Weide- und grünlandbasierte Rinderproduktionssysteme

Ergänzungsfütterungsstrategien zur Weide

PD Dr. Andreas Steinwidder

Institut für Biologische Landwirtschaft und Biodiversität der Nutztiere,
Lehr- und Forschungszentrum für Landwirtschaft, LFZ Raumberg-Gumpenstein, A-8952 Irdning
www.raumberg-gumpenstein.at
andreas.steinwidder@raumberg-gumpenstein.at

Weidestrategien

Vollweide

Tag- + Nachtweide, wenig/keine Ergänzung, saisonale Abkalbung

Unterschiedliche Übergänge

- → Tag und Nachtweide →
 - → Tag oder Nachtweide -

Stundenweide

Kühe 1-2 x pro Tag für wenige Stunden auf Weide, hohe Ergänzungsfütterung

40-65 %

0,3-0,5 ha

begrenzt

Weidegrasanteil an der Jahresration

arr. Weideflächenbedarf je Kuh

Milchleistung je Kuh

5-15 %

0,05-0,2 ha

nicht begrenzt

Weidefutterqualität

Stark von Bewirtschaftungsintensität, Pflanzenbestand, Weideführung beeinflusst.

Gunstlagen optimale Bewirtschaftung: 6,0 – 7,0 MJ NEL/kg T

Extensivweide: 5,0-6,0 MJ NEL/kg T

Almen: 4,0-6,0 MJ NEL/kg T

 $6,4 \text{ MJ} \rightarrow 4,0 \text{ MJ NEL/kg T}$

Nährstoff- und Energiegehalt von Weidefutterproben im Vergleich zu Maissilage bzw. Gerste (je kg Trockenmasse)

	,	Ø 75 Weideproben von Milchviehbetrieben	Maissilage	Gerste
Trockenmasse	g/kg FM	156	392	880
Energie	MJ NEL/kg T	6,3	6,4	8,2
Rohprotein	g/kg T	209	86	119
Rohfaser	g/kg T	217	209	52
Rohasche	g/kg T	105	41	27
Ca	g/kg T	8,8	2,7	0,8
P	g/kg T	4,3	2,0	3,9
Mg	g/kg T	2,5	1,4	1,3

Grünfütterung - Struktur

Futtermittel	Wiederkau- tätigkeit min/kg T	Struktur- wirksamkeit der XF, %
Heu, mittel Heu, gut Grassilage Maissilage, 7mm Grünfutter Kraftfutter	63-87 65-74 60-83 49 30-70	100 100 80-100 50-60 50-80

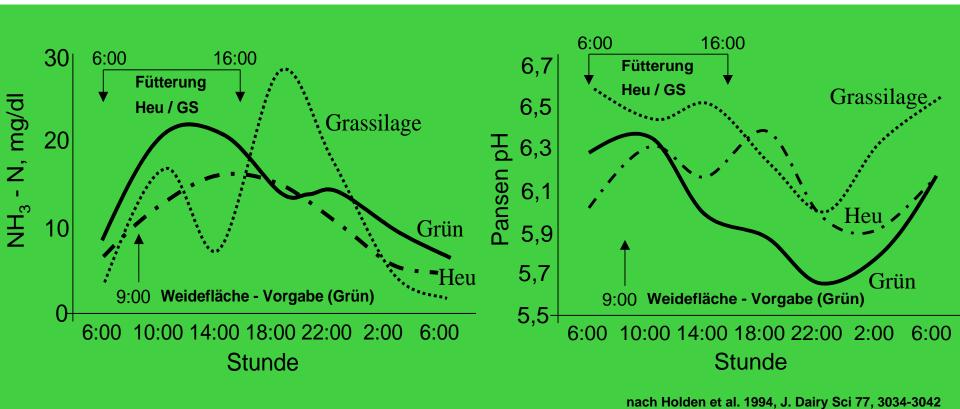
nach Potthast, 1987; Menke, 1987; Piatkowski u. Nagl, 1978

Grünfütterung - Struktur

		Grünfutter	Grassilage + Heu	Maissilage
Rohfaser	g/kg T	230	261	201
Grundfutter	kg/Tag	11,0	11,8	14,1
Kauzeit	min/Tag	746	827	795
Fressen	min/Tag	356	301	273
Wiederkauen	min/Tag	391	526	522
Kauzeit	min/kg T	67,8	70,1	56,4
Fressen	min/kg T	32,4	25,5	19,4
Wiederkauen	min/kg T	35,5	44,6	37

De Brabander et al. 1999

Grünfütterung - Pansenparameter

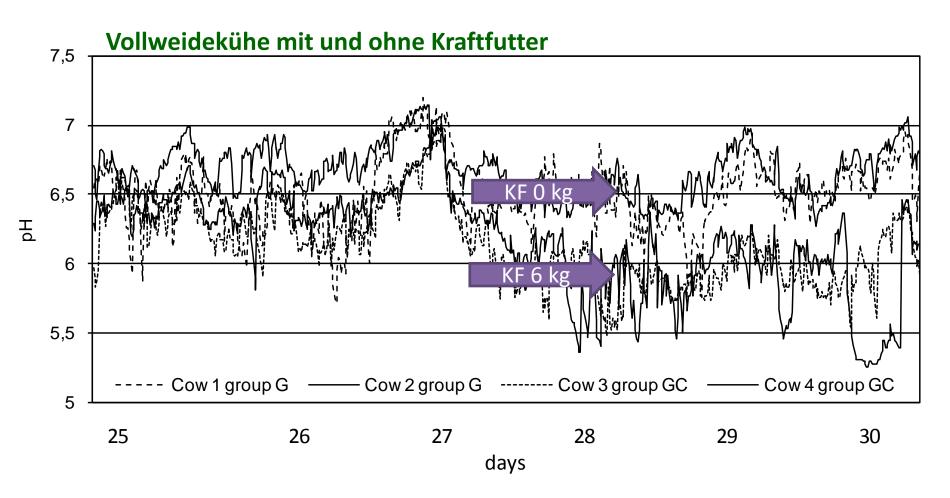

		Grünfutter	Heu	Grassilage
Nährstoffgehalt – Futter				
Trockenmasse	%	17,2	88,4	33,9
Rohprotein	%	17,1	17,4	16,9
RDP	%	14,4	12,2	13,4
SP	%	4,9	4,6	11,0
ADF	%	26	28,5	28,9
NDF	%	49,4	63,5	55,9
NFC	%	30,5	21,6	21,5
T-Aufnahme	kg	13,0	13,7	13,1
Pansenparameter				
Kurzkettige Fettsäuren	mmol/k	131,7a	118,4b	118,4b
Essigsäure	%	71,0	73,2	71,3
Propionsäure	%	17,1	18	18,8
Buttersäure	%	8,9a	6,4b	7,2b
Ammoniak-Stickstoff	mg/dk	13,7a	10,9b	11,0b

nach Holden et al. 1994, J. Dairy Sci 77, 3034-3042

Grünfütterung - Pansenparameter

Grünfutter:

- * Abend höchste Zuckergehalte
- * hastigeres Fressen, weniger Wiederkauen in Hellphase
- → stärkere pH-Schwankungen



pH-Wertverlauf

Quelle: J.Gasteiner et al. 2010

Einfluss der Umstellungsfütterung (Stall, Stundenweide, Halbtagsweide, Vollweide) **auf Vormagenparameter**

	P1	L	P	2	P	3	P	4	P	5	P	6		
	Sta	ıll	Stu	nde	На	alb	VV	V 1	VV	V 2	VV	V 3	S _e	P-Wert
pH Tagesmittel	6,44	a	6,24	cd	6,21	d	6,30	bc	6,33	b	6,36	b	0,11	<0,001
pH Tagesmin.	6,09	a	5,89	cd	5,84	d	5,86	d	5,95	bc	6,02	ab	0,15	<0,001
pH Tagesmax.	6,77	a	6,64	b	6,64	b	6,76	a	6,73	a	6,74	a	0,15	<0,001
pH <5,8, min/Tag	6	С	43	ab	85	a	38	ab	13	b	9	b	91	<0,001
pH <6,2, min/Tag	106	С	626	a	678	a	572	a	415	b	320	b	259	<0,001
max. H ⁺ -Dif. 2h ¹⁾	65	b	91	ab	101	ab	113	a	83	ab	66	b	67	0,003
max. H ⁺ -Dif. 4h ¹⁾	71	С	99	abc	112	ab	122	a	90	abc	74	bc	69	0,001
max. H ⁺ -Dif. 12h ¹⁾	75	b	114	ab	132	a	140	a	100	ab	83	b	71	<0,001

¹⁾ alle H+ Ionen-Konzentrationsergebnisse x10-8 in mol/I; max. H+-Dif. 2h = maximale H+ Ionen-Konzentrationsveränderung innerhalb von 2 Stunden pro Tag

Steinwidder et al. unveröff. Versuch 2012

Kraftfutter

- Kraftfuttermenge bei Weide bzw. Grünfütterung stark begrenzen!
- KF-Zusammensetzung → pansenschonende Komponenten

max. 40 bis 60 % Getreide

20 - 60 % Mais

10 – 25 % Trockenschnitzel

5 bis 15 % Kleien

bis 15 % Futtermehle

Eiweißkomponenten - wenn überhaupt erst bei hohen Leistungen oder niedrigem Milchharnstoff

Maximal 2 kg/Teilgabe

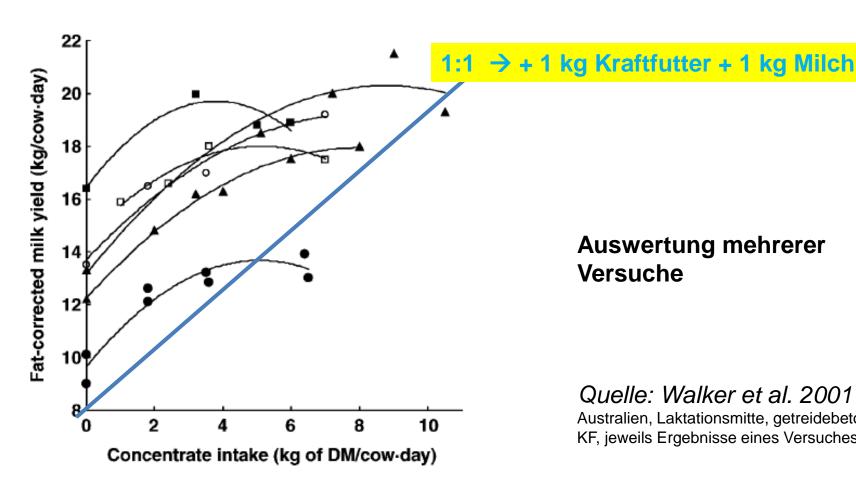
Rationsbeispiel und Versorgung: Vollweide

			Weide FA		kg Milch
		Weide	16,5		23
		je kg TM	kg TM/Tag	Versorgungsempfehlungen	Versorgungsempfehlungen
		Futter	Futteraufnahme	je kg TM	pro Tag
NEL	MJ	6,34	105		109
XP	g	209	3449		
nXP	g	149	2459		2313
RNB	g	10	158	-5-+5	! Grasanteil in Weide im Auge behalten
XF	g	217	3581	min 160	
XL	g	26	429		
XA	g	105	1733		
NDF	g	435	7178	min 280 (180 aus GF)	
ADF	g	258	4257	min 180	
NFC	g	225	3713	max 380	
Zucker	g	100-200		max 75	!! zu beachten (KF-Ergänzung, hastiges Fressen etc.)
Ca	g	8,8	145	5,5	
Р	g	4,3	71	3,4	
Mg	g	2,5	41	1,6	
K	g	27,4	452	10	!
Na	mg	342	5643	1400	!! (Natriumergänzung beachten)
Mn	mg	87	1436	50	
Zn	mg	31	512	50	
Cu	mg	11	182	10	

Einzeltierleistung - bei Vollweide begrenzt

uf Grund mangelnder Weide em "mechanisch" bedingt (•	Weide	TMR
Nährstoffgehalt	je kg T		
Trockenmasse	%	17,0	58,2
Rohprotein	%	25,1	19,1
Energie	MJ NE	6,9	6,8
Futteraufnahme	kg T	19,0	23,4
Milchleistung	kg	29,6	44,1
FCM	kg	28,3	40,5
Fett	%	3,72	3,48
Eiweiß	%	2,61	2,8

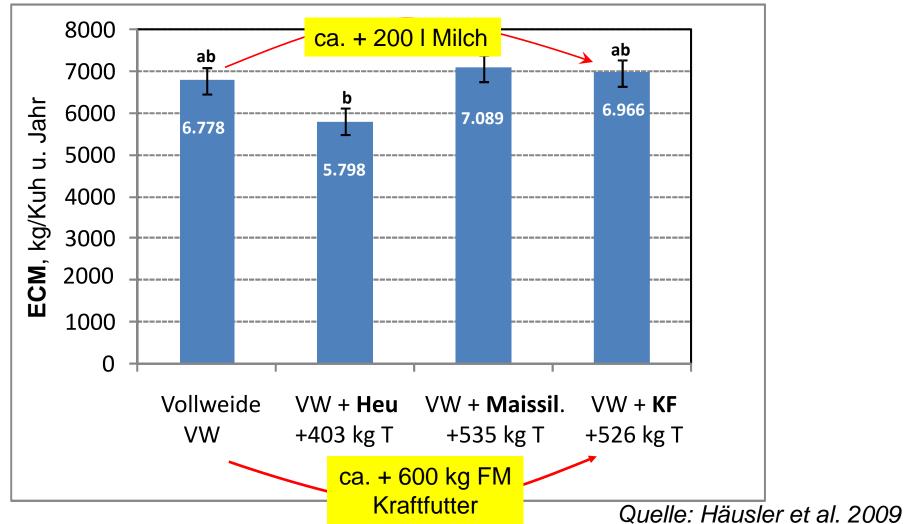
Quelle: Klover und Muller, 1998



Kraftfuttereinsatz - Vollweide

Auswertung mehrerer Versuche

Quelle: Walker et al. 2001 Australien, Laktationsmitte, getreidebetontes KF, jeweils Ergebnisse eines Versuches


Kraftfutterergänzung zu VW

Saisonale Abkalbung – unterschiedliche Ergänzungsfütterung in Vegetationszeit

Milchleistung - Kraftfuttereinsatz

Quelle: Bargo et al. 2002, USA

	Weideangebot gering		Weideang	ebot hoch	P-Werte			
	gering	KF	gering	KF	KF	Weide	KF x W	
Kraftfutter, kg	0,8 +7	7,8 8,6	0,7	-8 8,7	<0,01	0,56	0,36	
IT, kg T	18,3	24,1	21,2	24,8	<0,01	<0,01	0,01	
Milch, kg	19,1	29,7	22,2	29,9	<0,01	0,04	0,03	
FCM, kg	20,3 +8	, <mark>1</mark> 28,4	23,3 +5	,6 28,9	<0,01	0,05	0,05	
Fett, %	3,82	3,29	3,79	3,32	<0,01	0,96	0,53	
Eiweiß, %	2,98	3,08	2,93	3,11	<0,01	0,71	0,27	

Weideangebot gering bzw. hoch: 25 bzw. 40 kg T/Kuh und Tag

Ø 1,04 kg bzw. 0,7 Milch (FCM) kg pro kg KF Trockenmasse

→ Relativ geringe KF Effizienz und wesentliche Einflussfaktoren sind:

Kraftfutterniveau (Pansenstoffwechsel), Weidefutterangebot und -aufnahme, Milchleistungsniveau (Laktationsstadium), Futterqualitätsdifferenzen

Weideversuch Haus Riswick 2010

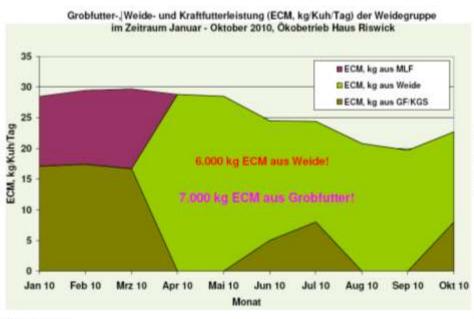
Weidegruppe:

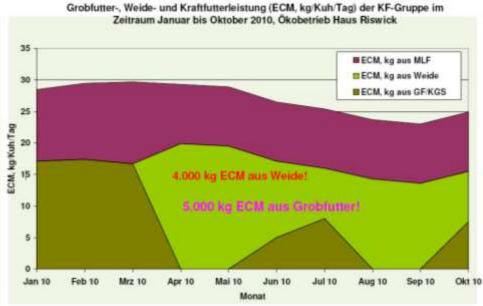
unterstellt: 17 kg TM Futteraufnahme aus Weide

⇒ reicht für 25 kg ECM/Kuh/Tag

Zufuttergruppe:

Kraftfutter: nach den Melkzeiten je 2 kg Kraftfutter/Kuh = 4 kg Tier/Tag


www.riswick.de



www.riswick.de www.riswick.de

Leistung der Weide- und KF-Gruppe, Weideperiode 2010 (April – Oktober)

Gruppe	Lakt- Nr.	Lakt Tag	Milch, kg	Fett,	Pro- tein, %	Zellen, i. 1.000	Harn- stoff, ppm	ECM,	ECM aus GF bzw. Weide, kg
Weide	2,8	149	24,1	3,93	3,19	107	359	23,5	23,5
KF 4 kg	2,9	156	25,8	4,03	3,26	143	343	25,5	16,3

Nettoweideleistung Basis Weidegruppe von April – Oktober 2010: 11.025 kg ECM/ha Weide

www.riswick.de

Weideversuch Haus Riswick 2011

Weidegruppe:

- unterstellt: 17 kg TM Futteraufnahme aus Weide
 - ⇒ reicht für 25 kg ECM/Kuh/Tag im Frühjahr
 - ⇒ reicht für 23 kg ECM/Kuh/Tag im Sommer
 - ⇒ reicht für 21 kg ECM/Kuh/Tag im Herbst

Zufuttergruppe/KF-Gruppe: KF leistungsbezogen!

- Kraftfutter: nach den Melkzeiten je max. 2,5 kg Kraftfutter/Kuh
 5 kg KF Tier/Tag bis zum 170. Laktationstag tierindividuell und leistungsabhängig über Transponderstationen
- Färsen: Milchleistungen für KF-Gaben (max. 4 kg/Färse/Tag) um 3 kg ECM reduziert
- Bis zum 50. LT Angebot der KF-Höchstmenge von 4 bzw. 5 kg/Tier/Tag unabhängig von ECM-Leistung

www.riswick.de

Leistung der Weide- und KF – Gruppe: April – August/September 2011 – geplante KF-Gaben

Gruppe	LaktNr.	LT	Milch, kg	Fett, %	Protein.	Zellen, i. 1.000	Harnstoff, ppm	ECM, kg		ECM aus Weide, kg
Weide	2,8	155	24,5	4,03	3,18	177	309	24,2	0,0	24,1
KF	3,0	145	25,3	3,87	3,16	161	306	24,5	1,7	20,6

Milchbildungsvermögen: 1 kg KF = 2,3 kg ECM

Dr. Clara Berendonk, Anne Verhoeven, Ingo Dünnebacke, 2011

Zwei Strategien

1. Hohes genetisches Milchleistungspotenzial

- > 8.000 kg Milchleistung/Kuh/Jahr
- saisonale Abkalbung im Herbst/Winter
- Hochlaktationphase wird im Stall energetisch ausgefüttert!
- → Vollweide ab Frühjahr → → weiterer Laktationsverlauf einhergehend mit dem Vegetationsverlauf der Kurzrasenweide.

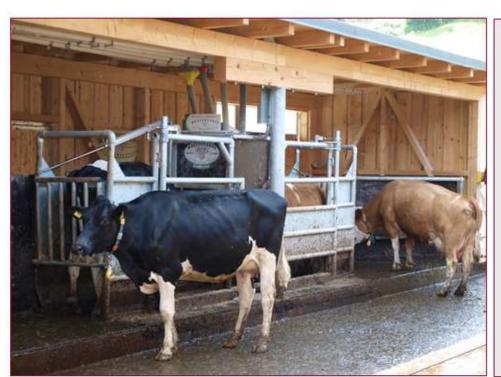
Kosten für Technik der "Intensiven Fütterung" im Stall (Winter) einkalkulieren!

MINISTERIUM
FÜR EIN
LEIBENSWERTES
ONTERREICH
PD Dr. Andreas Steinwidder

Weide- und grünlandbasierte Rinderproduktionssysteme

Weide- und grünlandbasierte Rinderproduktionssysteme

2. Geringes genetisches Milchleistungspotenzial


- = 6.000 kg Milchleistung/Kuh/Jahr
- saisonale Abkalbung im Frühjahr!
- → Hochlaktation in der Weide-Frühjahrsphase mit jungem, energiereichem Frühjahrsaufwuchs → → Laktationskurve passt sich dem Vegetationsverlauf an!

LOW-INPUT-System = keine oder geringe Technik- und Maschinenkosten für aufwändige Winterfütterung im Stall.

www. riswick.de

Einfluss von Menge und Abbaubarkeit des Kraftfutters auf Futteraufnahme und Leistung Grünfütterung im Stall ung von Milchkühen bei unterschiedlichem Vegetationsstadium des Wiesenfutters

Leonhard Gruber

A. Schauer, J. Häusler, M. Urdl Institut für Nutztierforschung LFZ Raumberg-Gumpenstein

K -H. Südekum

Institut für Tierwissenschaften Universität Bonn

123. VDLUFA-KONGRESS 13. - 16. September 2011, Speyer

Inhaltsstoffe und Zusammensetzung der Kraftfutter

Nährstoffgehalt (g/kg TM)					
	XP	XF	NDF	ADF	NFC
langsam fermentierbares KF	116	73	221	98	595
schnell fermentierbares KF	133	57	236	72	586
Verdaulichkeit (%)					
	dOM	dXF	dNDF	dADF	dNFC
langsam fermentierbares KF	86,8	71,4	75,6	67,4	97,5
schnell fermentierbares KF	82,5	49,1	52,5	41,4	98,6
Energiekonzentration (MJ/	kg TM)				
	ME	NEL			
langsam fermentierbares KF	12,95	8,16			
schnell fermentierbares KF	12,31	7,66			

Zusammensetzung der Kraftfutterarten

Langsam fermentierbares Kraftfutter

30 % Sorghum-Hirse

10 % Sojaschalen

45 % Mais

10 % Trockenschnitzel

5 % Weizenkleie

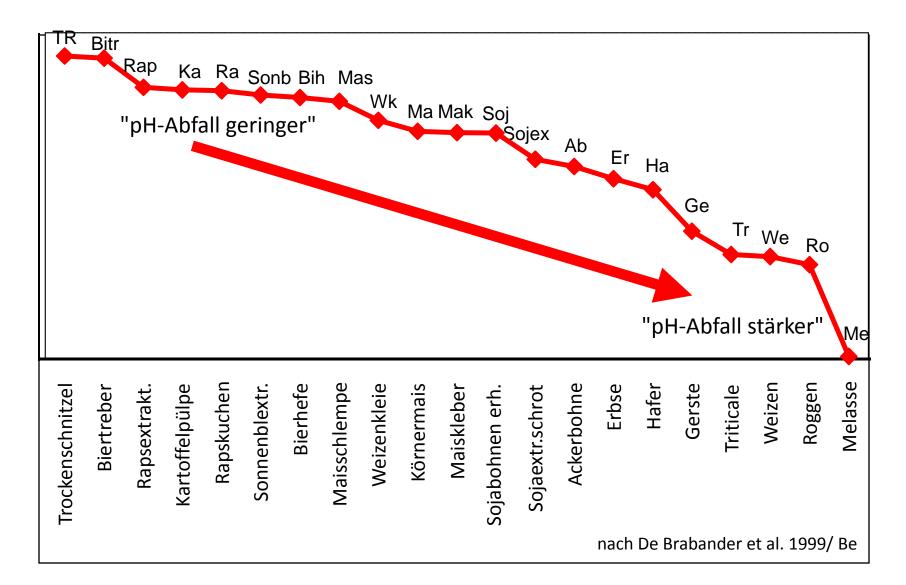
Schnell fermentierbares Kraftfutter

25 % Gerste

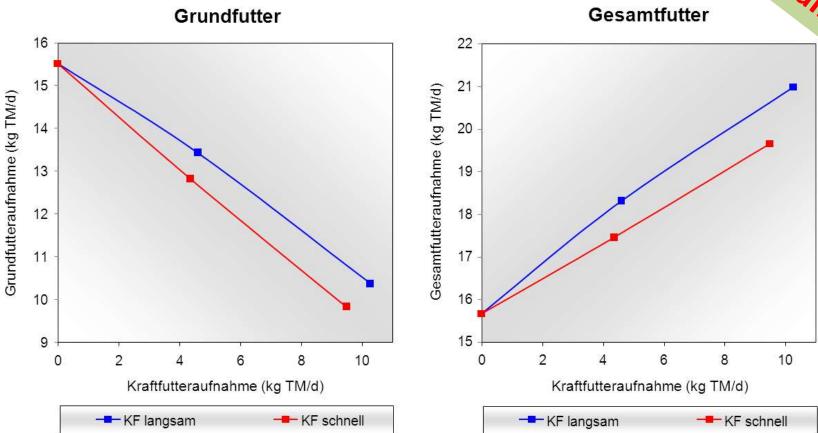
25 % Weizen

25 % Roggen

25 % Hafer



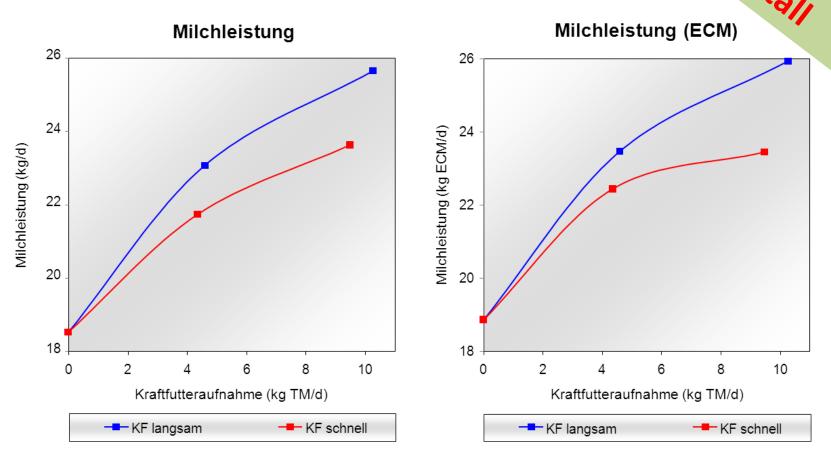
Pansen - pH-Senkung durch Kraftfutter



Einfluss des Kraftfutters auf die Futteraufnahme

im Stall une

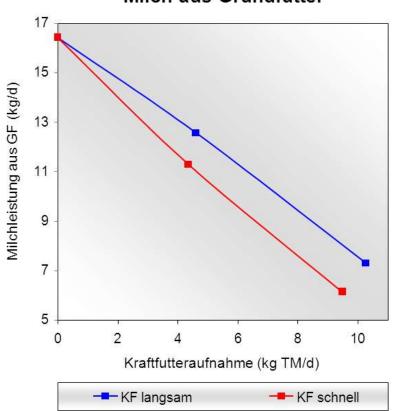
Quelle: Gruber, L., A. Schauer, J. Häusler, M. Urdl, A. Adelwöhrer, K.-H. Südekum: Einfluss von Menge und Abbaubarkeit des Kraftfutters auf Futteraufnahme und Leistung von Milchkühen. 123. VDLUFA-Kongress, 13.-16.09.2011, Speyer (D), Kurzfassung der Referate, S. 49.

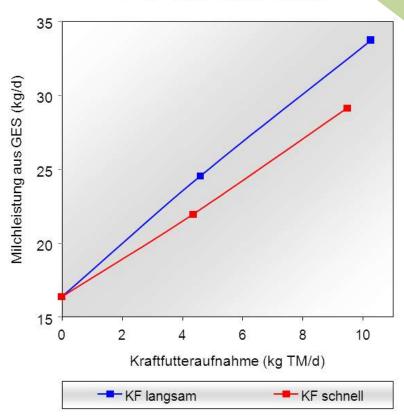


Einfluss des Kraftfutters auf die Milchleistung

Grünfütterung im Stall ung

Quelle: Gruber, L., A. Schauer, J. Häusler, M. Urdl, A. Adelwöhrer, K.-H. Südekum: Einfluss von Menge und Abbaubarkeit des Kraftfutters auf Futteraufnahme und Leistung von Milchkühen. 123. VDLUFA-Kongress, 13.-16.09.2011, Speyer (D), Kurzfassung der Referate, S. 49.




Einfluss des Kraftfutters auf den Milcherzeugungswert

ortinstitterung mtfutter

Milch aus Grundfutter

Milch aus Gesamtfutter

→ Relativ geringe KF Effizienz und wesentliche Einflussfaktoren sind:

- Kraftfutterniveau (Pansenstoffwechsel)
- Weidefutterangebot und -aufnahme
- Milchleistungsniveau bzw. Laktationsstadium
- Futterqualitätsdifferenzen (Weide zu Ergänzungsfutter)
- Kraftfutterzusammensetzung

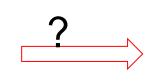
Vollweide und Kraftfutter

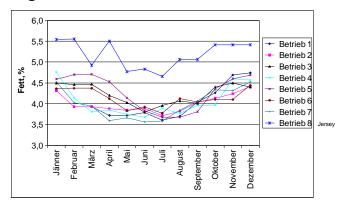
Viel Weide (Vollweide) schließt hohe Kraftfuttergabe aus!!!

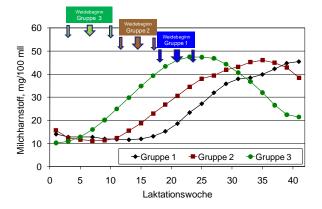
Weidepotential zwischen 20 und 25 kg Milch

Merke:

- → (viel) Kraftfutter rechnet sich nicht und belastet Kuh (Pansen)
- → selbst bei hoher Milchleistungen max. 4 kg Kraftfutter/Kuh und Tag Möglichkeit: 26-28 kg Milch 1-2 kg KF, über 28-30 kg Milch 2-3 kg Kraftfutter - und dann Ende!!
- → wenn Kraftfutter dann pansenschonende Komponenten einbauen


Ergänzungsfütterung - Vollweide





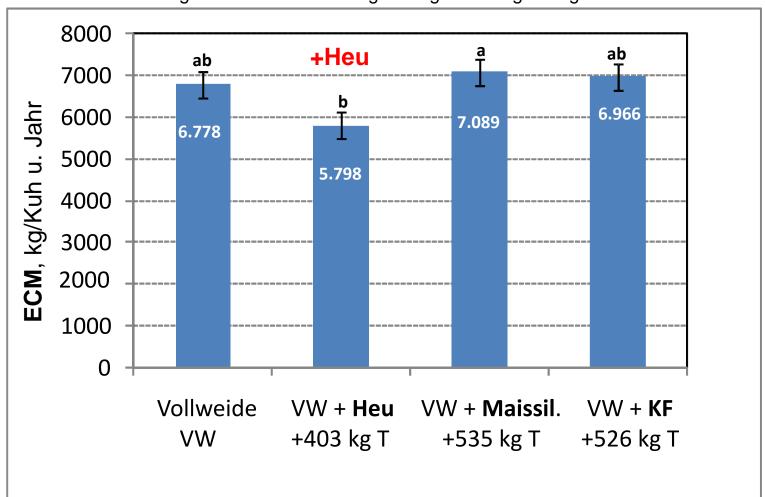
Ergebnisse - Milchfett (2006/2007)

Milchharnstoff

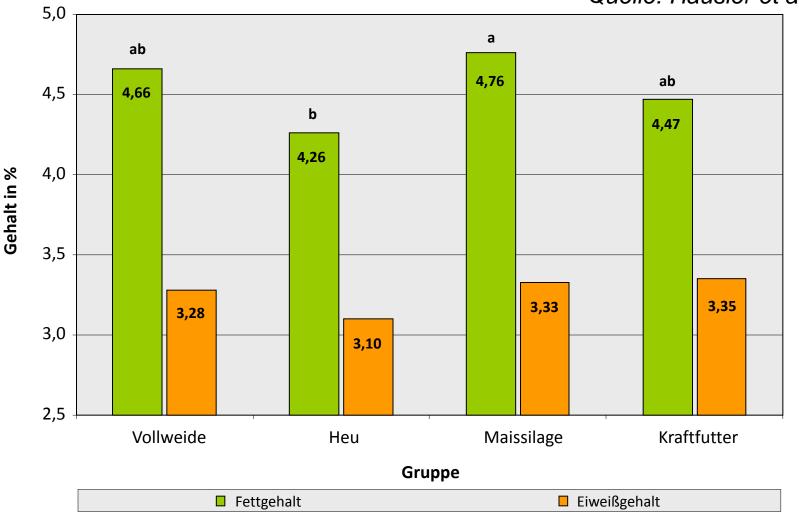
Ergänzungsfütterung - Vollweide

Grundsätzlich zu bedenken:

- Ergänzungsfütterung verändert Weideverhalten
- Weidegras ist preiswertestes Futter jede Ergänzungsfütterung verteuert Ration
- + Vielfältigere Rationen können stabiler sein


Kraftfutterergänzung zu VW

Saisonale Abkalbung – unterschiedliche Ergänzungsfütterung in Vegetationszeit


Quelle: Häusler et al. 2009

Auswirkung der Ergänzungsfütterung auf die Milchinhaltsstoffe

Quelle: Häusler et al. 2009

Geringe Heuergänzung zur Vollweide bei mäßiger Milchleistung

Steinwidder et al. 2010 (unveröff.)

		Gru	ıppe	P-Wert
		VW	VW+Heu	Gruppe
Heuaufnahme	kg TM/Tag	0,0	1,70	<0,0001
Milchleistung				
Milch	kg/Tag	18,6	18,5	0,645
ECM	kg/Tag	17,3	17,1	0,384
Eiweiß	%	3,01	3,08	0,005
Fett	%	3,66	3,57	0,158
Eiweiß	kg/Tag	0,562	0,567	0,535
Fett	kg/Tag	0,678	0,660	0,188
Harnstoff	mg/100 ml	45	46	0,851
Kotproben				
Trockenmasse	%	11,9	11,9	0,972
Auswaschungsrückstand	%	22	20	0,135

Heuergänzung zur Weide

Graf et al. 2003 (CH):

Gruppen: Vollweide Vollweide + 1 x Heugabe (in der Nacht)

→ keine pH-Stabilisierung (pH-Werte am Tag sogar tiefer)

Graf et al. 2004 (CH):

Gruppen: Grasfütterung Gras + 1 x Heu Gras + 3 x Heu

→ **Versuch 1 bestätigt**; (3 x Heugabe leicht stabilisierende Wirkung jedoch keine wesentlichen signifikanten Unterschiede in Verdaulichkeit, Wiederkauzeit, pH, FS, Leistung)

Merke:

Hohe Heumengen verdrängen preiswertes Weidefutter und verdünnen Ration

Fütterung geringer Heumengen kein Problem (aber auch keine besonderen Vorteile)

Ergänzungsfütterung - Vollweide

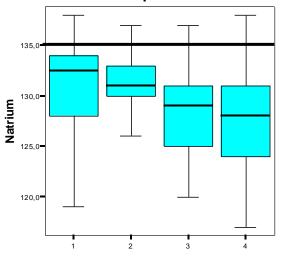
Zu beachten:

- Im Winter erfolgt Mineralstoffversorgung oft über Kraftfutter, Lecksteine und über angereichertes Grundfutter → fällt bei Weide oft (teilweise) weg
- gutes Weidefutter (zumeist) hohe Gehalte an Menge- und Spurenelementen und Vitaminen
- Pansenstörungen und Durchfälle erhöhen Mineralstoffbedarf (z.B. Magnesium!!)

Merke:

Langsamer Rationswechsel ist sehr wichtig!

Ergänzungsfütterung - Vollweide



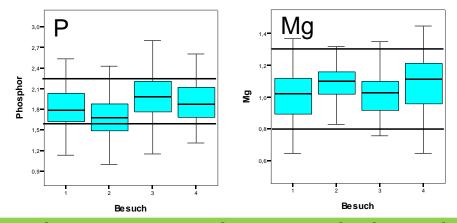
Natrium – Blutproben Vollweide

Besuch Podstatzky et al. 2008

Natrium zu beachten:

- Na Versorgung → Grundfutter nicht ausreichend
- Zusatzangebot unbedingt sicherstellen (20-40 g/Tag)!
- Reicht Zeit zur Aufnahme aus?
 - → Lecksteine auf der Weide und/oder gezielte händische Gabe über Lockfutter im Melkstand!

Ergänzungsfütterung - Vollweide



- P, Mg → kritischste Phase Weidebeginn
- Bei Vollweidebetrieben in Österreich bei geringfügiger Min-Ergänzung keinen Mangel festgestellt

 Podstatzky et al. 2008

 20-50 g/Kuh und Tag einer magnesium- und phosphorreichen Mineralstoffmischung (Lecksteine) zu empfehlen

Stundenweide und Kraftfutter

- Stundenweide erhöht die Gesamtfutteraufnahme
- Stundenweide erhöht die Grundfutterleistung
- Stundenweide hilft Kraftfutter sparen
- Weide verringert den Eiweiß-, Vitamin- und Mineralstoff- Ergänzungsbedarf
- Je höher der Weideanteil an der Ration umso stärker sollte Kraftfutter gespart werden

Merke:

Bei guter Stundenweide und 2 (3) kg weniger Kraftfutter gleiche Milchleistung wie bei reiner Stallfütterung!!

→ zu Weidebeginn sogar - 3 kg KF = gleiche Milchleistung!!

Tipps zur Stundenweide

- Kühe sind zum Fressen auf der Weide!!
 - → früher Vormittag und früher Abend
- Nach dem Melken kommen Kühe rasch auf die Weide (= Hauptfresszeiten)
- Stundenweide als Kurzrasenweide funktioniert sehr gut
- Früher und schonender Weidebeginn im Frühling auch hier sehr wichtig!
- Pro Vegetationsperiode einmalige Weidepflege günstig
- Weide/Grünfutter bleibt auch bei Regenperioden in der Ration

Merke:

Vielfältige aber konstante Rationen erhöhen die Futteraufnahme

Halbtagsweide

"Tagweide" oder "Nachtweide"

=Vormittags-_(+ev. Frühnachmittagsweide) oder Frühabendweide _(+ev. Frühmorgenweide)

Weideauftrieb

Orr et al 1998; Proc. Of Brit. Soc. Of Anim. Sci, 49

Morgen: Weide neu 7:45 Uhr

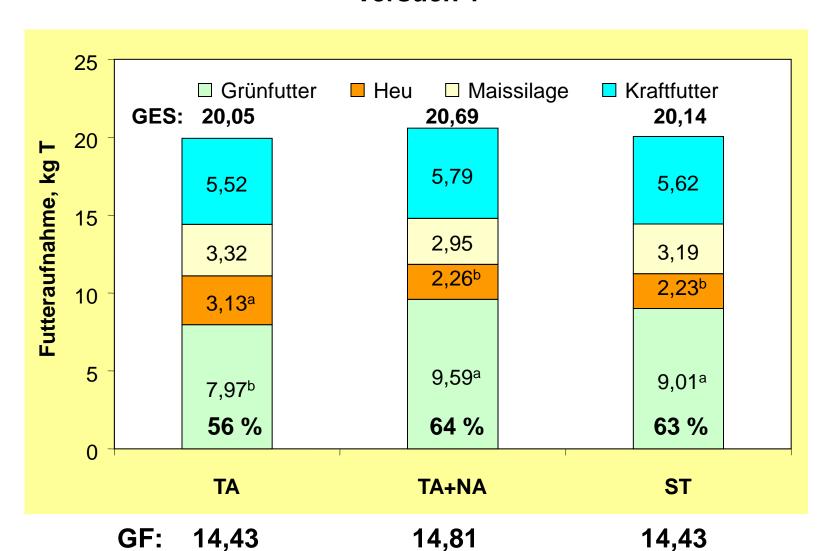
Abend: Weide neu 16:45 Uhr

Portionsweide, Ganztagsweide + 4 kg KF

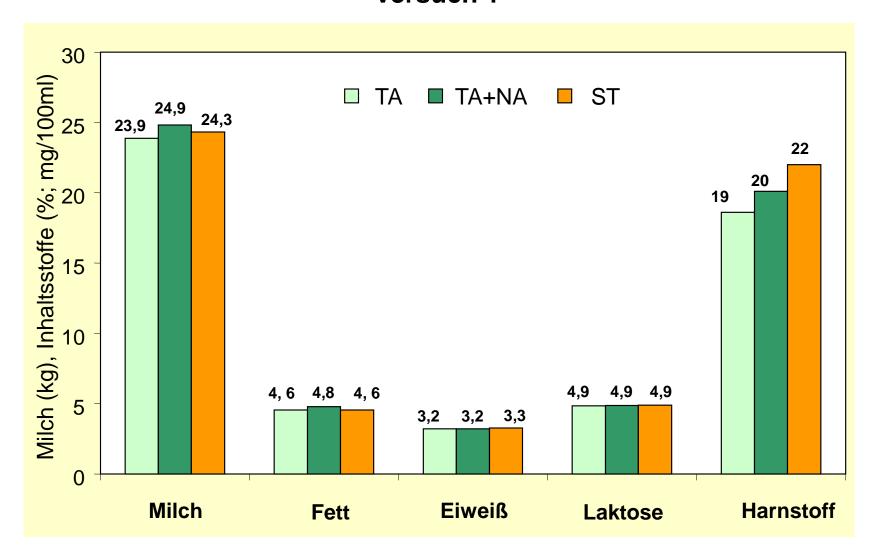
Weide neu	Morgens	Abends
TM-Grünfutter, %	18	20
Wasserlösliche KH, %	17,1	20,4
Futteraufnahme (Tag)	12,2	2,2
Futteraufnahme (Nacht)	5,7	15,8
Futteraufnahme	17,9	18,0

Versuche-Gumpenstein

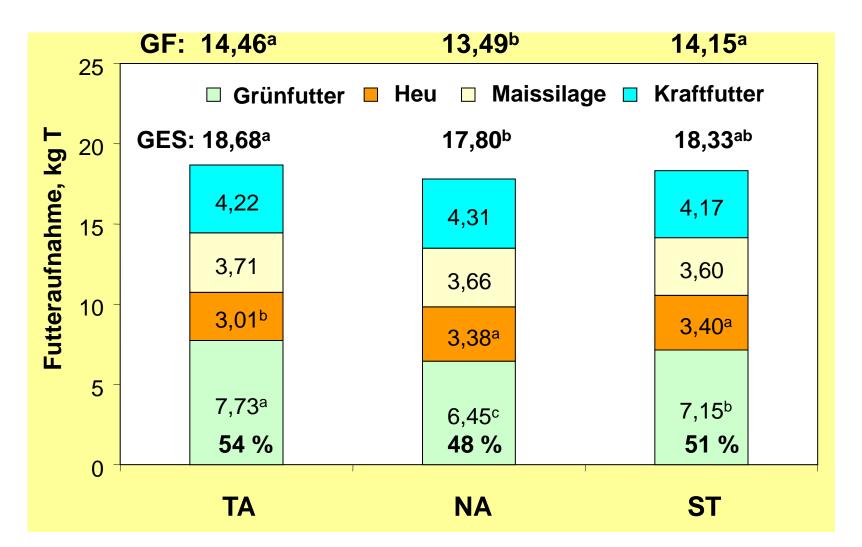
	Versuch 1 (V1)			Versuch 2 (V2)		
Behandlung	TW	TW/NW	ST	TW	NW	ST
Grünfütterung	Tagweide	Tag- und Nachtweide	Stall	Tagweide	Nachtweide	Stall
Ration						
Grünfutter, % GF		(60)			(50)	
Maissilage, % GF		20			25	
Heu, % GF		20			25	
Kraftfutter nach Leistung	ab 13	R kg Milchleis	stung	ab 13	3 kg Milchleis	tung
Weidezeit, Uhrzeit	7:00-15:00	7:0015:00	_	6:30-16:30	18:00–4:00	_
	_	18:30 – 4:30				
Weide- bzw. Grünfuttervorlage, h/Tag	8	18	18 <	2 10	10	10
Tiere (Anzahl)	8	8	16	9	9	9


DI Eva Zeiler 1998

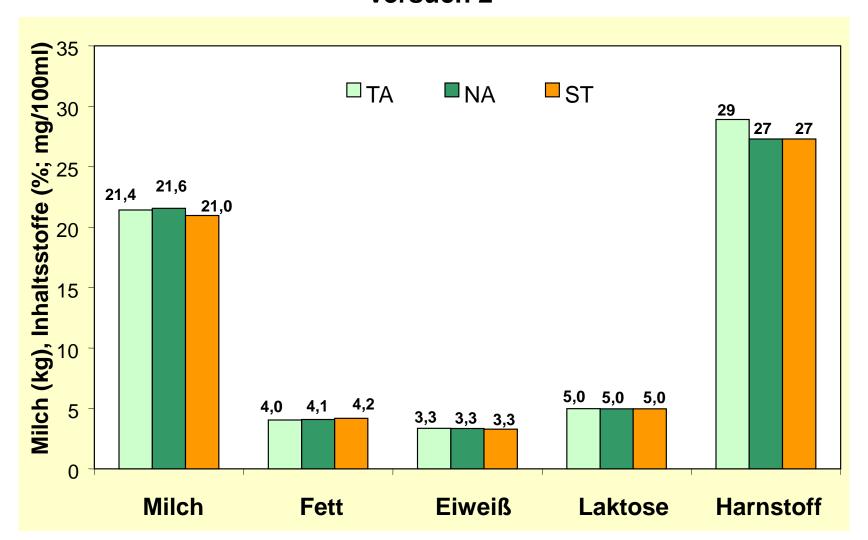
DI Monika Ehm-Blach 1999


Futteraufnahme Versuch 1

Milchleistung und Inhaltsstoffe



Futteraufnahme


Versuch 2

Milchleistung und Inhaltsstoffe

Zusammenfassung - Versuch

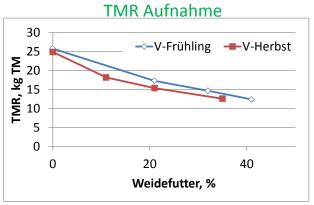
Verhalten: Tageszeit großen Einfluss

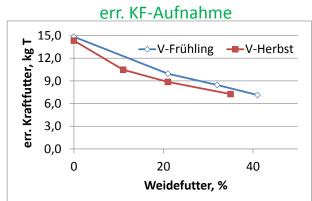
Nachtstunden geringe Fressaktivität

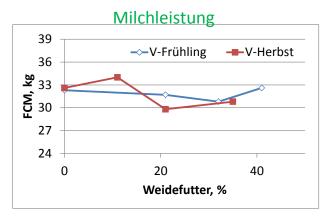
Klima- und Tageslängeneinflüsse bestehen

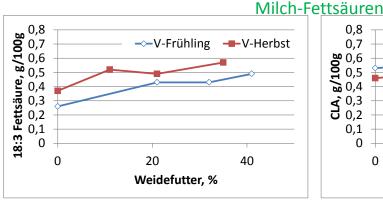
Nachtweide: geringere Weidefutteraufnahme → wenn

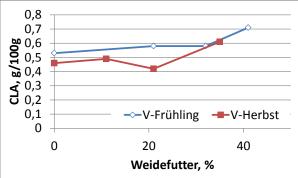
Nachtweide nicht zu spät austreiben


übliche Halbtagsweide: Grünfutteranteil max. 50 % d. GF


Weide - Stall: geringfügig höhere Grün-IT auf Weide (wenn optimale Weidebedingungen)






2 Versuche; je Versuch 30 hochleistende HF Kühe; Versuch je 8 Wochen; je 4 Gruppen; TMR 40 % GF (1/3 Luzernesilage und 2/3 Maissilage) Rest KF und 2,5 % Min.; Weidegruppen: 8:00-15:00 Uhr Portionsweide auf Raygrasbestand – Weide praktisch ad lib.;

In conclusion, including pasture as a major proportion in partial mixed rations is a viable option to confinement dairying. Most dairy enterprises in the eastern USA have a land resource that can be readily shifted into grass, or legume-based pastures that will provide an economic source of forage with adequate nutritive value. The producer has the freedom to vary the amount of pasture in the partial mixed ration to meet the economics of production while providing milk with enhanced CLA concentrations and hence a healthier consumer product.

In vitro Untersuchungen mit Pansenmikrobenkultur

100 % TM, 85 % TMR+15 %Weide; 70 % TMR+30 % Weide, 55 % TMR+45 % Weide;

Table 5. Effect of increasing amounts of pasture on pH, NH₂-N, CH₄, and in vitro digestibility in mixed ruminal cultures (n = 4)

	Treatment ¹					Contrast	
Item	100:00	85:15	70:30	55:45	SEM	Linear	Quadratic
Culture pH	5.68	5.78	5.65	5.80	0.09	0.22	0.58
NH,-N, mg/dL	23.3	23.2	22.9	23.2	0.9	0.84	0.78
Gas							
CH _a , mmol/d	42.5	35.5	16.6	26.1	2.9	0.001	0.006
Total,2 mmol/d	175.0	193.5	172.3	206.5	16.3	0.14	0.48
Fermentability, %							
Apparent DM ³	48.6	53.6	45.7	55.0	4.4	0.16	0.50
True DM*	56,6	61.7	57.3	69.8	4.6	0.01	0.23
NDF	28.2	27.0	28.9	30.4	1.8	0.20	0.34

^{100:00 = 100%} TMR; 85:15 = 85% TMR + 15% pasture; 70:30 = 70% TMR + 30% pasture; 55:45 = 55% TMR + 45% pasture.

IMPLICATIONS

Including pasture in TMR diets
had a significant impact on in vitro
ruminal fermentation and nutrient
use. Data explain the improved lactation performance by cows fed similar
diets in a concurrent study. Pasture
may replace almost one-half of the
total TMR without a negative effect
on rumen function and animal performance. Increasing the amount of
pasture can reduce the amount of C
lost as methane compared with TMR,
thereby increasing the postruminal
nutrient supply. With substantial
volatility in the price of conventional

Table 6. Effect of increasing amounts of pasture on substrate use and microbial N content (n = 4)

	Treatment ¹				Contrast		
Item	100:0	85:15	70:30	55:45	SEM	Linear	Quadratic
DM added, g/d	20.0	20.0	20.0	20.0			
N added, g/d	0.51	0.50	0.49	0.48			
Substrate (g/d, DM basis) used for							
VFA ²	5.40	6.24	5.66	6.85	0.52	0.02	0.61
Gas ³	4.28	4.45	3.61	4.38	0.32	0.56	0.16
Microbial cells	1.60	1.60	2.21	2.89	0.21	0.001	0.001
Total	11.28	12.30	11.48	14.12	0.86	0.002	0.13
Microbial N, %	6.82	7.35	7.65	7.26	1.80	0.09	0.05

^{100:00 = 100%} TMR; 85:15 = 85% TMR + 15% pasture; 70:30 = 70% TMR + 30% pasture; 55:45 = 55% TMR + 45% pasture.

Fermentative CH, + fermentative CO,(c) + buffering CO,(c); (c) = calculated.

Substrate used for VFA and gas production as a percentage of DM fed.

[&]quot;Substrate used for VFA, gas, and microbial biomass as a perce

³[(Acetate, mmol/d × 60.05) + (propionate, mmol/d × 74.08) + (butyrate, mmol/d × 88.10)].

³Gas, g/d = (CO₁, mmol/d × 44) + (CH₂, mmol/d × 16) + (H₂O, mmol/d × 36).

Versuchsergebnis - Halbtagsweide

Häusler et al. unveröff.

Gruppen: je 2 Gruppen mit jeweils 8 Kühen

Futter: Weidegruppe: Stallgruppe:

Grundfutter: 4 kg Heu (je 2 kg M u. A)

M: Weide (Kurzrasen 6 h)

A: Grassilage (ad lib.)

Kraftfutter: nur Energiekraftfutter

ab 16 kg Milch

0,87 kg KF/ 2 kg Milch

Kein

Protein-KF

4 kg Heu

Grassilage (ad lib.)

Grassilage (ad lib.)

Energiekraftfutter

ab 15 kg Milch

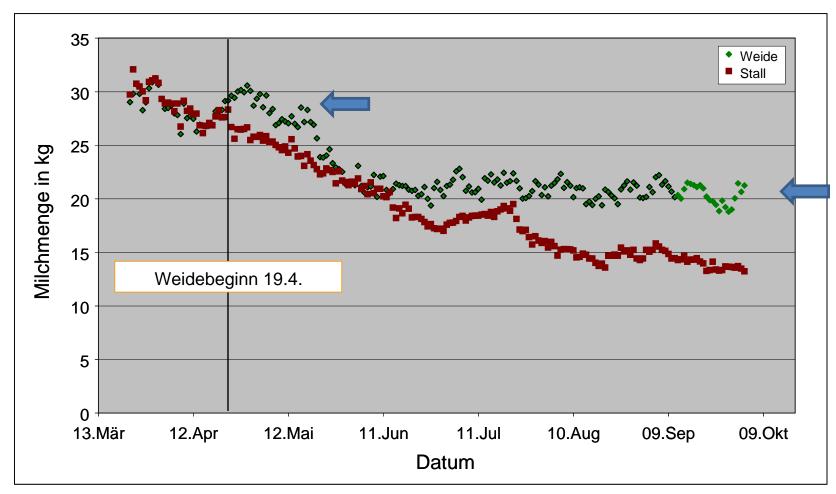
1 kg KF/ 2 kg Milch

Proteinkraftfutter

ab 19 kg Milch

12,5 % d. Ges. KF

Versuchsergebnis - Halbtagsweide


		Weide	Stall	
Tieranzahl	n	8	8	
Produzierte Milch	kg	30.236	24.401	
ECM-Gesamt	kg	29.966	23.924	
Weidetage	Tage	168		
Milch pro Kuh + Tag	kg	22,5	18,8	
ECM pro Kuh + Tag	kg	22,3	18,4	
Fett	%	4,08	4,13	
Eiweiß	%	3,16	2,90	
Lactose	%	4,71	4,71	
Zellzahl	*1.000	142	217	
Harnstoff	mg/100 ml	31,2	17,3	
Verbrauch Energie-KF	dag/kg Milch	13,2	13,4	
Verbrauch Protein-KF	dag/kg Milch	0	2,1	
Kraftfutteraufwand	dag/kg Milch	13,2	15,5	

Häusler et al. unveröff.

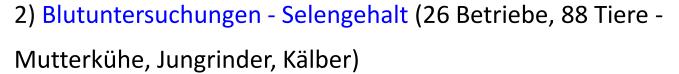
Versuchsergebnis - Halbtagsweide

Häusler et al. unveröff.

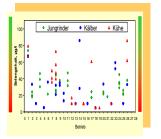
Selenversorgung in der Mutterkuhhaltung

George Bacher
Bio Vermarktung Handels GesmbH, GERAS

Andreas Steinwidder
Institut für Biologische Landwirtschaft und Biodiversität, HBLFA Raumberg-Gumpenstein



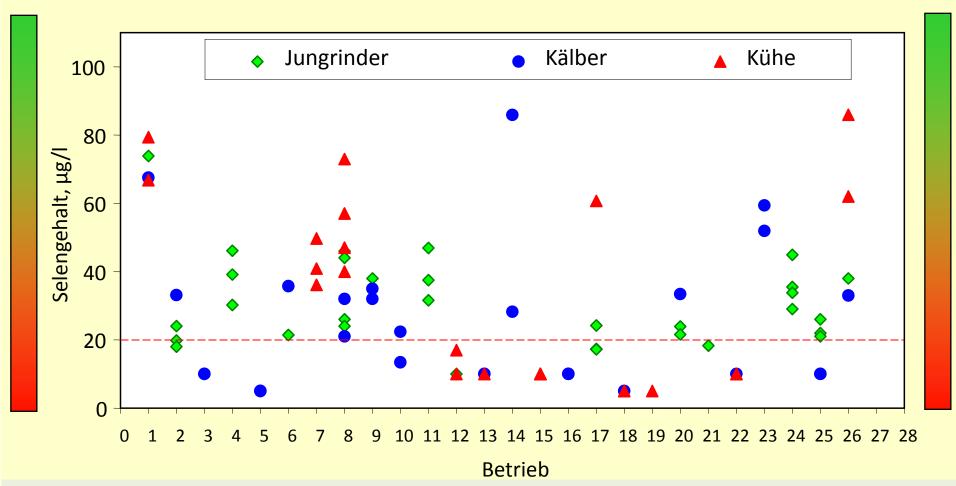
Ausgangssituation



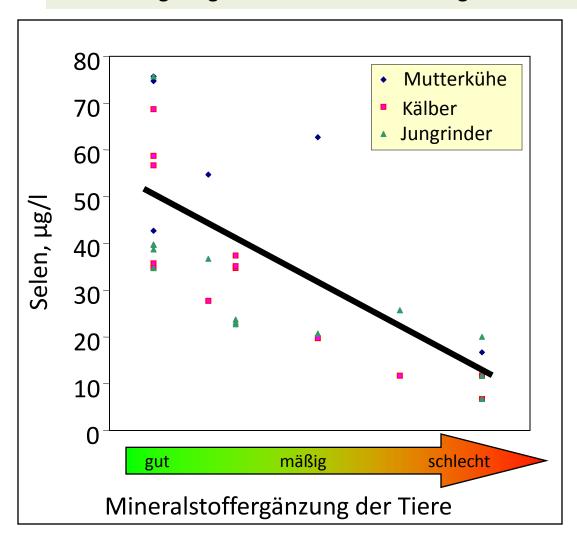
1) Probleme auf einigen Betrieben (Trinkschwäche, Muskelschwäche, Zittern, Festliegen (Weißmuskelkrankheit), Herzschwäche, Atemnot)

3) Grobe Erhebung der Fütterung und Mineralstoffversorgung (Ration, Mineralstoffe an Kühe, trockene Kühe, Kälber, Jungrinder)

4) Auswertung und Zusammenstellung der Ergebnisse


Ergebnisse

Selen "OK"	29
mangelhaft	28
roßer Mangel	37



- \rightarrow In mehr als 35 % der untersuchten Blutproben wurden Selengehalte von unter 20 µg/l festgestellt ("großer Mangel").
- → Mit steigendem Selengehalt im Blut der Kühe wurde auch bei den Jungtieren ein höherer Se-Gehalt am jeweiligen Betrieb festgestellt.

Ergebnisse

Mineralstoffversorgung der Tiere und Blutselengehalt

→ Betriebe die eine Versorgung mit Mineralstoffen durchführen, haben ein geringeres Risiko für Selenmangel.

Mineralstoff- und Vitaminergänzung

3 bis 5 dag (Winter 5 dag):

- * handelsüblichen Mineralstoffmischung
- * spurenelementreich (Selengehalt im Mineralfutter mindestens 30–50 mg/kg) und zumeist phosphorbetont Mischung

und zusätzlich

2 bis 3 dag:

* Viehsalz

Oder eventuell

- a) Mineralblock Lecksteine + Salzblöcke (Verbrauch
- b) Mineralstoffm. + "Spurenelementmischung" + Salz

aber kontrollieren!)

