 cm (3)		
Zetthäufigkeit: O kein zetten (1)	D einmal zetten (2)	O zweimal zetten (3) O me	ehr als zweimal zetten (4)	C Mähaufbereiter (5)
Erntegerät: O Feldhäcksler (1) O Fixkammerpresse (5)	KurzschnittladewVariable Presse	3 (-)	O Ladewagen + Standhä	cksler (4)
Siliersystem: O Flachsilo (1) (Länge:	m) O Silohaufer	ı ₍₂₎ (Länge:m) O	Hochsilo (3) O Rundba	allen (4)
Theoretische Schnittlän O bis 3 cm (1)	ge:) 3,1 bis 6 cm ₍₂₎	O 6,1 bis 10 cm (3)	O 10, 1 bis 20 cm (4)	O lang (5)
Entladeschichthöhe Fah	<mark>rsilo:</mark>) bis 40 cm ₍₂₎	O über 40 cm ₍₃₎	O Ladewagen mit Dosier	walze (4)
Füllgeschwindigkeit Fal 1. Schn.: Std. Bei 2. Schn.: Std. Bei . Schn.: Std. Bei Füllgeschwindigkeit Rui	füllzeit m³ Sild füllzeit m³ Sild füllzeit m³ Sild füllzeit m³ Sild	oraum Transportfal	hrzeuge Ø Entfernun	g:km
Ballenanzahl/S Unterbrechung der Befü		llendurchmesser ittStd Schnitt	Std Schnitt	
provisorische Abdeckur		O nein (2)	<u></u>	
Zeitspanne Ende Verdic	hten/Pressen bis Abd	ecken/Wickeln:Std Sc	hnittStd Schnitt _	_Std Schnitt
Wickellagen bei Rundba O 4-fach (1)	lllen: O 6-fach ₍₂₎	O sonstige (3)		
Maximale Temperatur be 1. Schnitt: ° C 2	e <mark>i Silobefüllung/Press</mark> Schnitt: ° C		Schnitt: ° C	
Walzgewicht: 1. Schnitt: t 2	. Schnitt: t	3. Schnitt: t	Schnitt: t	
Siliermittel: O keine (1) O Sa Produktname:	lze ₍₂₎ O Säuren ₍₃₎	O Bakterien ₍₄₎ □ nur homofermentativ ₍₄₁₎ □ auch heterofermentativ ₍₄₂₎	O Melasse, sonstige (5)	
Siliermittelverteilung: O automatische Dosierun I flüssig (10) I fest (11) Vakuumverpackte Probe	☐ flüs ☐ fest	sig ₍₂₀₎		
O ja (1) O ne				

Bohrtiefe: ____ m Bohrer(innen)durchmesser: ___ cm Bohrmenge: ____ kg

Datenbeschreibung

Von den Silageerhebungen des Erntejahres 2003 wurden, von insgesamt 806 Datensätzen, 761 Proben (Dauergrünland und Feldfutter) aus den Bundesländern Niederösterreich, Steiermark, Kärnten und Oberösterreich, zur Auswertung herangezogen.

Im Jahr 2005 wurden 773 Proben aus den Bundesländern Niederösterreich, Steiermark, Kärnten und Oberösterreich ausgewertet.

Die Erhebungen und Probenziehungen auf den landwirtschaftlichen Betrieben wurden von Mitarbeitern der Landeslandwirtschaftskammern, vorwiegend im Zuge der Milchvieh-Arbeitskreisberatung, durchgeführt.

Die chemische Futtermittelanalytik erfolgte im Futtermittellabor Rosenau der NÖ-Landeslandwirtschaftskammer. Alle 1.533 Proben wurden auf den Rohnährstoffgehalt, entsprechend der Weender-Nährstoffanalytik, nasschemisch untersucht. Die Energiebewertung erfolgte auf Basis des Rohnährstoffgehalts mit Hilfe von Regressionen, welche aus der DLG-Futterwertabelle für Wiederkäuer (DLG 1997) abgeleitet wurden. Aus Kostengründen wurden die Gehalte an Mengenelementen (N=1.445), Spurenelementen (N=220), Gerüstsubstanzen (N=8) und Zucker (N=280) nicht bei allen Proben bestimmt. Gleiches gilt auch für die Parameter der Gärqualität (N=985). Der pH-Wert der Silagen wurde im Gegensatz dazu bei 1.209 Proben analysiert.

Die statistische Auswertung der Daten erfolgte mit dem "Statgraphics-Plus V. 5.1" Statistikpaket in Form einer multiplen Regressionsanalyse (GLM Prozedur) an der HBLFA Raumberg-Gumpenstein. Wenn im statistischen Auswertungsmodell Parameter geprüft wurden, von welchen nicht bei allen Proben Untersuchungsbefunde vorlagen, verringerte sich dementsprechend die Anzahl der ausgewerteten Datensätze.

Wurden die Datensätze entsprechend der <u>Wirtschaftsweise</u> zugeordnet (insgesamt 1.372), so kamen 197 Datensätze von Biobetrieben, 457 von "Verzichtsbetrieben" (Verzicht auf ertragssteigernde Betriebsmittel), 323 von "Reduktionsbetrieben" und 395 von konventionellen Betrieben.

Die Zuordnung der Proben zu den <u>Aufwüchsen</u> (insgesamt 1.369) erfolgte auf Grund der Erhebungsbögen, wobei der 4., 5. und der 6. Aufwuchs zu einer Kategorie zusammengefasst wurden. Auch bei Mischsilagen (zumindest 2 Grünlandaufwüchse in einem Silo) wurden diese in einer Kategorie zusammengefasst. Auf den 1. Aufwuchs entfielen 1.047 Datensätze, auf den 2. 136 auf den 3. Aufwuchs 41, auf den 4. bis 6. Aufwuchs 9 und auf Mischsilagen 136 Datensätze.

Die Zuordnung der Proben entsprechend der <u>Futterzusammensetzung</u> (insgesamt 614) ergab 477 Grünlandsilagen, 106 Feldfuttersilagen (davon überwiegend Rotkleegras mit einem Grasanteil > 25 % (N=79) bzw. Luzernegras mit einem Grasanteil > 25 % (N=46)) und 31 Silagen der Kategorie Grünland/Feldfutter.

Ergebnisse der allgemeinen statistische Auswertung

Tabelle: Futterinhaltsstoffe in Abhängigkeit der Futterzusammensetzung

				0					0			
Jahr	Futterzusammensetzung	Anzahl	Trockenmasse				NEL [MJ/kg	RNB [g/kg		Phosphor	Kalium	Verdichtung
Jan	r utterzusammensetzung	[n]	[g/kg FM]	[g/kg TM]	[g/kg TM]	[g/kg TM]	TM]	TM]	[g/kg TM]	[g/kg TM]	[g/kg TM]	[kg TM/m ³]
2003	Dauergrünland	503	386,2	149,5	270,4	104,5	5,92	3,0	7,5	3,01	29,7	176,0
	Feldfutter	171	402,1	161,0	267,9	113,7	5,80	4,7	8,6	3,14	30,6	185,7
	Mischung Grünland/Feldfutter	86	380,1	153,8	268,8	101,2	5,94	3,4	7,3	3,12	30,5	199,9
	Insgesamt	760	389,1	152,5	269,6	106,2	5,90	3,4	7,7	3,05	30,0	180,9
2005	Dauergrünland	477	382,8	146,6	258,3	105,0	6,01	2,3	7,3	3,17	32,1	186,7
	Feldfutter	106	389,5	153,9	270,2	105,7	5,79	3,7	8,5	3,24	33,5	177,8
	Mischung Grünland/Feldfutter	31	366,3	156,8	256,8	108,7	5,94	4,0	7,7	3,31	34,1	190,1
	Insgesamt	614	383,1	148,4	260,3	105,3	5,97	2,6	7,6	3,19	32,4	185,3
Insgesamt	Dauergrünland	980	384,6	148,1	264,5	104,7	5,96	2,7	7,4	3,09	30,8	181,0
	Feldfutter	277	397,3	158,3	268,8	110,6	5,80	4,3	8,6	3,18	31,7	182,7
	Mischung Grünland/Feldfutter	117	376,4	154,6	265,7	103,2	5,94	3,6	7,4	3,17	31,4	197,4
	Insgesamt	1374	386,4	150,7	265,5	105,8	5,93	3,1	7,7	3,11	31,1	182,8

Tabelle: Gärqualität in Abhängigkeit der Futterzusammensetzung

Jahr	Futterzusammensetzung	Anzahl [n]	Trockenmasse [g/kg FM]	рН	Milchsäure [g/kg TM]	Essigsäure [g/kg TM]	Buttersäure [g/kg TM]	Gesamtsäure [g/kg TM]	NH₃ von Gesamt-N [%]	Weissbach/ Honig [Punkte]	Note
2003	Dauergrünland	503	386,2	4,6	33,2	9,3	13,0	55,4	9,6	62,5	3,0
	Feldfutter	171	402,1	4,7	39,7	11,8	9,2	60,7	8,2	72,2	2,5
	Mischung Grünland/Feldfutter	86	380,1	4,5	39,1	11,3	11,9	62,3	10,2	65,8	2,8
	Insgesamt	760	389,1	4,6	35,7	10,2	11,8	57,7	9,3	65,6	2,8
2005	Dauergrünland	477	382,8	4,5	39,6	10,5	11,4	61,4	9,1	82,7	2,0
	Feldfutter	106	389,5	4,6	37,3	11,6	9,6	58,4	11,5	80,9	2,1
	Mischung Grünland/Feldfutter	31	366,3	4,4	44,8	13,1	8,0	65,9	10,8	87,9	1,7
	Insgesamt	614	383,1	4,5	39,5	10,9	10,7	61,1	9,8	82,7	2,0
Insgesamt	Dauergrünland	980	384,6	4,5	36,2	9,9	12,2	58,3	9,4	72,2	2,5
	Feldfutter	277	397,3	4,6	38,8	11,7	9,4	59,8	9,4	75,5	2,3
	Mischung Grünland/Feldfutter	117	376,4	4,5	41,0	11,9	10,6	63,5	10,4	73,3	2,4
	Insgesamt	1374	386,4	4,6	37,3	10,5	11,3	59,2	9,5	73,1	2,5

Tabelle: Futterinhaltsstoffe in Abhängigkeit der Wirtschaftsweise

- 000 0111	. I uttermin											
Jahr	Wirtschaftsweise	Anzahl	Trockenmasse	Rohprotein	Rohfaser	Rohasche	NEL [MJ/kg	RNB [g/kg	Calcium	Phosphor	Kalium	Verdichtung
Jani	Willischaltsweise	[n]	[g/kg FM]	[g/kg TM]	[g/kg TM]	[g/kg TM]	TM]	TM]	[g/kg TM]	[g/kg TM]	[g/kg TM]	[kg TM/m ³]
2003	Bio	94	396,1	143,8	267,2	104,8	5,91	2,4	8,6	2,84	28,5	174,6
	Verzicht	241	385,2	148,4	269,1	100,9	5,97	2,7	7,6	3,01	29,8	173,2
	Reduktion	171	385,1	152,9	273,3	104,7	5,88	3,4	7,7	3,08	30,3	189,1
	Konventionell	253	392,8	159,5	268,6	112,7	5,83	4,5	7,5	3,15	30,5	185,0
	Insgesamt	759	389,1	152,5	269,7	106,2	5,90	3,4	7,7	3,05	30,0	180,9
2005	Bio	103	399,4	147,4	263,6	102,6	5,90	2,5	9,0	2,97	30,9	180,3
	Verzicht	216	383,3	145,9	256,1	105,5	6,01	2,2	7,6	3,12	31,5	186,1
	Reduktion	152	383,1	148,7	261,9	105,3	5,97	2,7	7,2	3,28	33,3	184,6
	Konventionell	142	372,8	152,4	262,7	107,0	5,94	3,2	6,9	3,38	33,8	189,7
	Insgesamt	613	383,5	148,3	260,3	105,3	5,96	2,6	7,6	3,19	32,4	185,6
Insgesamt	Bio	197	397,8	145,6	265,3	103,6	5,91	2,5	8,8	2,91	29,8	177,6
	Verzicht	457	384,3	147,2	263,0	103,1	5,99	2,5	7,6	3,06	30,6	179,0
	Reduktion	323	384,2	150,9	268,0	105,0	5,92	3,1	7,5	3,17	31,6	187,0
	Konventionell	395	385,6	156,9	266,5	110,6	5,87	4,1	7,3	3,23	31,7	186,6
	Insgesamt	1372	386,6	150,6	265,5	105,8	5,93	3,1	7,7	3,11	31,0	182,9

Tabelle: Gärqualität in Abhängigkeit der Wirtschaftsweise

	Garquantat	111 1 10	mangigner		1111100	iai to 11 Ci	.50				
Jahr	Wirtschaftsweise	Anzahl [n]	Trockenmasse [g/kg FM]	рН	Milchsäure [g/kg TM]	Essigsäure [g/kg TM]	Buttersäure [g/kg TM]	Gesamtsäure [g/kg TM]	NH ₃ von Gesamt-N [%]	Weissbach/H onig [Punkte]	Note
2003	Bio	94	396,1	4,6	36,3	9,6	12,6	58,5	9,0	67,6	2,8
	Verzicht	241	385,2	4,5	33,0	9,0	13,5	55,5	9,6	62,0	3,0
	Reduktion	171	385,1	4,7	34,0	9,1	12,9	56,0	9,7	62,0	3,0
	Konventionell	253	392,8	4,6	38,1	11,8	10,0	59,8	8,9	69,2	2,6
	Insgesamt	759	389,1	4,6	35,7	10,2	11,8	57,7	9,3	65,6	2,8
2005	Bio	103	399,4	4,7	34,0	12,1	8,8	54,9	9,7	81,4	2,1
	Verzicht	216	383,3	4,5	40,3	10,9	10,9	62,2	8,9	82,2	2,0
	Reduktion	152	383,1	4,5	39,4	9,5	11,7	60,6	10,1	83,2	2,0
	Konventionell	142	372,8	4,5	41,1	11,1	10,7	62,9	10,3	83,1	1,9
	Insgesamt	613	383,5	4,5	39,2	10,8	10,7	60,6	9,7	82,5	2,0
Insgesamt	Bio	197	397,8	4,6	35,1	10,9	10,6	56,6	9,4	74,8	2,4
	Verzicht	457	384,3			10,0			9,2	72,3	
	Reduktion	323	384,2	4,6			12,4		9,9	71,8	
	Konventionell	395	385,6			11,5			9,4	73,9	
	Insgesamt	1372	386,6	4,6	37,2	10,5	11,3	59,0	9,5	73,1	

Tabelle: Ergebnisse Fragebogen - Häufigkeitsverteilungen in % (Klasseneffekte)

Mähgerät	Aufbereiter	Trommelm.	Scheibenm.	Messerbalken	Kombinat.
%	7	18	61	7	7
Feldphase Futter	bis 6 h	6,1 - 12 h	12,1 - 24 h	24,1 - 36 h	über 36 h
%	9	31	51	7	2
Regen über 5 mm	ja	nein			
%	3	97			
Schnitthöhe	unter 5 cm	5,1-7 cm	über 7,1 cm		
%	3	78	19		
Entladeschichthöhe	bis 20 cm	20,1 - 40 cm	über 40 cm	Dosierwalze	
Fahrsilo					
%	35	49	12	4	
Wickellagen Ballen	4 fach	6 fach	sonstig		
%	19	79	2		
Siliermittel	keines	Salze u.	Bakterien	Sonstige	
		Säuren		(Zucker,	
				Melasse, etc.)	
%	79	4	16	1	
Siliermittelverteilung	flüssig	fest	flüssig	fest	
	automatisch	automatisch	händisch	händisch	
%	31	23	12	34	

Tabelle: Ergebnisse Fragebogen – deskriptive Statistik (Quantitative Parameter)

	N	Mittelwert	Minimum	Maximum
Befüllmenge (Fahrsilo/Hochsilo), m ³ /Stunde	544	9,6	1,0	96,0
Pressleistung (Ballensil.), in m ³ /Stunde	205	26,0	5,9	54,3
Zeit von Verdichten (Pressen) bis Abdecken				
(Wickeln), Stunden	724	1,3	0	48,0
Maximaltemperatur bei Silobefüllung (Pressen)	752	26,9	12,0	35,0
Walzgewicht – Fahrsilo, t	493	6,4	2,0	22,0

Ergebnisse der speziellen statistischen Auswertung

1. Einflussfaktoren auf die Silagedichte

1.1 Einflussfaktoren auf die Silagedichte – Erntegerät (alle Silageproben)

Frage:

Beeinflusste der Aufwuchs (1=1. Aufw.; 2=2.Aufw.; 3=3.Aufw.; $4=\ge 4.$ Aufw.; 5=Mischungen von Aufwüchsen) oder das Erntegerät (1=Feldhäcksler, 2=Ladewagen, 3=Ladewagen+Standhäcksler; 4=Fixkammerpresse; 5=variable Presse) das Erntejahr, die theoretische Schnittlänge (1=unter 3 cm, 2=3,1-6 cm, 3=6,1-10 cm; 4=10,1-20cm; 5=lang) sowie der Rohfaser- und Trockenmassegehalt die Dichte der Silage (kg T/m^3)?

Die Ergebnisse der folgenden Tabellen zeigen, dass das Erntejahr und die Schnittlänge die Silagedichte tendenziell (P-Wert über 0,05 bis 0,10) alle anderen im Auswertungsmodell berücksichtigten Faktoren die Silagedichte signifikant (P<0,05) beeinflussten. Wie das Bestimmtheitsmaß (R^2 =30,0) zeigt, können mit dem unterstellten Modell etwa 30 % der Einflussfaktoren auf die Silagedichte beschrieben werden.

Die **Trockenmasse- und Rohfasergehalte** betrugen im Mittel 39 % bzw. 27 %. Wenn der Trockenmassegehalt um 1 % anstieg, erhöhte sich die Silagedichte um durchschnittlich 2,1 kg T/m³. Erwartungsgemäß verringerte sich die Silagedichte, wenn der Rohfasergehalt zunahm (-3,2 kg T/m³ je % Rohfaserzunahme).

Bei den **Aufwüchsen** erzielten die Silagen der 4. bzw. höheren Aufwüchse aber auch die Aufwuchs-Mischsilagen die höchste Silagedichte mit knapp 200 kg TM/m³ die höchste Dichte.

Bei den **Erntegeräten** vielen die Rundballenpressen signifikant von den Varianten Feldhäcksler, Ladewagen bzw. Ladewagen + Standhäcksler ab. Die höchste Dichte wurde mit 210,6 kg Tm/m³ bei der Ernte der Silagen mit dem Feldhäcksler, gefolgt von der Variante Ladewagen+Standhäcksler festgestellt. Die geringste Dichte ergab sich bei den Fixkammerpressen mit nur 152 kg TM/m³.

Tendenziell war die Silagedichte im **Jahr** 2005 mit 184 kg über dem von 2003 wo 188 kg TM/m³ festegestellt wurde.

Mit zunehmender **theoretischer Schnittlänge** des Ernteguts ging die Silagedichte tendenziell zurück. Bei einer theoretischen Schnittlänge von unter 3 cm lag die Dichte bei 191,4 kg, bei einer theoretischen Schnittlänge von 10,1-20 cm lag diese bei 179,1 kg/m³.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		30,0	38,8
Aufwuchs	0,0000		
Erntegeräte	0,0000		
Jahr	0,0814		
Schnittlänge	0,0669		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	386,8	0,2069
Rohfaser	0,0000	265,5	-0,3162

Tabelle: Mittelwerte der fixen Effekte sowie Probenanzahl und Konvidenzintervall

	Anzahl	Mittelwert	sx	Konvidenzintervall 95 %		
				min	max	
Mittelwert	1292	186,1	3,42	179,4	192,8	
Aufwuchs						
1.	984	178,6	1,67	175,4	181,9	

2.	133	174,9	3,56	167,9	181,9
3.	38	179,7	6,44	167,0	192,3
4 6.	8	199,2	13,85	172,1	226,3
Kombination	129	198,2	3,83	190,7	205,7
Erntegerät					
Feldhäcksler	128	212,2	4,60	203,2	221,2
Ladewagen	692	198,7	3,77	191,3	206,1
Ladewagen + Standhäcksler	109	201,0	5,31	190,6	211,4
Fixkammerpresse	163	152,5	4,53	143,6	161,3
Variable Presse	205	167,9	4,47	159,1	176,6
Jahr					
2003	753	184,1	3,51	177,2	191,0
2005	539	188,1	3,71	180,9	195,4
Schnittlänge					
bis 3 cm	71	191,4	6,47	178,7	204,1
3,1 bis 6 cm	524	190,0	3,62	182,9	197,1
6,1 bis 10 cm	354	185,5	3,88	177,9	193,1
10,1 bis 20 cm	230	179,1	4,35	170,6	187,6
lang	113	184,6	5,30	174,2	195,0

1.2 Einflussfaktoren auf die Silagedichte –Siliersystem (alle Silageproben)

Frage:

Beeinflusste der Aufwuchs (1=1. Aufw.; 2=2.Aufw.; 3=3.Aufw.; $4=\ge 4$.Aufw.; 5=Mischungen von Aufwüchsen) oder das Siliersystem (1=Flachsilo, 2=Silohaufen, 3=Hochsilo; 4=Rundballen) das Erntejahr, die theoretische Schnittlänge (1=unter 3 cm, 2=3,1-6 cm, 3=6,1-10 cm; 4=10,1-20cm; 5=lang) sowie der Rohfaser- und Trockenmassegehalt die Dichte der Silage (kg T/m^3)?

Die Ergebnisse der folgenden Tabellen zeigen, dass das Siliersystem die Silagedichte signifikant beeinflusste. Vergleichbar mit der Auswertung zum Einfluss des Erntegeräts (siehe oben) beeinflussten auch hier der Trockenmasse- und Rohfasergehalt sowie der Aufwuchs die Silagedichte. Wie das Bestimmtheitsmaß (R^2 =29,0) zeigt, können mit dem unterstellten Modell etwa 29 % der Einflussfaktoren auf die Silagedichte beschrieben werden.

Siliersystem:

Die Hochsilosilagen wiesen mit 215 kg TM/m³ die höchste Dichte auf. Dabei muss aber die Probenziehung berücksichtigt werden, die zwangsläufig im unteren Silobereich (1.Tür) erfolgen musste. Die Fahrsilo-Variante lag mit 201 kg über dem Silohaufen. Deutlich vielen auch hier die Rundballensilagen (Fixkammer + variable Pressen – beide gemeinsam) mit 163 kg TM/m³ ab.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		29,3	39,0
Aufwuchs	0,0000		
Siliersystem	0,0000		
Jahr	0,0535		
Schnittlänge	0,0005		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	386,8	0,2105
Rohfaser	0,0000	265,4	-0,3163

	Anzahl Mittelwert sx		sx	Konvidenzii	ntervall 95 %
				min	max
Mittelwert	1287	192,8	4,07	184,8	200,8
Aufwuchs					
1.	981	184,8	2,89	179,1	190,4
2.	133	181,7	4,31	173,3	190,2
3.	38	186,8	6,88	173,3	200,2
4 6.	8	205,2	14,01	177,7	232,6
Kombination	127	205,6	4,38	197,0	214,2
Siliersystem					
Fahrsilo	839	200,8	3,67	193,6	208,0
Silohaufen	18	191,6	9,64	172,7	210,5
Hochsilo	63	215,4	6,06	203,5	227,2
Rundballen	367	163,4	3,93	155,7	171,1
Jahr					
2003	752	190,6	4,21	182,3	198,8
2005	535	195,0	4,23	186,7	203,3
Schnittlänge					
bis 3 cm	70	205,1	6,01	193,3	216,9
3,1 bis 6 cm	525	196,1	4,18	187,9	204,3
6,1 bis 10 cm	351	190,0	4,37	181,4	198,5
10,1 bis 20					
cm	228	182,8	4,79	173,4	192,2
lang	113	190,0	5,72	178,8	201,3

1.3 Einfluss auf die Silagedichte - Fixkammerpressen

Frage: Beeinflusste bei den Fixkammerpressen der Ballendurchmesser und die Stundenleistung die Silagedichte (unter Konstanz von Rohfaser- und Trockenmassegehalt, Erntejahr)?

Sowohl der Ballendurchmesser als auch die Stundenleistung zeigten mit einem P-Wert von deutlich über 0,05 keinen signifikanten Einfluss auf die Silagedichte innerhalb der Fixkammerpressen.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		26,8	36,1
Jahr	0,0455		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000		0,1788
Rohfaser	0,0001		-0,3938
Ballendurchmesser	0,2062		0,6498
m³ Ballen je Stunde	0,3390		0,3053

1.4 Einfluss auf die Silagedichte – variable Pressen

Frage: Beeinflusste bei den variablen Pressen der Ballendurchmesser und die Stundenleistung die Silagedichte (unter Konstanz von Rohfaser- und Trockenmassegehalt, Erntejahr)?

Tendenziell nahm mit steigendem Ballendurchmesser die Silagedichte zu. Die Stundenleistung zeigten demgegenüber auch bei den variablen Pressen keinen signifikanten Einfluss auf die Silagedichte.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		20,0	36,1
Jahr	0,0008		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	430,7	0,1467
Rohfaser	0,0007	262,4	-0,3161
Ballendurchmesser	0,0824	127,3	0,6669
m³ Ballen je Stunde	0,6972	26,2	-0,1197

1.5 Einfluss auf die Silagedichte – Fahrsilo

Frage: Beeinflusste bei den Fahrsilos die Schnitthöhe, die Schnittlänge, das Walzgewicht und die Stundenleistung bei der Silagebefüllung die Silagedichte (unter Konstanz von Rohfaser- und Trockenmassegehalt, Erntejahr, Aufwuchs)?

Die **Schnitthöhe** hatte keinen Einfluss auf die Silagedichte. Demgegenüber nahm die Dichte erwartungsgemäß mit ansteigendem **Walzgewicht** signifikant zu. Die Erhöhung des Walzgewichts um 1 Tonne (Mittelwert 6,7 Tonnen) führte im Mittel zu einer Zunahme der Dichte von 1 kg.

Die **Stundenleistung** bei der Silobefüllung (m³/Stunde) hatte keinen signifikanten Einfluss auf die Dichte. Mögliche Einflüsse der Walzdauer auf die Dichte konnten nicht ausgewertet werden da dieser Faktor bei der Erhebung nicht abgefragt wurden.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		23,0	37,2
Jahr	0,9998		
Schnitthöhe	0,1870		
Aufwuchs	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	373,4	0,2379
Rohfaser	0,0000	266,5	-0,3059
Schnittlänge	0,0023	2,4	-5,6316
Walzgewicht	0,0179	6,7	0,9495
Befüllung in m ³ /			
Stunde	0,5327	24,3	0,0598

	Anzahl	Mittelwert	sx		intervall 95 %
	Alizalli	Millelmeil	38	_	0
				min	max
Mittelwert	820	192,2	4,98	182,5	202,0
Jahr					
2003	475	192,2	5,13	182,2	202,3
2005	345	192,2	5,21	182,0	202,4
Schnitthöhe					
< 5 cm	16	180,6	9,87	161,2	199,9
5 - 7 cm	661	197,4	4,32	189,0	205,9
> 7 cm	143	198,7	5,06	188,8	208,6
Auwuchs					
1.	599	185,3	3,45	178,6	192,1
2.	77	178,9	5,30	168,5	189,3
3.	22	182,4	8,60	165,6	199,3
4 6.	4	209,4	18,65	172,8	246,0
Kombination	118	205,1	4,63	196,1	214,2

2. Einflussfaktoren auf den pH-Wert

2.1 Einfluss auf die den pH-Wert - Siliersystem

Frage: Beeinflusste das Erntejahr, die Wirtschaftsweise (1=Biobetrieb; 2=Verzicht; 3= Reduktion; 4=Konventionell) das Siliersystem (1=Flachsilo, 2=Silohaufen, 3=Hochsilo; 4=Rundballen), der Aufwuchs (1=1. Aufw.; 2=2.Aufw.; 3=3.Aufw.; 4=\ge 4.Aufw.; 5=Mischungen von Aufwüchsen), der Siliermitteleinsatz (1=keines, 2=Salze+Säuren, 3=Bakterien, 4=sonstige), die Vakuumverpackung (1=ja, 2=nein) die Trockenmasse, der Rohfaser- und Rohaschegehalt den pH-Wert?

Wie die Ergebnisse der folgenden Tabellen zeigen, beeinflussten alle angeführten Faktoren den pH-Wert signifikant. Wie das Bestimmtheitsmaß zeigt, können mit dem unterstellten Modell 23 % des pH-Werts der Silagen erklärt werden.

Im **Erntejahr** 2005 lag der pH-Wert mit 4,41 geringfügig unter dem des Erntejahres 2003 mit 4,47. Bei der **Wirtschaftsweise** lag der pH-Wert bei den Biobetrieben leicht über dem der anderen Betriebs. Bei den **Siliersystemen** waren die pH-Werte bei den Fahrsilos geringfügig über denen der Hochsilo- und Ballensilagen. Die pH-Ergebnisse der Silohaufen können auf Grund der geringen Anzahl (N=3) nicht beurteilt werden.

Beim **Aufwuchseffekt** zeigte sich ein Anstieg des pH-Wertes vom 1. bis hin zum 3. Aufwuchs. Die Aufwuchs-Mischsilagen wiesen ebenfalls einen tiefen pH-Wert auf. In der Variante 4 (4. oder 5. Aufwuchs) waren nur wenige Proben vorhanden, sodass diese Werte nicht beurteilt werden können. Beim Effekt **Siliermittel** zeigten sich beim Einsatz von Bakterienkulturen die tiefsten pH-Werte mit 4,37 Punkten. Ohne Siliermitteleinsatz bzw. bei Einsatz von Säuren und/oder Salzen lag dieser bei 4,51 bzw. 4,54. Die vakuumverpackten **Proben** wiesen einen höheren pH-Wert als nicht vakuumverpackten Proben auf.

Mit steigendem **Trockenmassegehalt** stieg der pH-Wert leicht an. Je % Trockenmassezunahme erhöhte er sich im Mittel um 0,006 Punkte.

Auch mit steigendem Rohfasergehalt (je % Rfa-Anstieg stieg der pH-Wert um 0,04 Punkte) und **Rohaschegehalt** (je % Ra-Anstieg stieg der pH-Wert um 0,03 Punkte) erhöhte sich der pH-Wert ebenfalls geringfügig.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		23,4	0,3
Jahr	0,005		
Wirtschaftsweise	0,0058		
Siliersystem	0,0109		
Aufwuchs	0,0016		
Silierhilfsmittel	0,0000		
Vaccumverpackung	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0001	387,4	0,0006
Rohfaser	0,0000	267,9	0,0045
Rohasche	0,0000	106,6	0,0040

	Anzahl	Mittelwert	sx		intervall 95 %
				min	max
Mittelwert	1082	4,44	0,07	4,30	4,58
Jahr					

2003	720	4,47	0,07	4,33	4,61
2005	362	4,41	0,07	4,26	4,55
Wirtschaftsweise					
Biobetrieb	147	4,48	0,08	4,34	4,63
Verzicht	331	4,38	0,07	4,24	4,52
Reduktion	263	4,44	0,07	4,29	4,58
Konventionell	341	4,46	0,07	4,31	4,60
Siliersystem					
Fahrsilo	726	4,55	0,05	4,45	4,65
Silohaufen	3	4,27	0,21	3,87	4,67
Hochsilo	57	4,47	0,07	4,33	4,61
Rundballen	296	4,47	0,06	4,36	4,58
Aufwuchs					
1.	819	4,35	0,06	4,23	4,47
2.	116	4,46	0,07	4,33	4,59
3.	32	4,55	0,09	4,38	4,72
4 6.	4	4,46	0,18	4,10	4,82
Kombination	111	4,38	0,07	4,24	4,51
Silierhilfsmittel					
keines	846	4,51	0,06	4,38	4,64
Säuren u. Salze	39	4,54	0,08	4,38	4,70
Biol. Impfkulturen	189	4,37	0,07	4,24	4,50
Sonstige	8	4,34	0,14	4,06	4,61
Vaccumverpackung					
ja	824	4,55	0,07	4,41	4,69
nein	258	4,33	0,07	4,19	4,48

2.2 Einfluss auf die den pH-Wert - Erntegerät

Frage: Beeinflusste das Erntejahr, die Wirtschaftsweise (1=Biobetrie; 2=Verzicht; 3=Reduktion; 4=Konventionell) das Erntegerät (1=Feldhäcksler, 2=Ladewagen, 3=Ladewagen+Standhäcksler; 4=Fixkammerpresse; 5=variable Presse), der Aufwuchs (1=1. Aufw.; 2=2.Aufw.; 3=3.Aufw.; 4=≥ 4.Aufw.; 5=Mischungen von Aufwüchsen), der Siliermitteleinsatz (1=keines, 2=Salze+Säuren, 3=Bakterien, 4=Sonstige), die Vakuumverpackung (1=ja, 2=nein) die Trockenmasse, der Rohfaserund Rohaschegehalt den pH-Wert?

Die Ergebnisse der folgenden Tabellen zeigen, dass das Erntegerät den pH-Wert signifikant beeinflusste. Vergleichbar mit der Auswertung zum Einfluss des Siliersystems (siehe oben) beeinflussten auch hier der Trockenmasse-, Rohfaser- und Rohaschegehalt sowie der Aufwuchs, das Siliermittel und die Verpackung der Proben den pH-Wert. Wie das Bestimmtheitsmaß (R²=25) zeigt, können mit dem unterstellten Modell etwa 25 % der Einflussfaktoren auf den pH-Wert beschrieben werden.

Der pH.-Wert der Silagen beim **Siliersystem** "Fahrsilo" lag mit 4,51 über dem des Hochsilos (4,47) bzw. der Ballensilagen (4,47) .

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		25,6	0,3
Jahr	0,001		
Wirtschaftsweise	0,0004		
Erntegerät	0,0000		
Aufwuchs	0,0006		
Silierhilfsmittel	0,000		
Vaccumverpackung	0,000		

Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	387,2	0,0007
Rohfaser	0,0000	268,1	0,0047
Rohasche	0,0000	106,5	0,0040

	Anzahl Mittelwert	sx	Konvidenzintervall 95 %		
				min	max
Mittelwert	1090	4,52	0,05	4,42	4,61
Jahr		,	,	,	,
2003	721	4,56	0,05	4,46	4,65
2005	369	4,48	0,05	4,38	4,58
Wirtschaftsweise					
Biobetrieb	152	4,57	0,05	4,47	4,67
Verzicht	332	4,44	0,05	4,35	4,54
Reduktion	265	4,52	0,05	4,41	4,62
Konventionell	341	4,54	0,05	4,44	4,64
Erntegeräte					
Feldhäcksler	118	4,49	0,06	4,38	4,60
Ladewagen	576	4,62	0,05	4,52	4,71
Ladewagen+Standhäcksler	98	4,45	0,06	4,34	4,56
Fixkammerpresse	133	4,58	0,06	4,47	4,69
Variable Presse	165	4,44	0,06	4,33	4,55
Aufwuchs					
1.	825	4,43	0,03	4,37	4,49
2.	116	4,54	0,04	4,45	4,62
3.	33	4,64	0,07	4,50	4,77
4 6.	4	4,55	0,17	4,20	4,89
Kombination	112	4,44	0,04	4,35	4,53
Silierhilfsmittel					
keines	850	4,56	0,04	4,48	4,64
Säuren u. Salze	38	4,58	0,07	4,45	4,71
Biol. Impfkulturen	189	4,42	0,05	4,33	4,51
Sonstige	13	4,51	0,10	4,31	4,71
Vaccumverpackung					
ja	833	4,61	0,05	4,52	4,71
nein	257	4,42	0,05	4,32	4,52

2.3 Einfluss auf die den pH-Wert – innerhalb Ballensilagen

Frage:

Beeinflusste innerhalb der Ballensilagen die Pressleistung (m3/Stunde) bzw. die Zeitdauer von Pressende bis zum Wickeln der Proben den pH-Wert (unter Konstanz der anderen Faktoren im Modell)

Die **Pressleistung** hatte keinen Einfluss auf die ermittelten pH-Werte. Demgegenüber stieg der pH-Wert der Proben mit zunehmender **Dauer vom Pressende bis zum Wickeln** signifikant um 0,08 pH-Wertpunkte pro Stunde an.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		26,9	0,4
Jahr	0,525		
Wirtschaftweise	0,2314		
Aufwuchs	0,0115		

Vaccumverpackung	0,0236		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0140	425,9	0,0007
Rohfaser	0,0000	264,7	0,0053
Rohasche	0,0000	102,1	0,0048
m³ Ballen / Stunde	0,7941	25,81	0,0008
Zeit Pressen - Wickeln	0,0000	1,12	0,0827

	Anzahl	Mittelwert	sx	Konvide %	nzintervall 95
				min	max
Mittelwert	266	4,53	0,13	4,27	4,80
Jahr					
2003	186	4,56	0,13	4,29	4,82
2005	80	4,51	0,14	4,24	4,79
Wirtschaftsweise					
Biobetrieb	43	4,65	0,14	4,37	4,93
Verzicht	107	4,49	0,14	4,22	4,76
Reduktion	54	4,52	0,15	4,24	4,81
Konventionell	62	4,47	0,15	4,18	4,76
Aufwuchs					
1.	207	4,41	0,04	4,33	4,49
2.	43	4,66	0,07	4,51	4,81
3.	14	4,69	0,13	4,44	4,95
4 6.	1	4,50	0,46	3,60	5,41
Kombination	1	4,40	0,45	3,52	5,28
Vaccumverpackung					
ja	195	4,61	0,13	4,35	4,88
nein	71	4,45	0,14	4,17	4,73

2.4 Einfluss auf die den pH-Wert – innerhalb Flachsilos

Frage:

Beeinflusste innerhalb der Flachsilos das Walzgewicht und die Befüllmenge (m3/Stunde) den pH-Wert (unter Konstanz der anderen Faktoren im Modell)

Die Befüllmenge zeigte kein signifikanter Effekt auf den pH-Wert. Demgegenüber ging der pH-Wert mit steigendem Walzgewicht (vergleichbar mit der Silagedichte – siehe oben) signifikant um knapp –0,02 pH-Einheiten pro Tonne Walzgewichtzunahme zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte	1 110.10	28,6	0,3
Jahr	0,0001	·	
Wirtschaftsweise	0,0452		
Vaccumverpackung	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0130	373,4	0,0004
Rohfaser	0,0000	268,4	0,0036
Rohasche	0,0000	108,4	0,0030
Walzgewicht	0,0000	6,74	-0,0161
Zeit Befüllung-			
Abdeckung	0,2154	9,27	0,0020

	Anzahl	Mittelwert	sx		intervall 95 %
				min	max
Mittelwert	723	4,50	0,01	4,47	4,53
Jahr					
2003	467	4,54	0,01	4,52	4,57
2005	256	4,46	0,02	4,42	4,49
Wirtschaftsweise					
Biobetrieb	88	4,49	0,03	4,43	4,55
Verzicht	194	4,46	0,02	4,42	4,50
Reduktion	191	4,52	0,02	4,48	4,56
Konventionell	250	4,53	0,02	4,49	4,57
Vaccumverpackung					
ja	562	4,62	0,01	4,60	4,64
nein	161	4,38	0,02	4,34	4,43

3. Einflussfaktoren auf die Rohnährstoffe

3.1 Einfluss auf die den Rohproteingehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, die Wirtschaftsweise, die Futterzusammensetzung (1=Dauergrünland, 2=Feldfutter; 3=Dauergrünland/Feldfutter), der Aufwuchs, das Siliersystem der Trockenmasse-, Rohfaser- und Rohaschegehalt den Rohproteingehalt der Proben?

Alle oben angeführten Parameter hatten einen signifikanten Einfluss auf den Rohproteingehalt der Proben. Das Bestimmtheitsmaß lag bei knapp 40 %.

Bei der Interpretation der Ergebnisse muss berücksichtigt werden, dass im statistischen Modell die Futterzusammensetzung berücksichtigt wurde. Dadurch werden die leguminosenbetonten Silagen im Mittelwert verstärkt berücksichtigt – der Rohproteingehalt ist daher insgesamt relativ hoch. Aussagekräftig sind daher vor allem die Unterschiede zwischen den Varianten innerhalb der Faktoren.

Im **Ernte**jahr 2005 lag der Rohproteingehalt um 7,5 g/kg TM unter dem des Erntejahres 2003. Die Futterproben der Bio-**Betriebe** wiesen (bei gleichen Rfa-Gehalt) den geringsten und die der konventionellen Betriebe den höchsten Rohproteingehalt auf.

Erwartungsgemäß stieg mit dem Leguminosenanteil im **Futter** auch der Rohproteingehalt an und erhöhe sich dieser vom 1. bis zum 3. **Aufwuchs**.

Mit steigendem **Rohfaser**, **Trockenmasse- und Rohaschegehalt** ging der Rohproteingehalt je % Zunahme um 0,1 (TM-Effekt), 4,3 (Rfa-Effekt) bzw. 2,3 (Ra-Effekt) g pro kg TM zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		39,8	15,6
Jahr	0,0000		
Wirtschaftsweise	0,0000		
Futterzusammensetzung	0,0000		
Aufwuchs	0,0000		
Siliersystem	0,0402		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0012	386,6	-0,0197
Rohfaser	0,0000	265,4	-0,4342
Rohasche	0,0000	106,0	-0,2306

	Anzahl	Anzahl Mittelwert	sx	Konvidenzintervall 95 %	
				min	max
Mittelwert	1341	166,0	2,52	161,1	170,9
Jahr					
2003	755	169,7	2,61	164,6	174,9
2005	586	162,3	2,51	157,4	167,2
Wirtschaftsweise					
Biobetrieb	186	159,7	2,65	154,5	164,9
Verzicht	451	163,0	2,62	157,8	168,1
Reduktion	314	168,5	2,67	163,3	173,8
Konventionell	390	172,9	2,62	167,7	178,0
Futterzusammensetzung	_				
Dauergrünland	961	156,2	1,60	153,1	159,4
Feldfutter	266	164,9	1,77	161,4	168,3

Dauergrünland/Feldfutter	113	157,0	2,14	152,8	161,2
Aufwuchs					
1.	1028	154,2	2,27	149,7	158,7
2.	136	161,6	2,55	156,6	166,6
3.	40	169,0	3,34	162,5	175,6
4 6.	8	183,0	5,93	171,4	194,6
Kombination	129	162,2	2,61	157,1	167,3
Siliersystem					
Fahrsilo	855	166,5	2,36	161,9	171,1
Silohaufen	19	164,2	4,26	155,9	172,6
Hochsilo	74	164,4	3,00	158,5	170,3
Rundballen	393	168,9	2,44	164,1	173,7

3.2 Einfluss auf die den Rohfasergehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, die Wirtschaftsweise, die Futterzusammensetzung (1=Dauergrünland, 2=Feldfutter; 3=Dauergrünland/Feldfutter), der Aufwuchs, das Siliersystem der Trockenmasse-, Rohprotein- und Rohaschegehalt den Rohfasergehalt der Proben?

Alle oben angeführten Parameter hatten einen signifikanten Einfluss auf den Rohfasergehalt der Proben. Das Bestimmtheitsmaß lag bei knapp 41 %.

Im **Ernte**jahr 2005 lag der Rohproteingehalt um 7,5 g/kg TM unter dem des Erntejahres 2003. Die Futterproben der Bio-**Betriebe** wiesen (bei gleichen Rfa-Gehalt) den geringsten und die der konventionellen Betriebe den höchsten Rohproteingehalt auf.

Erwartungsgemäß stieg mit dem Leguminosenanteil im **Futter** auch der Rohproteingehalt an und erhöhe sich dieser vom 1. bis zum 3. **Aufwuchs**.

Mit steigendem **Rohfaser**, **Trockenmasse- und Rohaschegehalt** ging der Rohproteingehalt je % Zunahme um 0,1 (TM-Effekt), 4,3 (Rfa-Effekt) bzw. 2,3 (Ra-Effekt) g pro kg TM zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		41,1	19,4
Jahr	0,0000		
Wirtschaftsweise	0,0000		
Futterzusammensetzung	0,0000		
Aufwuchs	0,0002		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	386,2	-0,0302
Rohasche	0,0000	105,9	-0,4010
Rohprotein	0,0000	150,7	0,6697

	Anzahl	Anzahl Mittelwert	sx	Konvidenzintervall 95 %	
				min	max
Mittelwert	1359	282,8	2,24	278,4	287,2
Jahr					
2003	758	288,8	2,39	284,2	293,5
2005	601	276,7	2,24	272,3	281,1
Wirtschaftsweise					
Biobetrieb	193	277,9	2,45	273,1	282,7

Verzicht	454	278,7	2,42	274,0	283,5
Reduktion	318	285,8	2,49	280,9	290,7
Konventionell	394	288,7	2,45	283,9	293,4
Futterzusammensetzung					
Dauergrünland	971	265,8	1,69	262,5	269,2
Feldfutter	273	275,1	1,99	271,2	279,0
Dauergrünland/Feldfutter	114	264,1	2,42	259,4	268,9
Aufwuchs					
1.	1041	278,2	1,61	275,1	281,4
2.	136	286,3	2,25	281,9	290,7
3.	41	279,6	3,50	272,7	286,5
4 6.	8	288,0	7,15	274,0	302,0
Kombination	133	281,8	2,29	277,3	286,3

3.3 Einfluss auf die den Rohaschegehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, die Wirtschaftsweise, die Futterzusammensetzung (1=Dauergrünland, 2=Feldfutter; 3=Dauergrünland/Feldfutter), der Aufwuchs, die Zetthäufigkeit, das Erntegerät, die Schnitthöhe (1=bis 5 cm, 2=5-7 cm; 3=über 7 cm), das Mähgerät (1=Trommelmähwerk; 2=Scheibenmähwerk; 3=Messerbalken; 4= Kombinationen; 5=Mähaufbereiter) und der Trockenmasse-, Rohprotein- und Rohfasergehalt den Rohaschegehalt der Proben?

Alle oben angeführten Parameter hatten einen signifikanten Einfluss auf den Rohfasergehalt der Proben. Das Bestimmtheitsmaß lag nur bei 27 %.

Im **Ernte**jahr 2005 lag der Rohaschegehalt um 5 g/kg TM unter dem des Erntejahres 2003. Die Futterproben der Bio-**Betriebe** wiesen (bei gleichen Rfa-Gehalt) den geringsten und die der konventionellen Betriebe den höchsten Rohaschegehalt auf.

Die **Leguminosen-Silagen** wiesen den höchsten Rohaschegehalt auf. Weiters stieg der Ra-Gehalt vom 1. bis zu den höheren **Aufwüchsen** signifikant an.

Beim Effekt des Zettens wurde bei 2 maligem Zetten der höchste Ra-Gehalt festgestellt.

Bei der **Futterernte** mit dem Erntegerät 1 wurde der höchste Ra-Gehalt festgestellt. Die anderen Geräte lagen auf vergleichbarem Niveau.

Bei tiefem **Schnitt der Silagen bei der Mahd**, zeigte sich der höchste Rohaschegehalt. Mit steigendem **Rohfaser**, **Trockenmasse- und Rohproteingehalt** ging der Rohaschegehalt je % Zunahme um 0,3 (TM-Effekt), 4,5 (Rfa-Effekt) bzw. 3,9 (Rp-Effekt) g pro kg TM zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		26,6	21,0
Jahr	0,0002		
Wirtschaftsweise	0,0000		
Futterzusammensetzung	0,0000		
Aufwuchs	0,0005		
Zetten	0,0230		
Erntegerät	0,0007		
Schnitthöhe	0,0011		
Mähgerät	0,0001		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	387,4	-0,0342
Rohfaser	0,0000	266,0	-0,4299
Rohprotein	0,0000	150,6	-0,3425

	Anzahl	Mittelwert	SX	Konvidenzintervall 95 %		
				min	max	
Mittelwert	1284	119,1	3,35	112,5	125,6	
Jahr						
2003	755	121,5	3,39	114,8	128,1	
2005	529	116,6	3,45	109,9	123,4	
Wirtschaftsweise			·			
Biobetrieb	188	116,3	3,56	109,4	123,3	
Verzicht	428	116,1	3,51	109,2	123,0	
Reduktion	287	119,7	3,58	112,7	126,7	
Konventionell	381	124,1	3,48	117,2	130,9	
Futterzusammensetzung						
Dauergrünland	912	118,7	3,39	112,7	125,4	
Feldfutter	263	125,8	3,47	119,0	132,6	
Dauergrünland/Feldfutter	109	112,7	3,84	105,1	120,2	
Aufwuchs						
1.	987	111,7	3,00	105,9	117,6	
2.	127	117,5	3,46	110,7	124,2	
3.	39	121,8	4,53	112,9	130,6	
4 6.	8	128,1	7,98	112,5	143,7	
Kombination	123	116,2	3,49	109,4	123,1	
Mähgerät						
Trommelmähwerk	250	117,6	3,38	111,0	124,2	
Scheibenmähwerk	817	113,8	3,37	107,2	120,4	
Messerbalken	88	119,4	4,01	111,5	127,2	
Kombination	88	123,8	3,97	116,0	131,5	
Mähaufbereiter	41	120,8	4,66	111,6	129,9	
Schnitthöhe						
unter 5 cm	32	128,6	4,84	119,1	138,0	
5 bis 7 cm	1005	114,4	3,17	108,2	120,6	
über 7 cm	247	114,2	3,39	107,6	120,9	
Zetten						
ohne	309	116,3	2,48	111,5	121,2	
1 x	917	119,1	2,35	114,5	123,8	
2 x	53	112,2	3,69	105,0	119,4	
über 2 x	5	128,6	9,77	109,4	147,7	
Erntegerät						
Feldhäcksler	119	126,1	3,90	118,4	133,7	
Ladewagen	674	119,8	3,44	113,1	126,6	
Ladewagen+Standhäcksler	109	115,8	3,83	108,3	123,3	
Fixkammerpresse	166	118,2	3,70	110,9	125,4	
Variable Presse	216	115,4	3,54	108,5	122,3	

4. Einflussfaktoren auf die Mineralstoffe

4.1 Einfluss auf die den P-Gehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, die Wirtschaftsweise, der Aufwuchs und der Trockenmasse-, und Rohfasergehalt den P-Gehalt der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der P-Gehalt der Futterproben von den angeführten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag jedoch nur bei 14 %.

Unter Konstanz aller anderer im Modell berücksichtigten Faktoren, war der P-Gehalt in den Proben des **Jahres** 2005 über dem von 2003.

Hinsichtlich der Wirtschaftsweise zeigten die Bio-Betriebsproben die geringsten P-Gehalte.

Die Folgeaufwüchse lagen im P-Gehalt über dem des 1. Aufwuchses.

Mit steigendem Rohfaser- und Trockenmassegehalt der Proben ging der P-Gehalt signifikant zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		14,4	0,5
Jahr	0,0000		
Wirtschaftweise	0,0000		
Aufwuchs	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0007	386,9	-0,0006
Rohfaser	0,0000	265,7	-0,0023

Mittelwerte

	Anzahl	zahl Mittelwert sx	Konvidenzintervall 95 %		
				min	max
Mittelwert	1300	3,34	0,04	3,26	3,42
Jahr					
2003	737	3,27	0,04	3,19	3,36
2005	563	3,41	0,04	3,33	3,49
Wirtschaftsweise					
Biobetrieb	184	3,15	0,05	3,05	3,24
Verzicht	430	3,31	0,04	3,23	3,40
Reduktion	305	3,43	0,05	3,33	3,52
Konventionell	381	3,48	0,04	3,40	3,57
Aufwuchs					
1.	997	3,05	0,02	3,02	3,08
2.	131	3,28	0,04	3,20	3,36
3.	34	3,58	0,08	3,42	3,74
4 6.	7	3,62	0,17	3,28	3,96
Kombination	131	3,19	0,04	3,11	3,27

4.2 Einfluss auf die den Ca-Gehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, die Wirtschaftsweise, der Aufwuchs und der Trockenmasse-, und Rohfasergehalt den Ca-Gehalt der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der Ca-Gehalt der Futterproben, mit Ausnahme des Trockenmassegehalts, von den im Modell berücksichtigten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag bei 27 %.

Unter Konstanz aller anderer im Modell berücksichtigten Faktoren, war der Ca-Gehalt in den Proben des **Jahres** 2005 unter dem von 2003.

Hinsichtlich der Wirtschaftsweise zeigten die Bio-Betriebsproben die höchsten Ca-Gehalte.

Die Folgeaufwüchse lagen im Ca-Gehalt über dem des 1. Aufwuchses.

Mit steigendem Rohfaser- und Trockenmassegehalt der Proben ging der Ca-Gehalt signifikant zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		26,6	1,8
Jahr	0,0009		
Wirtschaftsweise	0,0000		
Aufwuchs	0,0000		
Futterzusammensetzung	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0449	386,7	-0,0014
Rohfaser	0,0000	265,7	-0,0143

Mittelwerte

	Anzahl	Mittelwert	sx	Konvidenzintervall 95 %	
				min	max
Mittelwert	1296	10,24	0,21	9,84	10,64
Jahr					
2003	737	10,43	0,22	10,00	10,85
2005	559	10,05	0,21	9,65	10,46
Wirtschaftsweise					
Biobetrieb	183	11,10	0,23	10,66	11,55
Verzicht	430	10,22	0,22	9,78	10,66
Reduktion	303	10,03	0,23	9,58	10,48
Konventionell	380	9,60	0,22	9,17	10,03
Aufwuchs					
1.	995	8,65	0,15	8,36	8,94
2.	131	10,42	0,21	10,01	10,83
3.	34	10,76	0,34	10,09	11,42
4 6.	7	11,66	0,69	10,31	13,01
Kombination	129	9,71	0,21	9,29	10,12
Futterzusammensetzung					
Dauergrünland	917	8,79	0,16	8,47	9,11
Feldfutter	271	9,76	0,18	9,40	10,12
Dauergrünland/Feldfutter	107	8,70	0,23	8,24	9,15

4.3 Einfluss auf die den K-Gehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, die Wirtschaftsweise, der Aufwuchs, die Futterzusammensetzung und der Trockenmasse-, Rohfaser- und Rohaschegehalt den K-Gehalt der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der K-Gehalt der Futterproben, mit Ausnahme des Aufwuchses, von den im Modell berücksichtigten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag jedoch nur bei 18 %.

Unter Konstanz aller anderer im Modell berücksichtigten Faktoren, war der K-Gehalt in den Proben des **Jahres** 2005 deutlich über dem von 2003.

Hinsichtlich der **Wirtschaftsweise** stieg der K-Gehalt von den Bio-Betrieben bis zu den konventionellen Betrieben an.

Die Dauergrünlandproben wiesen die geringsten K-Gehalte auf.

Mit steigendem **Rohfaser- und Trockenmassegehalt** der Proben ging der K-Gehalt signifikant zurück. Mit zunehmender Futterverschmutzung stieg dieser an.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		17,9	4,0
Jahr	0,0000		
Wirtschaftsweise	0,0000		
Aufwuchs	0,0339		
Futterzusammensetzung	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	386,7	-0,0079
Rohfaser	0,0002	265,7	-0,0178
Rohasche	0,0000	106,1	-0,0236

	Anzahl	Anzahl Mittelwert		Konvidenzintervall 95 %	
				min	max
Mittelwert	1296	32,61	0,47	31,70	33,52
Jahr					
2003	737	31,45	0,50	30,48	32,43
2005	559	33,76	0,47	32,85	34,68
Wirtschaftsweise					
Biobetrieb	183	31,25	0,51	30,24	32,25
Verzicht	430	32,40	0,51	31,41	33,40
Reduktion	303	33,35	0,52	32,34	34,36
Konventionell	380	33,43	0,50	32,45	34,41
Aufwuchs					
1.	995	32,87	0,34	32,21	33,53
2.	131	32,05	0,47	31,13	32,98
3.	34	31,71	0,76	30,21	33,21
4 6.	7	34,29	1,55	32,24	37,33
Kombination	129	32,12	0,47	31,19	33,05
Futterzusammensetzung					
Dauergrünland	917	30,67	0,37	29,95	31,40
Feldfutter	271	32,00	0,41	31,20	32,81
Dauergrünland/Feldfutter	107	31,58	0,52	30,57	32,60

5. Einflussfaktoren auf die Gärparameter und Silagequalität

5.1 Einfluss auf den Milchsäuregehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, der Aufwuchs, die Schnittlänge, der Siliermitteleinsatz, das Siliersystem, die Vakuumverpackung der Proben, die Schnitthöhe bei der Ernte und der Trockenmasse-, Rohfaser- und Rohaschegehalt den Milchsäuregehalt der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der Milchsäuregehalt der Futterproben, mit Ausnahme des Erntejahres und der Verpackung der Proben, von den im Modell berücksichtigten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag jedoch nur bei 14 %.

Unter Konstanz aller anderer im Modell berücksichtigten Faktoren, war der MS-Gehalt im ersten Aufwuchs am tiefsten. Mit steigender Schnittlänge ging dieser signifikant zurück. Der Einsatz von bakteriellen Siliermitteln erhöhte den Milchsäuregehalt signifikant. Die Hochsilo- und Rundballensilagen wiesen den höchsten Milchsäuregehalt auf. Mit steigender Schnitthöhe bei der Mahd nahm der Milchsäuregehalt zu.

Mit steigendem Rohfaser-, Trockenmasse und Rohaschegehalt nahm der Milchsäuregehalt ab.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		14,5	17,8
Jahr	0,3785		
Auwuchs	0,0379		
Theoretische Schnittlänge	0,0003		
Silierhilfsmittel	0,0000		
Siliersystem	0,0003		
Vaccumverpackung	0,5254		
Schnitthöhe	0,0230		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	382,1	-0,0564
Rohfaser	0,0000	268,6	-0,1563
Rohasche	0,0000	108,6	-0,1119

	Anzahl	Mittelwert			intervall 95
	Anzani	witteiwert	SX	-	6
				min	max
Mittelwert	846	45,79	4,12	37,72	53,86
Jahr					
2003	504	45,21	4,16	37,06	53,37
2005	342	46,36	4,18	38,18	54,55
Aufwuchs					
1.	603	40,86	3,74	33,54	48,18
2.	105	45,57	4,05	37,63	53,52
3.	32	42,89	4,86	33,36	52,42
4 6.	4	55,31	9,63	36,44	74,18
Kombination	102	44,31	4,08	36,31	52,31
Theor. Schnittlänge					
bis 3 cm	64	53,62	4,64	44,52	62,72

3 bis 6 cm	387	48,30	4,12	40,22	56,37
6 bis 10 cm	242	46,09	4,19	37,88	54,30
20 bis 20 cm	112	40,54	4,43	31,86	49,22
lang	41	40,40	5,03	30,54	50,26
Silierhilfsmittel					
ohne	648	43,14	3,61	36,06	50,22
Säuren und Salze	31	42,90	4,58	33,91	51,88
Biol. Impfkulturen	162	51,31	3,82	43,82	58,81
Sonstige	5	45,81	8,77	28,63	63,00
Siliersystem					
Fahrsilo	631	40,32	3,32	33,81	46,84
Silohaufen	3	46,07	10,78	24,95	67,19
Hochsilo	44	50,15	4,23	41,86	58,44
Rundballen	168	46,61	3,57	39,62	53,60
Vacuumverpackung					
ja	733	45,21	4,05	37,28	53,14
nein	113	46,37	4,38	37,79	54,96
Schnitthöhe					
unter 5 cm	22	43,83	5,42	33,20	54,46
5 bis 7 cm	673	44,52	4,01	36,66	52,38
über 7 cm	151	49,01	4,13	40,91	57,11

5.2 Einfluss auf den Essigsäuregehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, der Aufwuchs, die Schnittlänge, der Siliermitteleinsatz, das Siliersystem, die Vakuumverpackung der Proben und der Trockenmasse-, Rohfaser- und Rohaschegehalt den Essigsäuregehalt der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der Essigsäuregehalt der Futterproben, mit Ausnahme des Erntejahres, des Rohfasergehaltes sowie des Aufwuchses, von den im Modell berücksichtigten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag jedoch nur bei 12 %.

Mit steigender **Schnittlänge** ging der Essigsäuregehalt signifikant zurück. Der Einsatz von bakteriellen **Siliermitteln** erhöhte den Essigssäuregehalt signifikant. Die **Hochsilo- und Ballensilagen** wiesen einen höheren Essigsäuregehalt als die Fahrsilosilagen auf.

Mit steigendem Rohfaser- und Rohaschegehalt nahm der Essigsäuregehalt zu, mit steigendem Trockenmassegehalt ging dieser zurück.

Tabelle: Statistik sowie Mittelwerte und Koeffizienten der Regressionsvariablen

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		11,9	6,3
Jahr	0,1053		
Auwuchs	0,0805		
Theoretische			
Schnittlänge	0,0000		
Silierhilfsmittel	0,0000		
Siliersystem	0,0260		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	381,5	-0,0188
Rohfaser	0,6103	268,7	0,0049
Rohasche	0,0217	108,4	0,0209

				Konvidenz	Konvidenzintervall 95	
	Anzahl	Mittelwert	SX		<u>/</u> 6	
				min	max	
Mittelwert	871	12,69	1,35	10,05	15,34	
Jahr						
2003	506	12,33	1,36	9,66	15,00	
2005	365	13,06	1,37	10,37	15,75	
Aufwuchs						
1.	622	11,57	1,22	9,18	13,97	
2.	108	13,01	1,33	10,40	15,63	
3.	33	12,21	1,61	9,06	15,37	
4 6.	5	13,62	3,08	7,59	19,66	
Kombination	103	13,05	1,35	10,41	15,69	
Theor.						
Schnittlänge						
bis 3 cm	65	16,48	1,56	13,43	19,54	
3 bis 6 cm	402	12,43	1,36	9,78	15,09	
6 bis 10 cm	247	11,05	1,38	8,36	13,75	
20 bis 20 cm	116	11,27	1,46	8,41	14,13	
lang	41	12,23	1,67	8,95	15,51	
Silierhilfsmittel						
ohne	669	11,82	1,16	9,56	14,09	
Säuren und Salze	31	11,58	1,54	8,56	14,60	
Biol. Impfkulturen	166	14,94	1,23	12,52	17,36	
Sonstige	5	12,43	3,04	6,47	18,39	
Siliersystem						
Fahrsilo	652	11,72	1,03	9,70	13,73	
Silohaufen	3	11,81	3,77	4,43	19,20	
Hochsilo	44	14,61	1,39	11,89	17,32	
Rundballen	172	12,64	1,14	10,41	14,88	

5.3 Einfluss auf den Buttersäuregehalt der Proben

Frage:

Wie beeinflusste das Erntejahr, der Aufwuchs, die Schnittlänge, der Siliermitteleinsatz, das Siliersystem und der Trockenmasse-, Rohfaser-, Rohprotein und Rohaschegehalt den Buttersäuregehalt der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der Buttersäuregehalt der Futterproben, mit Ausnahme des Erntejahres und des Siliersystems, von den im Modell berücksichtigten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag bei 39 %.

Die höchsten Buttersäuregehalte wurden im **1. Aufwuchs** ermittelt. Mit steigender **Schnittlänge** stieg der Buttersäuregehalt signifikant an. Der Einsatz von bakteriellen **Siliermitteln** verringerte den Buttersäuregehalt leicht.

Mit steigendem Rohfaser-, Rohasche- und Rohproteingehalt nahm der Buttersäuregehalt zu, mit steigendem Trockenmassegehalt ging dieser zurück.

Parameter: Buttersäure

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		38,8	7,5
Jahr	0,6999		

Auwuchs	0,0001		
Theoretische			
Schnittlänge	0,0001		
Silierhilfsmittel	0,0058		
Siliersystem	0,1011		
	0,.0		
Regressionsvariablen	5,1511	Mittelwert Reg. Variable	Regressionskoeffizienten
-	0,0000	Mittelwert Reg. Variable 381,5	Regressionskoeffizienten -0,0613
Regressionsvariablen	,		

	Anzahl	Mittelwert	sx		intervall 95 %
				min	max
Mittelwert	871	10,75	1,60	7,61	13,89
Jahr					
2003	506	10,86	1,62	7,68	14,03
2005	365	10,65	1,63	7,45	13,85
Aufwuchs					
1.	622	13,34	1,45	10,49	16,18
2.	108	11,15	1,58	8,04	14,25
3.	33	9,37	1,91	5,62	13,12
4 6.	5	9,47	3,66	2,31	16,64
Kombination	103	10,44	1,60	7,31	13,58
Theor. Schnittlänge					
bis 3 cm	65	6,86	1,85	3,23	10,49
3 bis 6 cm	402	10,44	1,61	7,29	13,60
6 bis 10 cm	247	11,94	1,64	8,74	15,15
20 bis 20 cm	116	11,64	1,73	8,25	15,04
lang	41	12,87	1,99	8,98	16,77
Silierhilfsmittel					
ohne	669	10,56	1,37	7,87	13,26
Säuren und Salze	31	13,16	1,83	9,57	16,74
Biol. Impfkulturen	166	8,71	1,46	5,84	11,58
Sonstige	5	10,58	3,61	3,50	17,66
Siliersystem					
Fahrsilo	652	10,36	1,22	7,97	12,75
Silohaufen	3	14,44	4,48	5,66	23,21
Hochsilo	44	9,85	1,65	6,62	13,07
Rundballen	172	8,37	1,35	5,72	11,02

5.4 Einfluss auf den Ammoniakgehalt (in N % von Gesamt N)der Proben

Frage:

Wie beeinflusste das Erntejahr, der Aufwuchs, die Schnittlänge, der Siliermitteleinsatz, das Siliersystem und der Trockenmasse-, Rohfaser-, Rohprotein und Rohaschegehalt den Ammoniakgehalt (in N % von Gesamt N) der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde der Buttersäuregehalt der Futterproben, mit Ausnahme des Siliersystems, von den im Modell berücksichtigten Faktoren signifikant beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag bei 17 %.

Der Ammoniakanteil war in den Futterproben des **Jahres 2005** geringfügig über dem des Jahres 2003. Der **1. Aufwuchs** wies höhere Ammoniakanteilgehalt als der 2. und 3. Aufwuchs auf. Mit steigender **Schnittlänge** stieg der Ammoniakgehalt leicht an an. Der Einsatz von bakteriellen **Siliermitteln** verringerte den Ammoniakgehalt.

Mit steigendem Rohfaser-, Rohasche- und Rohproteingehalt nahm der Ammoniakgehalt zu, mit steigendem Trockenmassegehalt ging dieser zurück.

Parameter: Ammoniak % vom Gesamtstickstoff

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		17,0	5,1
Jahr	0,0024		
Auwuchs	0,0408		
Theoretische			
Schnittlänge	0,0267		
Silierhilfsmittel	0,1677		
Siliersystem	0,0000		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	381,7	-0,0183
Rohfaser	0,0000	268,6	0,0737
Rohasche	0,0000	108,2	0,0447
Rohprotein	0,0080	149,1	0,0280

	Anzahl	Mittelwert	sx	Konvider	nzintervall 95 %
				min	max
Mittelwert	863	10,27	1,11	8,10	12,44
Jahr					
2003	500	9,70	1,12	7,50	11,89
2005	363	10,84	1,13	8,63	13,05
Aufwuchs					
1.	615	10,05	1,01	8,06	12,03
2.	108	9,94	1,10	7,79	12,09
3.	33	8,69	1,32	6,10	11,28
4 6.	5	13,95	2,53	8,98	18,91
Kombination	102	8,73	1,11	6,56	10,90
Theor. Schnittlänge					
bis 3 cm	64	8,64	1,29	6,12	11,16
3 bis 6 cm	399	9,78	1,11	7,60	11,96
6 bis 10 cm	245	10,66	1,13	8,45	12,88
20 bis 20 cm	115	10,57	1,20	8,22	12,91
lang	40	11,70	1,38	9,00	14,40
Silierhilfsmittel					
ohne	663	10,20	0,95	8,34	12,07
Säuren und Salze	30	12,39	1,27	9,89	14,89
Biol. Impfkulturen	165	9,38	1,02	7,38	11,38
Sonstige	5	9,10	2,50	4,21	14,00
Siliersystem					
Fahrsilo	646	10,43	0,84	8,78	12,09
Silohaufen	3	12,08	3,09	6,02	18,14
Hochsilo	43	9,14	1,14	6,90	11,39
Rundballen	171	9,42	0,94	7,58	11,26

5.5 Einfluss auf die Gärqualitätsbeurteilung (Punkte 1-100)

Frage:

Wie beeinflusste das Erntejahr, der Aufwuchs, die Schnittlänge, der Siliermitteleinsatz, das Siliersystem und der Trockenmasse-, Rohfaser- und Rohaschegehalt die Gärqualitätsbeurteilung (Punkte) der Proben?

Wie die Ergebnisse der folgenden Tabellen zeigen, wurde die Gärqualität (Punkte) praktisch von allen im Modell berücksichtigten Faktoren signifikant bzw. tendenziell beeinflusst. Das Bestimmtheitsmaß des statistischen Modells lag bei 40 %.

Im Jahr 2005 wurde im Vergleich zu 2003 eine deutlich bessere Gärqualitätsbeurteilung festegestellt. Der **1.Aufwuchs** wies eine leicht schlechteres Ergebnis auf. Mit steigender **Schnittlänge** verringerte sich die Gärqualität. Der Einsatz von bakteriellen **Siliermitteln** verbesserte das Gärqualitätsbeurteilungsergebnis.

Mit steigendem Rohfaser- und Rohaschegehalt nahm die Gärqualität (Punkte) ab, mit steigendem Trockenmassegehalt wurde sie leicht verbessert.

Parameter: Punktesumme Gärqualität

	P-Werte*	Bestimmtheitsmaß	res. Standardabw.
Fixe Effekte		40,2	16,0
Jahr	0,0000		
Auwuchs	0,0688		
Theoretische			
Schnittlänge	0,0000		
Silierhilfsmittel	0,0000		
Siliersystem	0,0325		
Regressionsvariablen		Mittelwert Reg. Variable	Regressionskoeffizienten
Trockenmasse	0,0000	381,6	0,0765
Rohfaser	0,0000	268,7	-0,2420
Rohasche	0,0000	108,1	-0,1440

	Anzahl	Mittelwert	SX		intervall 95 %
				min	max
Mittelwert	870	74,52	3,45	67,76	81,28
Jahr					
2003	506	66,86	3,48	60,03	73,69
2005	364	82,18	3,51	75,30	89,06
Aufwuchs					
1.	621	73,15	3,13	67,03	79,28
2.	108	74,12	3,41	67,44	80,81
3.	33	79,86	4,11	71,79	87,92
4 6.	5	68,82	7,87	53,40	84,24
Kombination	103	76,64	3,44	69,90	83,39
Theor. Schnittlänge					
bis 3 cm	65	87,14	3,99	79,32	94,95
3 bis 6 cm	402	76,86	3,47	70,06	83,65
6 bis 10 cm	247	72,31	3,52	65,41	79,21
20 bis 20 cm	116	70,99	3,73	63,69	78,30
lang	40	65,29	4,29	56,89	73,70
Silierhilfsmittel					

ohne	668	73,12	2,96	67,32	78,92
Säuren und Salze	31	68,43	3,94	60,71	76,14
Biol. Impfkulturen	166	80,53	3,15	74,36	86,71
Sonstige	5	76,00	7,77	60,77	91,23
Siliersystem					
Fahrsilo	652	73,12	2,62	67,98	78,27
Silohaufen	3	69,80	9,63	50,93	88,68
Hochsilo	44	77,13	3,54	70,18	84,07
Rundballen	171	78,02	2,91	72,31	83,72