

Futterwerttabellen

für das Grundfutter im Alpenraum

Ing. Reinhard RESCH, Mag. Thomas GUGGENBERGER, Univ.Doz. Dr. Leonhard GRUBER, Dr. Ferdinand RINGDORFER und Univ.Doz. Dr. Karl BUCHGRABER HBLFA Raumberg-Gumpenstein, A-8952 Irdning

Dipl.-Ing. Günther WIEDNER, Futtermittellabor Rosenau der NÖ Landwirtschaftskammer, A-3252 Rosenau 3

Ing. Andreas KASAL, Versuchszentrum Laimburg, I-39040 Auer

Dipl.-Ing. Karl WURM, LK Steiermark, Hamerlinggasse 3, A-8011 Graz

Wirtschaftlichkeit sowie die Nutzung intensiver wie auch extensiver Flächen verlangt einen tiergerechten Einsatz des vielfältigen Futters in den Rationen. Damit diese unterschiedlichsten Futterpartien richtig vorgelegt werden, muss eine Bewertung der Inhaltsstoffe, Mengen- und Spurenelemente sowie der Futterhygiene erfolgen. Mit den Futterwerttabellen sind die Landwirte in der Lage, diese Einstufung ihrer Grundfuttermittel durchzuführen, exakte Laboranalysen von Futtermitteln können jedoch nicht ersetzt werden.

Futterpartien im Alpenraum

Die Artenvielfalt unserer Wiesen, Weiden und Feldfutterbestände liefert bei den differenzierten Standort- und Bewirtschaftungsverhältnissen äußerst unterschiedliche Futterpartien. Sie sind legt werden. Ein Teil der Futterpartien wird in den Futtermittellabors insbesondere in Rosenau (NÖ) und Laimburg (Südtirol) analysiert, der Großteil wird nach Gefühl und Erfahrung verfüttert. Liegen keine exakten Analysenwerte vor, so soll künftig diese Fut-

Grundfutterproben aus der Praxis auf ihren Futterwert untersucht. Im Jahre 1997 erschien die erste Futterwerttabelle im Alpenraum auf der Grundlage von etwa 7.000 Futterproben, mittlerweile hat sich dieser Probenumfang auf 25.280 aus Österreich und 690 aus Südtirol wesentlich erhöht. Dadurch können die einzelnen

können die einzelnen "Futterkategorien" mit einer größeren Zahl an Referenzproben abgesichert werden, außerdem können nun für Weiden, Almen und sonstige Futtermittel eigene Tabellenwerte angeboten werden. Für Südtirol ist eine eigene Tabelle für die häu-

figsten Grünlandflächen enthalten, für die übrigen Futterpartien in Südtirol können die vorliegenden Tabellen für den Alpenraum herangezogen werden. Die in den Tabellen angegebenen Werte sind Durchschnittswerte unter den vorherrschenden Weide-, Ernte- und Konservierungsbedingungen in der Praxis.

Diese Futterwerttabelle ist für die Futterpartien im österreichischen und Südtiroler Alpenraum erarbeitet worden. Der praktische Einsatz in den Betrieben wird die Einschätzung des Grundfutters wesentlich verbessern und die Erstellung angepasster Futterrationen mit den Rationsprogrammen erleichtern.

Im Alpenraum muss ein relativ hoher Anteil des Jahresfutters konserviert werden.

geprägt von einem guten Gräseranteil, wobei hier die Dauergräser Knaulgras, Goldhafer, Glatthafer, Wiesenschwingel, Wiesenfuchsschwanz, Timothe und Wiesenrispe vorherrschen - die Raygräser sind nur in den Feldfutterbeständen und im Dauergrünland der milderen Lagen verstärkt im Bestand. Der Leguminosenanteil und vor allem der oftmals hohe Kräuteranteil machen in der unterschiedlichsten Zusammensetzung die Ausgangslage für das Futter aus. Die Futterbestände des Alpenraumes liefern ein heterogenes, geschmacklich interessantes und von den Inhalts- und Wirkstoffen wertvolles Grundfutter. In Österreich wachsen auf den rund 2,0 Mio. ha jährlich 6-7 Mio. Tonnen Trockenmasse, wobei den Tieren 48 % als Silage (inkl. Maissilage), 27 % als Heu und Grummet und rund 25 % als Grünfutter (Weide, Stallfütterung) angeboten wird. Da die Größe der Grünlandschläge in Österreich bei durchschnittlich 0,95 ha liegt, kann davon ausgegangen werden, dass den Tieren jährlich rund 4 Mio. unterschiedliche, meist kleine Futterpartien vorgeterwerttabelle mit dem Rationsberechnungsprogramm "Superration" eingesetzt werden, damit die Schnittstellen "Tier – Leistung – Grundfutter – Kraftfutter" exakter und effizienter erkannt und umgesetzt werden.

Futterwerttabelle

Seit über 20 Jahren werden von der HBLFA Raumberg-Gumpenstein, dem Futtermittellabor Rosenau und dem Versuchszentrum Laimburg definierte

Grundfutterbuch

Wie die Grundfutterqualität für die Fütterung vorliegt, hängt von der Bewirtschaftung der Flächen (Düngung, Nutzung, Pflege, etc.), dem Nutzungszeitpunkt, von der Werbung und schließlich von der Konservierung ab. Schon vor der Ernte sollte der Grünlandwirt seine Flächen gut im Auge haben, spätestens zur Ernte wäre eine Einschätzung des Pflanzenbestandes hinsichtlich des Ertrages und der Futter-

Name ur	nd Beti	riebsnan	ne:				
Erntejahı	[i				_		
Faldagas	Größe	Nutzungs-	Vegetationsstadium	// // // // // // // // // // // // //	enbestand		Anmerkung
zB Leit'n	in ha	termin 25. Mai	zur Ernte Rispenschieben	Graserreich	Mischbestand X	Vorratslager Fahrsilo unten	Bestes Wetter
							Gute Anwelks.

Grundfutterbuch

Am Vegetationsstadium der Leitgräser lässt sich die Futterqualität am besten abschätzen (Knaulgras im Rispenschieben links; Goldhafer Beginn Blüte rechts).

qualität sinnvoll. Außerdem sollte nach den Leitgräsern das Vegetationsstadium zur Ernte festgestellt werden. Welche Erntemengen von der jeweiligen Fläche geerntet werden und wo sie als Heu, Grummet bzw. Silage als Vorrat gelagert sind, sollte ebenso im Grundfutterbuch aufgezeichnet werden. Entscheidend für die Qualität sind die Erntebedingungen (Wetter, technischer Einsatz, etc.).

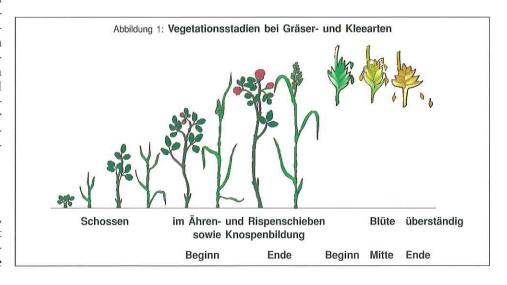
Mit diesen Aufzeichnungen über das Vegetationsjahr ist es dann relativ einfach, nach Öffnung des Silos bzw. Ballens oder nach Entnahme am Heustock die Futterpartie nach der Futterwerttabelle gut einzuschätzen.

Kriterien für die richtige Einstufung der Futterpartien

Abgesehen von der differenzierten Bewirtschaftung in den einzelnen Betrieben setzen sich auch die Wiesenbestände sehr unterschiedlich nach den Artengruppen Gräser, Kräuter und Leguminosen zusammen. Neben dem Erntezeitpunkt, dem Erntewetter und den Konservierungsbedingungen sollten für eine richtige Zuordnung der vorhandenen Futterpartien in den Futterwerttabellen noch folgende Grundlagen bekannt sein.

Vegetationsstadium zur Ernte

Das Vegetationsstadium zur Ernte, insbesondere beim ersten Aufwuchs, ist ein entscheidender Faktor für die Futterqualität und bei Silage auch für die Gärqualität. Anhand phänologischer Merkmale der Leitpflanzen können die Wiesenbestände in fünf Vegetationsstadien unterteilt werden. Das Knaulgras sollte für die intensiven Wiesen bis 600 m Seehöhe und höherwärts der Goldhafer als Leitgras herangezogen werden. Im Feldfutterbau sollte neben dem Knaulgras auch der Rotklee oder die Luzerne als bestimmende Pflanzenart für den Schnitttermin und für die Einstufungen gelten.

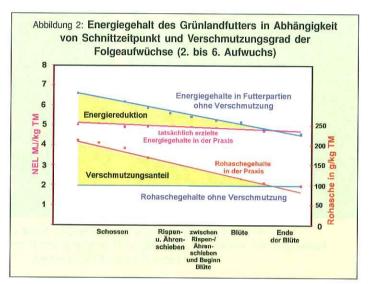

Vegetationsstadium nach Goldhafer, Knaulgras und Rotklee/Luzerne

- im Schossen
- im Ähren-/Rispenschieben sowie Knospenbildung
- Beginn Blüte
- Mitte bis Ende Blüte
- überständig

Im Vegetationsstadium "Schossen" beginnen sich die Stängel nach der Bestockungsphase zu strecken, der Pflanzenbestand wächst in die Höhe. Die Wuchshöhe beträgt in diesem Stadium 10-20 cm. Nach Bildung des Fahnenblattes (oberstes Blatt) schieben die Rispen bzw. Ähren, aus dem Stängel kommend, durch und erscheinen. Sind 50 % der Leitgräser (Goldhafer, Knaulgras) in der Rispe erkennbar, so liegt das Ve-"Ähren-/Rispengetationsstadium schieben" vor. Die Fruchtstände bilden sich in den nächsten zwei bis drei Wochen voll aus und beginnen die Ährchen zu öffnen und die Pollenbeutel hängen heraus. Sind 50 % der Leitgräser mit Pollenbeutel sichtbar, so liegt das Stadium "Beginn Blüte" vor. Nach und nach innerhalb einer Woche blühen alle Rispen der unterschiedlichen Ökotypen der Leitgräser auf. Nun ist Ende Blüte und die Befruchtung abgeschlossen. Ab nun dauert es noch je nach Wetterlage drei bis vier Wochen, bis die Samen heranreifen. Am Ende der Samenreife, die etwa 6 bis 8 Wochen nach dem Rispenschieben abgeschlossen ist, tritt das Stadium "überständig" ein.

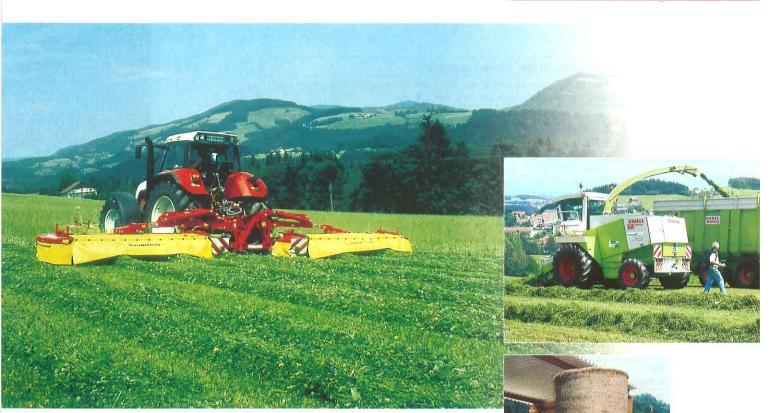
Der Entwicklungsverlauf der Pflanzenbestände – insbesondere der Leitgräser – ist mit Zunahme der Höhenmeter um 200 m um rund eine Woche verzögert; pro 100 Höhenmeter sind es drei bis vier Tage. Ein Talbetrieb auf ca. 700 m Seehöhe erntet seinen ersten Aufwuchs beim Ähren- und Rispenschieben um den 23. Mai, während die Wiesenflächen auf 900 m Seehöhe dieses Vegetationsstadium Ende Mai/Anfang Juni erreichen.

Vergleicht man zwei Futterpartien aus dem Wirtschaftsgrünland auf den unterschiedlichen Höhenstufen zum gleichen Vegetationsstadium, so unterscheiden sich die Futterpartien im Futterwert nur unwesentlich, obwohl sie vom Schnitttermin her um Wochen aus-


einanderliegen. Aufgrund dieser Ergebnisse wurde auf eine Unterteilung nach Höhenstufen verzichtet.

Das extensiv genutzte und extensiv gedüngte Grünland wird in Österreich einmal oder zweimal jährlich gemäht, wobei hier frühestens zum Beginn der Blüte bis in den überständigen Bereich der Bestände geschnitten wird – meist tritt zu diesen Stadien bereits der Durchwuchs in

Erscheinung. Die Pflanzenzusammensetzung dieser Extensivflächen ist gegenüber dem Wirtschaftsgrünland völlig anders geartet. Dieses "Futter" aus dem Extensivgrünland, wie auch das Almfutter, wird in der Futterwerttabelle separat mit allen Inhaltsstoffen dargestellt.


Beim Silomais kann der Reifezeitpunkt sehr gut über die Festigkeit der Körner beurteilt werden. Hier geht es aber

				Ro	hnährsto	offe		192	LOND T. P.	Protein			Ene	ergie
Silage Wiesen Mähweiden	Anzahl der Proben	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett XL	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM	Umsetz- bare Energie	Netto- energie Lak- tation NEL
1. Aufwuchs	L	g/kg	-		g/kg	IM		-	%	g/kg	TM	%	MJ/ke	g TM
AN W NEW PROPERTY.			A Paris	7								I with -		Minetel Co.
Schossen XF < 230 g	397	347	103	897	164	31	217	485	15	140	3,9	76	10,51	6,34
Ähren-/Rispenschieben XF 230-260 g	2.064	353	104	896	158	31	248	459	15	135	3,7	73	10,11	6,05
Beginn Blüte XF 260-290 g	3.184	359	102	898	149	31	274	444	15	129	3,2	70	9,70	5,74
Mitte bis Ende Blüte XF 290-320 g	1.295	367	99	901	138	30	301	431	15	123	2,5	67	9,29	5,45
Überständig XF > 320 g	327	366	93	907	129	30	336	413	15	120	1,4	64	8,87	5,14
2. + Folgeaufwüchse				Section .	7 17	1913-1	HEND							
Schossen XF < 220 g	198	377	114	886	177	30	209	471	15	137	6,3	73	10,07	6,03
Ähren-/Rispenschieben XF 220-250 g	855	392	111	889	167	30	238	454	15	132	5,5	71	9,77	5,80
Beginn Blüte XF 250-280 g	1.281	413	109	891	156	30	264	441	15	127	4,6	69	9,45	5,57
Mitte bis Ende Blüte XF 280-300 g	402	422	103	897	148	30	289	430	15	123	4,0	67	9,21	5,39
Überständig XF > 300 g	181	433	100	900	141	29	314	415	15	119	3,5	65	8,93	5,19

				Ro	hnährsto	offe			- Ind	Protein		AL DESIGNATION	Ene	rgie
Silage Rotkleegras	Anzahl der Proben n g/kg	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein XP	Roh- fett	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM	Umsetz- bare Energie	Netto- energie Lak- tation NEL
1. Aufwuchs	gritg	Series 1		-	g/kg	TIVI			%	g/kg	TM	%	MJ/kg	д ім
Schossen XF < 230 g Ähren-/Rispenschieben XF 230–260 g Beginn Blüte XF 260–290 g Mitte bis Ende Blüte XF 290–320 g Überständig XF > 320 g 2. + Folgeaufwüchse	22 85 184 101 28	355 356 377 372 348	109 107 104 100 102	891 893 896 900 898	196 161 153 141 130	30 30 30 29 29	207 249 275 304 337	458 453 439 426 401	15 15 15 20 20	152 140 136 134 127	7,1 3,4 2,7 1,1 0,5	78 73 70 67 63	11,13 10,56 10,29 9,97 9,52	6,80 6,38 6,17 5,93 5,61
Schossen XF < 220 g Ähren-/Rispenschieben XF 220–250 g Beginn Blüte XF 250–280 g Mitte bis Ende Blüte XF 280–300 g Überständig XF > 300 g	10 46 107 32 23	390 388 422 409 405	120 113 110 106 97	880 887 890 894 903	191 179 167 161 152	32 30 30 29 30	205 240 266 287 312	453 437 428 418 409	15 15 15 15 15	148 140 128 120 107	6,9 6,2 6,2 6,5 7,3	74 71 69 67 65	10,83 10,32 9,37 8,75 7,62	6,61 6,21 5,51 5,07 4,30

I NE			Men	genelem	ente				Spurene	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfer
Qp Punkte	n	Ca	Р	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn TM	Cu
	7-1-	11 11 11									
107	289	8,5	3,5	2,6	32,0	0,52	59	893	89	38	8,4
98	1.648	8,0	3,3	2,5	31,2	0,49	358	799	90	38	8,0
88	2.573	7,6	3,3	2,4	30,5	0,47	544	717	92	37	7,7
78	1.010	7,2	3,2	2,3	29,8	0,45	170	632	93	37	7,4
68	244	6,7	3,0	2,2	28,9	0,42	36	525	95	36	7,0
									3-1		
97	130	10,9	3,5	3,4	28,3	0,68	28	785	102	58	9,5
90	555	10,2	3,5	3,1	28,6	0,60	132	814	109	51	9,1
82	904	9,5	3,5	2,9	28,9	0,53	207	773	104	46	8,6
76	273	8,8	3,5	2,7	29,2	0,47	53	607	92	37	8,0
70	123	8,2	3,5	2,5	29,5	0,40	31	487	97	33	7,6

1	South Total		Men	genelem	ente				Spurenel	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
	ret in i			J -10		L Prof	F-Y			7,-,	
122	20	9,6	3,4	2,5	32,6	0,42	6	469	66	35	8,4
108	74	8,8	3,3	2,4	31,9	0,41	15	581	79	34	7,9
102	151	8,2	3,2	2,2	31,4	0,41	34	650	88	34	7,6
94	72	7,6	3,2	2,1	30,9	0,41	10	728	97	33	7,2
83	21	6,9	3,1	2,0	30,3	0,41	4	817	108	33	6,9
116	9	10,5	3,4	3,0	30,0	0,53	3	1001	101	36	9,7
103	36	10,1	3,4	2,8	30,4	0,45	10	810	92	35	9,1
80	87	9,8	3,3	2,7	30,7	0,39	21	667	85	35	8,6
66	27	9,6	3,3	2,6	30,9	0,35	5	555	80	35	8,3
41	20	9,3	3,2	2,5	31,1	0,29	3	414	73	35	7,8

nicht um die Härte der Körner auf der "Außenseite", sondern um die Kornspitze an der Maisspindel.

Die Getreide-Ganzpflanzensilage oder GPS hat dann ihren optimalen Nutzungstermin erreicht, wenn die Getreidekörner von der Milch- in die Teigreife übergehen. In der Futterwerttabelle sind für Hafer, Gerste, Roggen und Weizen Durchschnittswerte, wie sie in der Praxis vorliegen, dargestellt.

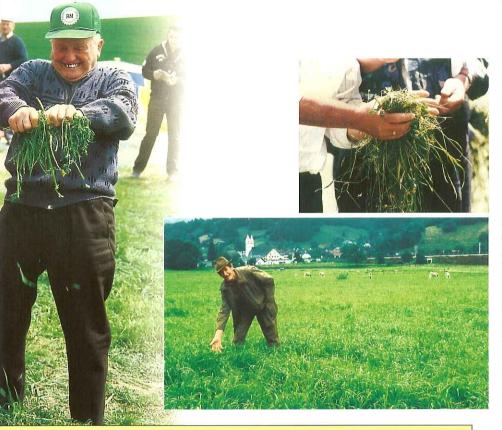
Abzüge im Energiegehalt der Futterwerttabelle

Falls die Konservierung oder die Lagerung durch schlechte Witterung, durch fehlerhafte Gärung (Silagen), durch Nacherwärmung (Silagen) oder durch Überhitzung (Heu bzw. Grummet) beeinträchtigt wurde, so müssen die Energiewerte (NEL MJ/kg TM) in der Futterwerttabelle reduziert werden (siehe Tabelle 1).

Liegt eine erdige Verschmutzung in der Futterpartie vor, so steigt der Rohaschegehalt über 100 g/1.000 g Futter (10 %) an. Diese Verunreinigungen

Landwirt sonderbeilage

weniger als 20 % TM	Hier ist der Silomais erst in der Blüte, die Körner sind milchig weiß und weich, in der Maissilage tritt sehr viel Saft aus.
20 bis 25 % TM	Die Körner am Silomaiskolben werden auf der Außenseite fest, aus der Kornspitze tritt noch eine milchige Flüssigkeit. In der Maissilage tritt bei normalem Händedruck noch tropfenweise der Saft aus.
25 bis 28 % TM	Die Körner gehen in die Teigreife, die Außenseite wird hart und aus der Kornspitze tritt nur wenig Flüssigkeit. Das Korn ist teigig. Bei festem Pressen mit den Händen tritt noch etwas Pflanzensaft aus, die Hände werden noch leicht feucht.
28 bis 35 % TM	Teig- bis Gelbreife, die Körner sind durchgehend hart und es entsteht
	weder Gärsaft noch werden die Hände bei festem Druck feucht.
Griff- und Wringpro	
- UI	
Grobe praktische Prüfur 20 bis 28 % TM Nass- bzw. leichte	be
Grobe praktische Prüful 20 bis 28 % TM Nass- bzw. leichte Anwelksilage 28 bis 40 % TM	be ng des TM-Gehaltes in der Silage Hier tritt schon bei kräftigem Händedruck Pflanzensaft bzw. Gärsaft aus; das Futter tropft, die Hände sind stark befeuchtet. Der Futterknäuel bleib
Grobe praktische Prüfur	be ng des TM-Gehaltes in der Silage Hier tritt schon bei kräftigem Händedruck Pflanzensaft bzw. Gärsaft aus; das Futter tropft, die Hände sind stark befeuchtet. Der Futterknäuel bleib nach dem Auspressen geschlossen. Die Hände werden nur bei stärkstem Pressen und kräftigem Winden feucht – gegen 40 % TM tritt beim Auswinden kein Pflanzensaft mehr au


Der Landwirt kann am Feld mit der Wringmethode relativ genau den Trockenmassegehalt des Futters abschätzen.

Silagen aus Luzernegras

				Ro	hnährsto	offe			1112121	Protein		× 1110	Ene	rgie
Silage Luzernegras	Anzahl der Proben	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins	nutz- bares Roh- protein	Rumi- nale N- Bilanz N/kg	Verdau- lichkeit % der OM	Umsetz- bare Energie	Netto- energie Lak- tation
	n	TM g/kg	XA	OM	XP g/kg	XL TM	XF	XX	UDP %	nXP	RNB	dOM %	ME	NEL g TM
1. Aufwuchs		9.119			9/19	1141			1 /0	g/ng	j i ivi	/0	IVIJ/K	g rivi
Schossen XF < 230 g	3	328	118	882	186	31	223	442	15	139	7,6	76	10,06	6,01
Ähren-/Rispenschieben XF 230-260 g	27	361	112	888	183	31	252	421	15	135	7.8	72	9,76	5,79
Beginn Blüte XF 260-290 g	69	377	110	890	176	31	275	408	15	131	7,2	70	9,48	5,58
Mitte bis Ende Blüte XF 290-320 g	43	377	110	890	161	31	301	397	15	124	5,8	67	9,14	5,34
Überständig XF > 320 g	19	412	102	898	150	29	337	383	16	120	4,7	63	8,77	5,08
2. + Folgeaufwüchse														
Schossen XF < 220 g	2	451	130	870	226	29	210	404	15	144	13,1	73	10,03	6,00
Ähren-/Rispenschieben XF 220-250 g	11	375	117	883	204	29	239	411	15	139	10.4	71	9,88	5,87
Beginn Blüte XF 250-280 g	38	432	115	885	183	30	266	406	15	133	8,0	69	9,61	5,68
Mitte bis Ende Blüte XF 280-300 g	29	464	105	895	177	29	290	399	15	131	7,4	67	9,47	5,57
Überständig XF > 300 g	35	434	111	889	175	29	323	362	16	127	7,6	64	9,07	5,29

Silagen aus Luzerne, Rotklee und Landsberger Gemenge Rohnährstoffe Protein **Energie** Silage Anzahl Tro-Roh-Orga-Roh-Roh-Roh-N-freie UDP nutz-Rumi-Verdau-Umsetz-Netto-Leguminosen der cken asche nische protein fett faser Extrakt-% des bares nale N lichkeit bare energie Proben masse Masse stoffe Roh-Roh-Bilanz Energie % der Lakproteins protein OM N/kg tation TM OM n XA XP XL XF XX UDP nXP RNB dOM ME NEL g/kg TM g/kg g/kg TM MJ/kg TM Luzerne 1. Aufwuchs Schossen XF < 230 g 3 369 117 883 231 28 210 414 15 140 14,4 69 9,59 5,66 Ähren-/Rispenschieben XF 230-260 g 8 393 881 119 224 28 246 383 15 135 14,3 66 9,18 5,37 Beginn Blüte XF 260-290 g 19 447 111 889 196 28 278 388 19 132 10,2 64 8,88 5,15 Mitte bis Ende Blüte XF 290-320 g 23 436 888 112 185 28 300 375 20 129 9,0 61 8,60 4,96 Überständig XF > 320 g 9 448 105 895 180 28 331 355 25 133 7,7 59 8,42 4,83 Rotklee 1. Aufwuchs 17 456 98 902 156 26 277 442 22 135 3,5 68 9,54 5,63 2. + Folgeaufwüchse 12 438 96 904 170 27 274 434 20 134 5,7 67 9,39 5,52 Landsberger Gemenge Landsberger Gemenge 26 319 112 888 144 30 261 453 15 131 2,1 70 9,93 5,93

			ivien	genelem	iente				Spurene	emente	9
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	P	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn I TM	Cu
97	2	10,4	3,6	2,6	33,7	0,59	1	433	86	41,3	10,6
89	25	10,4	3,5	2,5	33,3	0,55	1	448	74	37	9,3
82	60	10,3	3,4	2,4	33,0	0,51	13	461	64	33	8,3
74	39	10,2	3,3	2,4	32,6	0,47	4	474	54	30	7,1
66	16	10,1	3,2	2,3	32,1	0,41	1	494	39	24	5,5
		10-			-3			- 12			
96	2	13,6	3,4	3,2	29,7	0,62	1	579	76	33	8,4
92	10	13,2	3,3	3,0	29,5	0,59	3	619	71	32	8,5
86	33	12,9	3,3	2,9	29,3	0,56	6	656	66	31	8,5
82	25	12,5	3,2	2,7	29,1	0,53	3	690	62	29	8,6
73	26	12,1	3,1	2,6	28,9	0,49	8	736	56	28	8,7

-			Men	genelem	ente		The sales		Spurenel	emente	9
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	P	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn J TM	Cu
					Wag I	11 13 1					ALC: N
85	3	16,0	3,1	3,1	30,0	0,65	3	793	65	37	9,4
75	3	15,2	3,1	2,9	30,7	0,64	1	656	59	35	8,3
68	12	14,5	3,2	2,7	31,3	0,62	3	534	53	34	7,3
62	11	14,0	3,2	2,6	31,8	0,61	6	449	49	33	6,6
58	6	13,2	3,2	2,5	32,4	0,59	2	328	44	32	5,6
84	11	11,8	2,5	2,8	29,1	0,34	1	75	39	12,5	261
80	8	11,5	2,4	3,1	26,4	0,30	-	-	_	Ė	-
10 A	4 10 1	THE T	-	5.			TEXT !		1		115
94	23	7,1	3,5	2,0	35,8	0,47	4	81	36	7,7	419

drücken die Futterqualität, insbesondere die Verdaulichkeit, und auch den Energiegehalt. In den Futterwerttabellen weisen gerade die im Schossen geernteten Futterpartien höhere Rohaschegehalte auf und werden dadurch in der Energie schlechter bewertet als die nachfolgenden Futterpartien aus der Kategorie "Rispen/Ährenschieben".

Ermittlung bzw. Einschätzung des TM-Gehaltes

Die Umrechnung der Inhaltsstoffe, Mengenelemente und der Energiewerte aus der Trockenmasse auf die Frischmasse kann nur erfolgen, wenn der Trockenmassegehalt der Futterpartie bekannt ist.

Bei Heu und Grummet kann ein Trockenmassegehalt von 86 % angenommen werden. Bei Silagen hängt es vom Anwelkgrad ab; der Trockenmassegehalt liegt bei 20 bis 35 % (bei Maissilage) und bei 20 bis 60 % (bei Grassilage).

Ermittlung des TM-Gehaltes:

Einwaage von 1.000 g Silage Trocknung im Backrohr bis zur Gewichtskonstanz Rückwaage dividiert durch 10 ergibt % TM-Gehalt.

Umrechnung Trockenmasse auf Frischmasse

In den EDV-unterstützten Futterrationsprogrammen wird der TM-Verzehr je Futterpartie eingesetzt und dann mit den Werten aus der Futterwerttabelle weitergerechnet.

Will man allerdings die Gehaltswerte bzw. die Energiegehalte der Futterpartien in der Frischmasse errechnen, so muss von den Trockenmassewerten umgerechnet werden.

Inhaltsstoffe, Mengenelemente,
Energiegehalt
aus der Futterwerttabelle x TM in der
Futterpartie
zB: 6,0 MJ NEL x 300 g TM
Gehalt/1.000 = 1,8 MJ NEL/kg Futter

Landwirt sonderbeilage

Erläuterungen der Abkürzungen in der Futterwerttabelle:

■ n Anzahl der Proben

Untersuchte Proben für den Mittelwert

■ TM Trockenmasse in g/kg Frischmasse

Rohnährstoffe in g/kg TM

XA Rohasche

OM Organische Masse,

Formel: OM = 1.000 g TM - XA

XP Rohprotein XL Rohfett

XF Rohfaser

XX N-freie Extraktstoffe, Formel: XX = 1.000 g TM - (XP+XF+XL+XA)

Verwertbarkeit von Futterprotein

■ UDP Unabbaubares Rohprotein in % von XP (= im Pansen unabbaubares Rohprotein) Diese Werte wurden von der DLG-Futterwerttabelle 7. Auflage, 1997 entnommen

■ nXP nutzbares Rohprotein in g/kg TM am

Duodenum (Dünndarm)

Formel: $nXP = [11,93 - (6,82 \times (UDP/XP))] \times ME + 1,03 UDP$

Schätzgleichung nach Lebzien et. al, 1997

RNB Ruminale N-Bilanz in g/kg TM Formel: RNB = (XP - nXP) / 6,25

Futterqualität

DOM: Verdaulichkeit der organischen Masse in %; in vitro nach Tilley + Terry (1963) für Proben

der HBLFA Raumberg-Gumpenstein und

Laimburg/Südtirol

Regressionsgleichungen auf der Basis von in vivo-Verdauungsversuchen der HBLFA Raumberg-Gumpenstein für Proben aus dem Futter-

mittellabor Rosenau

■ ME: Umsetzbare Energie in MJ/kg TM

Regressionsgleichungen (je nach Nutzung und Pflanzenbestand) abgeleitet von der DLG-Futterwerttabelle, 7. Auflage 1997 für Proben der HBLFA Raumberg-Gumpenstein und Laim-

burg/Südtirol

Regressionsgleichungen auf Basis von in vivo-Verdauungsversuchen der HBLFA Raumberg-Gumpenstein für Proben aus dem Futtermit-

tellabor Rosenau

Maissilagen														
10000 (3) Yes				Ro	hnährste	offe			34.14	Protein		11 53	Ene	ergie
Maissilage	Anzahl der Proben	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins	nutz- bares Roh- protein	Rumi- nale N- Bilanz N/kg	Verdau- lichkeit % der OM	Umsetz- bare Energie	Netto- energie Lak- tation
	n	g/kg	XA	OM	XP g/kg	TM	XF	XX	UDP %	nXP g/kg	RNB TM	dOM %	ME MJ/k	MEL g TM
Milchreife									H. Per			Totales		
Kolbenanteil niedrig (20 %)	1	189	56	944	87	20	244	593	25	123	-5,8	69	9,87	5,88
Kolbenanteil mittel (30 %)	1	208	51	949	88	22	230	609	25	126	-6,1	70	10,13	6,06
Kolbenanteil hoch (40 %)	4	234	46	954	89	23	214	628	25	129	-6,5	72	10,41	6,27
Beginn Teigreife			162	10-				Type it	Non-		7,0	100	116	77
Kolbenanteil niedrig (30 %)	16	250	42	958	79	24	240	614	25	124	-7,3	70	10,18	6,06
Kolbenanteil mittel (40 %)	115	272	40	960	77	26	214	642	25	127	-8,0	72	10,52	6,31
Kolbenanteil hoch (50 %)	89	295	38	962	77	28	190	667	25	131	-8,6	74	10,85	6,56
Ende Teigreife	17/2/2011		Will a	W	180	AND THE PERSON NAMED IN		12.00		74	New Year	- Live		LI DE
Kolbenanteil niedrig (40 %)	165	318	41	959	74	26	230	629	25	125	-8,1	71	10,32	6,17
Kolbenanteil mittel (50 %)	495	348	38	962	74	27	201	660	25	129	-8,7	73	10,72	6,46
Kolbenanteil hoch (60 %)	249	382	36	964	76	28	178	681	25	132	-9,0	75	11,01	6,68

						, Mais				-				
				200	hnährsto	offe				Protein			Ene	rgie
Silage Ganzpflanzensilage Sonstige	Anzahl der Proben	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse	Roh- protein XP g/kg	Roh- fett XL	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM %	Umsetz- bare Energie ME	Netto- energie Lak- tation NEL
Ganzpflanzensilage	THE PROPERTY.	33			9119				70	grkg	I TIVI	/0	IVIJ/KĮ	g TM
GPS-Gerste	4	344	75	925	111	26	247	541	20	124	-2,1	68	9,59	5,66
GPS-Hafer	12	342	96	904	116	30	302	458	15	117	-0,2	64	9,06	5,29
GPS-Roggen	9	240	105	895	128	31	312	423	15	129	-0,2	70	10,04	5,99
GPS-Weizen	12	401	65	935	89	23	270	554	15	112	-3,8	63	9,06	5,28
Sonstige			1107									V VIII	REAL	
Erbse	18	309	106	894	176	29	274	414	15	130	7,4	66	9,22	5,39
Sudangras	8	247	83	917	96	22	311	488	15	104	-2,3	60	8,38	4,83
Maiskolbensilage (CCM)	11	559	20	980	88	36	78	777	35	151	-10,0	82	12,45	7,75
Maiskornsilage	48	646	18	982	95	40	26	822	40	163	-10,8	88	13,44	8,53
Biertreber	15	259	40	960	256	74	167	463	40	211	7.1	70	11,50	6,88

■ NEL: Nettoenergie-Laktation in MJ/kg TM; Regressionsgleichungen (je nach Nutzung und Pflanzenbestand) abgeleitet von der DLG-Futterwerttabelle, 7. Auflage 1997 für Proben der HBLFA Raumberg-Gumpenstein und Laim-

HBLFA Raumberg-Gumpenstein und Laimburg/Südtirol;

Regressionsgleichungen auf Basis von in vivo-Verdauungsversuchen der HBLFA Raumberg-Gumpenstein für Proben aus dem Futtermit-

tellabor Rosenau.

Qp: Qualitätspunkte (Berechnung mit der Formel: Qp = NEL x 32,673 – 99,96)

Da die Südtiroler Bergbauernberatung die Futterrationen anhand des Schweizer Futterbewertungssystems berechnet, werden in einer zusätzlichen Futterwerttabelle folgende Werte angeführt:

Verwertbarkeit von Futterprotein

■ APD: Absorbierbares Protein im Darm, das auf Grund der verfügbaren Energiemenge aufgebaut werden kann in g/kg TM;
Regressionsgleichungen aus "Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer, 4. Auflage 1999, Zollikofen (CH)

■ APD-N: Absorbierbares Protein im Darm, das auf Grund des abgebauten Rohproteins aufgebaut werden kann in g/kg TM;
Regressionsgleichungen aus "Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer, 4. Auflage 1999, Zollikofen (CH)

Futterqualität

■ NEL: Nettoenergie-Laktation in MJ/kg TM;
Regressionsgleichungen aus "Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer, 4. Auflage 1999, Zollikofen (CH)

■ NEV: Nettoenergie Mast in MJ/kg TM; Regressionsgleichungen aus "Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer, 4. Auflage 1999, Zollikofen (CH)

Mineralstoffe in g/kg TM und Spurenelemente in mg/kg TM

Ca	Kalzium	Fe	Eisen
P	Phosphor	Mn	Mangan
Mg	Magnesium	Zn	Zink
K	Kalium	Cu	Kupfer
Na	Natrium		

	And the		Men	genelem	ente		-2154		Spurene	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfer
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
		V-F			we let	N-4 0		apple i			
92	1	2,4	1,7	1,4	12,8	0,18	1	265	27	19	4,7
98	1	2,4	1,8	1,4	12,4	0,17	1	260	27	20	4,7
105	1	2,3	1,8	1,4	11,8	0,16	1	254	27	21	4,7
98	7	2,4	1,8	1,5	12,1	0,18	2	274	28	24	4,5
106	41	2,3	1,9	1,4	11,5	0,17	11	261	27	24	4,5
114	30	2,3	1,9	1,4	10,8	0,15	6	250	27	24	4,6
			7,1	azi i	- SE U	The state of	Table 1	- 11	NIE N	SWELL.	
102	79	2,4	1,9	1,5	11,3	0,18	18	279	28	30	4,3
111	218	2,3	2,0	1,4	10,5	0,16	66	266	28	30	4,3
118	102	2,2	2,0	1,4	9,8	0,15	32	258	27	31	4,3

			Men	genelem	ente				Spurenel	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfei
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
Ne P					· rul		Ph. Py				
85	2	6,9	2,8	1,9	19,5	0,34	1	1053	58	34	6,4
73	8	5,7	3,0	1,9	24,4	1,31	3	504	72	32	5,6
96	5	7,2	3,9	2,1	33,3	0,93	1	232	39	29	16,5
73	8	2,8	2,4	1,4	12,5	0,15	3	253	71	41	10,2
727	WXIII -	100	RI	100	- 17	100	974	100	me i	-764	10
76	13	9,4	3,5	2,5	23,5	0,51	2	2243	95	38	7,7
55	3	5,8	2,2	2,0	21,8	0,32	2	1139	50	39	9,8
153	5	0,4	2,5	1,1	4,8	0,17	2	55	11	23	2,1
179	8	0,4	2,7	1,0	4,3	0,26	1	36	6	25	2,1
125	10	2,5	5,2	2,1	3,0	0,33	3	125	32	83	8,8

Silagen und Heu praktisch bewerten

Eine gesamtheitliche Futterbewertung enthält neben den Futtergehaltswerten durch die Analyse oder durch die Futterwerttabelle auch eine Feststellung der Futterqualität (Geruch, Gefüge, Farbe, Verschmutzung). Bisher werden die Gehaltswerte getrennt von den sensorisch ermittelten Futterqualitäten bewertet. Was nützt es allerdings, wenn ein energiereiches Futter aus geschmacklichen Gründen nicht gefressen wird? Deswegen gibt es die Futterwertzahl, um die inhaltlichen Stoffe mit der Futterakzeptanz zu verbinden. Wird keine Analyse bei der jeweiligen Futterpartie durchgeführt, so soll der Futtergehaltswert über die Futterwerttabelle für den Alpenraum abgelesen

	100		71	Ro	hnährsto	offe			W. Tarry	Protein		1	Ene	rgie
Heu und Grummet Dauerwiese	Anzahl der Proben n	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse	Roh- protein XP g/kg	Roh- fett XL TM	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM	Umsetz- bare Energie ME MJ/kg	Netto- energie Lak- tation NEL
1. Aufwuchs					3 3					9118		70	Wichts	9 1101
Schossen XF < 240 g Ähren-/Rispenschieben XF 240–270 g Beginn Blüte XF 270–300 g Mitte bis Ende Blüte XF 300–330 g Überständig XF > 330 g	54 303 547 579 320	890 891 892 892 897	99 95 86 81 73	901 905 914 919 927	132 124 110 101 89	27 25 23 21 19	228 258 287 314 349	514 498 494 483 469	14 16 18 20 23	129 124 118 112 105	0,4 0,0 -1,2 -1,8 -2,6	74 70 66 63 59	10,08 9,56 9,08 8,65 8,12	6,03 5,66 5,30 5,00 4,63
2. + Folgeaufwüchse						SUL		TO NO.			1111	7.5	189-1	X SIFE
Schossen XF < 230 g Ähren-/Rispenschieben XF 230–260 g Beginn Blüte XF 260–290 g Mitte bis Ende Blüte XF 290–310 g Überständig XF > 310 g	159 399 647 263 141	890 888 888 893 896	113 106 97 92 87	887 894 903 908 913	156 141 130 121 113	30 27 26 24 23	219 246 276 299 325	482 480 472 464 453	20 20 20 20 20	136 129 123 118 113	3,1 1,9 1,0 0,5 -0,1	73 70 67 64 62	9,86 9,49 9,13 8,81 8,49	5,88 5,60 5,34 5,12 4,89

				Rol	hnährsto	offe			RILLS.	Protein			Ene	rgie
Heu und Stroh Sonstige Futtermittel	Anzahl der Proben n	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse	Roh- protein XP g/kg	Roh- fett XL TM	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM %	Umsetz- bare Energie ME MJ/kg	Netto- energie Lak- tation NEL
1. Aufwuchs	WILL STREET	H		v 141					rai l	3. 3	Distillants		4	9
Luzerne Grasgemenge Luzerne Rotklee Grasgemenge	18 19 9	893 883 894	99 90 85	901 910 915	157 159 130	25 19 20	322 355 320	397 377 445	22 28 22	124 128 123	5,1 5,0 1,1	61 59 66	8,42 8,17 9,12	4,84 4,66 5,32
2. + Folgeaufwüchse		TOTAL Y	TOTAL T	ton.	12-1	Tres.		I TO		200	- 14	-1.0	0,12	0,02
Luzerne	11	893	91	909	162	22	343	382	30	124	6,0	56	7,74	4,37
Stroh			58		1	Elvis !	R	- NATE OF	Eng.		Date .		light 110	51
Gerste Hafer Roggen Weizen	10 5 2 8	904 912 925 920	60 65 47 65	940 935 953 935	46 29 28 43	12 16 13 10	447 460 491 458	435 430 421 424	45 40 45 45	82 77 66 76	-5,7 -7,6 -6,2 -5,3	50 50 44 47	6,82 7,01 6,05 6,35	3,77 3,90 3,28 3,48

Eine sensorische Futterbewertung soll auf einer Ebene mit der Wein- und Käsebewertung stehen – die angefallene Jahresernte wird zum gleichen Zeitpunkt bewertet und in Futterkategorien zugeteilt.

	1		Men	genelem	ente				Spurenel	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	Р	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn TM	Cu
Ver en	du Vit	17		707	35	- I W		13	T WIT	54.4	186
97	46	8,5	3,0	2,7	27,2	0,38	9	718	111	37	7,1
85	255	7,7	2,8	2,5	25,5	0,35	47	618	104	35	6,7
73	439	6,9	2,6	2,3	23,9	0,32	97	521	98	33	6,3
63	478	6,1	2,4	2,1	22,4	0,30	105	428	92	31	5,9
51	237	5,1	2,2	1,9	20,4	0,27	51	310	84	29	5,5
92	137	10,6	3,4	3,4	27,3	0,41	24	1125	142	43	8,4
83	320	9,4	3,2	3,1	26,3	0,39	70	900	127	40	7,9
74	504	8,2	3,1	2,8	25,3	0,36	118	664	111	37	7,3
67	216	7,2	2,9	2,5	24,4	0,33	52	475	98	34	6,9
60	120	6,0	2,8	2,3	23,5	0,31	27	264	84	31	6,4

	1 100 E11		Men	genelem	ente	44.			Spurene	lement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfer
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
MR I	17007	187	4.0		Et .	116	200	38	TIME ?	M	122
58	14	11,7	2,9	2,5	27,3	0,87	4	330	42	28	7,4
52	11	13,2	2,6	2,8	25,3	0,96	7	260	36	23	8,4
74	8	7,8	3,0	2,0	28,6	0,26	1	290	69	27	7,1
arth.	HEAT		1.5	377		000	74	-8-	TOT Y	177	- 15:
43	6	12,9	2,5	2,6	27,1	0,79	4	317	37	26	9,2
23	8	3,7	1,6	0,8	16,3	0,45	3	195	45	25	3,6
28	5	2,5	1,6	0,7	26,2	0,50	2	219	85	21	2,7
7	2	2,3	1,0	0,7	12,5	0,27	1	441	29	41	3,2
14	7	3,1	1,1	0,8	14,7	0,75	2	134	57	14	2,1

werden. Die Futterpartie sollte aber auch vom Landwirt über eine sensorische Prüfung bewertet werden. Beide Bewertungen ergeben die Futterwertzahl des jeweiligen Grundfutters (Abbildung 3). Mit dieser Futterwertzahl (FWZ) kann der Landwirt eine rasche und billige Einstufung seiner Futterpartien selbst durchführen und in einer Wertzahl ausdrücken. Mit dieser Futterwertzahl kann er selbst in seinem Betrieb oder mit seinen Kollegen das Grundfutter vergleichen. Für die Gestaltung der Futterration gelten die Werte in der Futterwerttabelle oder die Analysewerte. In der Futterwerttabelle sind bei jeder Futterkategorie die Qualitätspunkte (Qp) angegeben, diese werden mit dem Qualitätsfaktor aus der sensorischen Bewertung multipliziert und daraus die FWZ gebildet.

Sensorische Bewertung

Hier werden die Silagen- und Heubzw. Grummetpartien mit der Nase (Geruch), mit den Augen (Farbe, Gefüge, Verschmutzung, Verpilzung) und mit den Händen (Gefüge) nach dem ÖAG-Schlüssel bewertet. Nach dem ÖAG-Schlüssel werden je nach Ausprägung des Merkmales Punkte vergeben, es können auch "Zwischenpunkte" vergeben werden. Diese Bewertung soll in einem neutralen, hellen Raum, nicht im Stall oder im Silogebäude stattfinden. Interessanter und spannender wird die Bewertung auch, wenn einige Bauern gemeinsam ihre Proben anschauen, beschnuppern und

Abbildung 3: Grundfutterbewertung bei Heu, Grummet und Silagen.

Futtergehaltswert

(Inhaltsstoffe, Mengen- und Spurenelemente, Vitamine, Energiegehalt, Verdaulichkeit etc.)

Futterqualität

(Gärqualität, Farbe, Geruch, Struktur, Häcksellänge, Verschmutzung und Futterhygiene etc.)

Futterwerttabelle oder Analyse

Sinnenprüfung

Futterwertzahl

(Futteraufnahme, Futterakzeptanz, Umsetzung zu Milch(qualität) und Fleisch(qualität)

Futterration und Fütterung

Grünfutter aus Wiesen, Wechselwiesen und Mähweiden mit hoher Nutzungsfrequenz (4 bis 6 Nutzungen / Jahr) Rohnährstoffe Protein Energie Grünfutter Anzahl Tro-Roh-Orga-Roh-Roh Roh-N-freie LIDP nutz-Rumi-Verdau-Umsetz-Netto-Vielschnittwiese cken nische asche protein fett faser Extrakt-% des hares nale N lichkeit bare energie Proben (4 bis 6 Nutzungen) masse stoffe Roh-Bilanz Roh-% der Energie Lak-OM proteins protein N/ka tation TM XA OM XP n XL. XF XX UDP nXP RNB dOM ME NEL g/kg TM g/kg g/kg TM MJ/kg TM 1. Aufwuchs Schossen XF < 210 a 43 158 122 878 179 24 188 486 10 141 6,1 79 10,88 6,56 Ähren-/Rispenschieben XF 210-240 g 76 166 108 892 161 25 227 480 11 136 4,0 76 10,52 6,29 Beginn Blüte XF 240-270 g 125 167 101 899 153 24 255 467 15 134 3,0 73 10.14 6.01 Mitte Blüte XF 270-300 g 48 191 94 906 128 20 283 475 15 125 69 0,4 9,69 5,69 Ende Blüte XF > 300 g 15 206 89 911 118 20 310 463 16 122 -0,6 68 9,48 5,54 2. + Folgeaufwüchse Schossen XF < 200 g 81 188 119 881 200 25 182 475 10 133 10,8 72 10,13 6,05 Ähren-/Rispenschieben XF 200-230 g 184 184 885 115 181 26 217 461 12 128 8,5 69 9,85 5,80 Beginn Blüte XF 230-260 g 214 187 112 888 168 24 243 453 14 128 68 6,4 9,57 5,64 Mitte bis Ende Blüte 260-290 g 133 200 107 893 154 23 273 444 15 124 4,7 66 9,36 5.49 Überständig XF > 290 g 44 232 100 900 142 23 304 432 15 122 3,1 66 9.24 5,40

				Ro	hnährsto	offe				Protein			Ene	rgie
Grünfutter Dreischnittwiese	Anzahl der Proben	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins	nutz- bares Roh- protein	Rumi- nale N- Bilanz N/kg	Verdau- lichkeit % der OM	Umsetz- bare Energie	Netto- energie Lak- tation
	n	TM g/kg	XA	OM	XP g/kg	TM	XF	XX	UDP %	nXP a/ka	TM	dOM %	ME MJ/kg	NEL a TM
1. Aufwuchs	7		104				- 185			3.3		580	1110211	9
Schossen XF < 210 g	27	210	99	901	160	24	196	522	13	131	4,5	76	10,45	6,30
Ähren-/Rispenschieben XF 210-240 g	88	203	95	905	147	23	228	507	14	133	2,2	73	10,22	6,09
Beginn Blüte XF 240-270 g	182	237	89	911	133	22	256	501	15	127	0,9	70	9,77	5,76
Mitte Blüte XF 270-300 g	174	227	85	915	120	20	285	490	15	122	-0,4	68	9,50	5,56
Ende Blüte XF 300-330 g	93	221	85	915	113	21	312	469	15	118	-0,7	66	9,17	5,33
Überständig XF > 330 g	15	231	80	920	100	18	342	460	17	113	-2,1	64	8,91	5,15
2. + Folgeaufwüchse			KIE .	-10		. MES			143	16		TA		111
Schossen XF < 200 g	63	204	110	890	173	27	185	504	14	134	6,4	72	10,12	6,04
Ähren-/Rispenschieben XF 200–230 g	265	188	107	893	162	23	218	489	14	127	5,6	69	9,74	5,76
Beginn Blüte XF 230-260 g	358	234	104	896	146	22	244	483	15	121	3,9	67	9.43	5,53
Mitte bis Ende Blüte XF 260-290 g	190	268	100	900	133	22	273	473	15	116	2,7	64	9,14	5,31
Überständig XF > 290 g	84	230	101	899	123	22	304	450	15	109	2,2	62	8,74	5,01

			Men	genelem	ente	1 1 1 1			Spurenel	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	Р	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn TM	Cu
								7		A. Carrie	P PIC
114	11	8,7	4,2	2,7	29,4	0,31	3	658	67	35	9,5
105	27	7,9	3,7	2,6	27,5	0,29	17	527	65	34	8,6
97	64	7,4	3,4.	2,4	26,2	0,28	43	430	64	33	7,9
86	33	6,9	3,1	2,3	24,8	0,27	22	336	62	33	7,2
81	8	6,3	2,8	2,2	23,5	0,26	7	243	61	32	6,5
	Total Control	The state of			/ Oil			Table !	0.000	4-4	800 8
98	45	11,9	4,7	3,9	25,4	0,50	14	880	101	43	11,9
90	102	10,8	4,4	3,6	25,4	0,45	58	752	93	41	10,9
84	122	10,0	4,1	3,4	25,3	0,41	88	655	87	39	10,2
80	72	9,0	3,9	3,1	25,2	0,37	47	546	80	38	9,3
77	24	8,1	3,6	2,9	25,1	0,33	19	433	73	36	8,5

Sept.			Men	genelem	ente		- HO		Spurenel	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	P	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn TM	Cu
dilling.	CT420 LE	Little	- August	- Man			-m-	10	1 100	- maga	115
106	25	10,4	3,2	2,9	23,4	0,24	9	461	88	36	8,2
99	73	9,3	3,0	2,7	22,5	0,22	36	396	87	36	7,6
88	146	8,3	2,8	2,5	21,8	0,20	77	341	86	35	7,0
82	146	7,2	2,6	2,4	21,0	0,18	87	282	85	35	6,4
74	57	6,2	2,4	2,2	20,3	0,17	38	227	84	34	5,9
68	3	5,1	2,2	2,0	19,5	0,15	3	167	83	33	5,3
Say Au	THE R	50	183		100		-	198	1.48	I QUETY	
97	58	13,6	3,8	3,5	21,9	0,32	23	435	119	42	9,2
88	248	12,0	3,7	3,4	21,6	0,32	120	441	119	41	9,4
81	316	10,7	3,6	3,2	21,4	0,31	176	446	119	41	9,6
73	167	9,4	3,5	3,1	21,2	0,31	101	452	119	40	9,8
64	44	7,9	3,4	3,0	21,0	0,31	21	458	119	40	10,0

begreifen. Die Punkte aus Geruch, Farbe, Gefüge und Verschmutzung werden zusammengezählt; die Punktebewertung kann bei Heu- bzw. Grummetproben zwischen 0 und 20, bei Silagen zwischen –3 und 20 liegen (vergleiche sensorische Futterbewertung Seite 20). Die Spitzenqualitäten weisen 16 bis 20 Punkte auf. Die Punkte nach der sensorischen Bewertung werden in Qualitätsfaktoren umgelegt. Dieser Qualitätsfaktor spielt bei der Ermittlung der Futterwertzahl im Hinblick auf Futterakzeptanz, Futteraufnahme und Geschmack wohl die wesentliche Rolle.

Punktevergal schen Bewer		
Güteklasse	Punkte	Qualitäts- faktor
Sehr gut bis	20 bis 18	1,0
Gut	17 bis 16	0,9
Befriedigend	15 bis 13	0,8
	12 bis 10	0,7
Mäßig	9 bis 8	0,6
	7 bis 5	0,4
Verdorben	4 bis -3	0,0

Mit diesen Qualitätsfaktoren können die Qualitätspunkte aus der Bewertung der Inhaltsstoffe noch korrigiert werden.

Es kann eine Wein-, Käse-, Fleischoder Erdäpfelverkostung zum Genuss werden. Eine Futterbewertung kann die Landwirte zum Meinungsaustausch über die erzielten Grundfutterqualitäten bei der derartigen Bewertung zusammenführen und dadurch ein hohes Bewusstsein ergeben.

Qualitätspunkte für die Energiedichte des Futters

Der zweite Teil für die Futterwertzahl kommt aus dem Energiegehalt des Grundfutters. In der Futterwerttabelle für den Alpenraum können unterschiedlichste Werte für Inhaltsstoffe, Energie und die resultierenden Qualitätspunkte entnommen werden.

Als Basis für die Qualitätspunkte der Futtergehaltswerte wird einerseits das Grünfutter aus einem Mischbestand im Vegetationsstadium "Ähren-/Rispenschieben" und 1. Aufwuchs herangezogen. Dieses Futter erhält 100 Punkte bei einem Energiegehalt von 6,1 MJ NEL/kg TM. Andererseits wird ein Grünfutter aus einer Extensivwiese im Vegetationsstadium "überständig" im 1. Aufwuchs für die Bewertung herangezogen. Dieses Futter bekommt bei 3 MJ NEL/kg TM 1 Punkt (vergleiche Abbildung 4).

Candwirt sonderbeilage

Der Energiegehalt des Futters ist die Grundlage für die Einstufung im Punktesystem. Bestes Grundfutter im Ährenund Rispenschieben enthält oft mehr als 6,1 MJ NEL/kg TM – diese Futterpartien bekommen nach den Futterge-

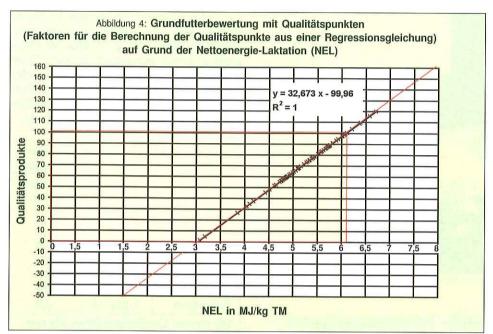
haltswerten mehr als 100 Punkte. Das Grünfutter des 1. Aufwuchses im Vegetationsstadium "Schossen" einer 4bis 6-Schnittfläche zeigt laut Futterwerttabelle MJ NEL/kg TM und bekommt daher Punkte.

Ermittlung der Futterwertzahl

Aus der sensorischen Bewertung (Qualitätsfaktor) und den Qualitätspunkten aus dem Energiegehalt im Futter wird die Futterwertzahl endgültig ermittelt.

Qualitätspunkte aus MJ NEL/kg TM x Qualitätsfaktor = Futterwertzahl

Beispiel 1:


Eine Grassilage aus dem 1. Aufwuchs im Ähren-/Rispenschieben gemäht, hat laut Futterwerttabelle MJ NEL/kg TM und bekommt dafür Punkte. Nach der Sinnenbeurteilung bekommt diese Silage zB 17 Punkte und somit einen Qualitätsfaktor von 0,9.

Formel:

91 Qualitätspunkte (aus den Futtergehaltswerten) x 0,9 (Qualitätsfaktor) = Futterwertzahl ist 82.


Beispiel 2:

Ein Grummet (Folgeaufwüchse) bei Ähren-/Rispenschieben hat laut Fut-

	THE PARTY OF			Rol	hnährsto	offe				Protein			Ene	ergie
Grünfutter Zweischnittwiesen	Anzahl der Proben n	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse	Roh- protein XP g/kg	Roh- fett XL TM	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP g/kg	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM %	Umsetz- bare Energie ME MJ/kg	Netto- energie Lak- tation NEL g TM
1. Aufwuchs	in wh		10		DAME :		-6	100.00		17. 6.			240,000	J ****
Schossen XF < 220 g	10	185	95	905	168	21	201	515	13	133	5,6	72	10,10	6,00
Ähren-/Rispenschieben XF 220-250 g	13	258	100	900	144	22	232	502	15	129	2.4	71	9,78	5,76
Beginn Blüte XF 250-270 g	138	271	84	916	128	22	258	509	15	121	1,1	66	9,24	5,37
Mitte Blüte XF 270-300 g	201	341	80	920	113	19	284	504	15	114	-0,2	63	8,87	5,10
Ende Blüte XF 300-330 g	131	301	80	920	99	20	313	488	15	107	-1,3	60	8,37	4,74
Überständig XF > 330 g	50	276	80	920	83	18	351	467	16	93	-1,6	55	7,33	3,99
2. + Folgeaufwüchse					1	1000		I IS I						
Schossen XF < 200 g	13	226	111	889	175	22	187	505	15	128	7,5	68	9,79	5,80
Ähren-/Rispenschieben 200–230 g	90	219	103	897	163	23	218	493	15	124	6,1	67	9,61	5,66
Beginn Blüte XF 230-260 g	171	233	101	899	142	21	245	490	15	118	3,9	64	9,28	5,41
Mitte bis Ende Blüte XF 260-290 g	120	242	100	900	125	21	273	480	15	109	2,5	61	8,88	5,12
Überständig XF > 290 g	42	276	91	909	118	20	313	459	15	98	3,1	56	8,29	4,66

				Rol	hnährsto	offe		111		Protein			Ene	rgie
Grünfutter Einschnittwiese Naturschutzflächen	Anzahl der Proben n	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM	Umsetz- bare Energie	Netto- energie Lak- tation NEL
1. Aufwuchs	11200	g/kg			g/kg	I IVI			%	g/kg	TM	%	MJ/K	g TM
		000	0.0		100		190	THE RE	Dill to	2000	- Markey	70.00	<u> </u>	I amount
Ahren-/Rispenschieben XF 220–250 g	9	303	80	920	136	19	240	525	16	121	2,3	65	9,04	5,34
Beginn Blüte XF 250-270 g	24	300	80	920	118	20	263	519	18	115	0,6	62	8,61	5,03
Mitte Blüte XF 270-300 g	34	340	82	918	107	19	286	506	18	103	0,6	57	8.02	4,60
Ende Blüte XF 300-330 g	41	358	80	920	94	19	318	488	19	84	1,7	48	7,28	4,04
Überständig XF > 330 g	96	357	78	922	80	21	358	463	20	79	0,2	46	6,54	3,53
Streuwiese	The latest say		-	100	144	Test I	1	150	TORK I		SH			
1. Aufwuchs	9	382	76	924	91	16	315	502	22	72	3,1	38	5,53	2,96

100	163 m	i mulitare i	Men	genelem	ente	320		12	Spurenel	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfer
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
		To be									
96	10	9,0	2,6	3,1	19,5	0,10	4	472	126	40	7,7
88	13	8,5	2,6	2,9	19,1	0,13	12	415	124	38	7,2
76	131	8,2	2,6	2,8	18,7	0,15	120	367	122	37	6,9
67	179	7,9	2,5	2,7	18,4	0,18	143	321	120	36	6,5
55	117	7,5	2,5	2,5	18,0	0,20	49	267	117	34	6,1
31	34	7,0	2,4	2,4	17,4	0,24	13	198	115	33	5,5
										Acres 1	
90	13	12,0	3,2	3,4	19,2	0,23	10	506	151	39	8,4
85	88	11,1	3,2	3,4	19,5	0,22	68	518	154	40	8,3
77	161	10,3	3,2	3,4	19,7	0,22	120	528	156	41	8,3
67	99	9,6	3,2	3,5	19,9	0,21	65	539	158	41	8,2
52	38	8,4	3,2	3,5	20,3	0,20	22	554	161	42	8,1

	A PARTY		Men	genelem	ente		- 275		Spurenel	ement	е
Quali- täts- ounkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
Les V							O Section 1		500	0.00	
74	9	9,3	2,2	3,5	15,1	0,10	9	359	184	46	6,6
64	24	9,0	2,2	3,3	14,3	0,12	24	332	179	44	6,3
50	32	8,8	2,2	3,1	13,6	0,14	25	305	175	42	5,9
32	33	8,4	2,2	2,8	12,5	0,18	10	266	169	39	5,4
16	65	7,9	2,2	2,4	11,2	0,22	3	219	161	36	4,8
TITE I	1000				1			TEL	Fis		1.2
				1		0,12		616		33	5,0

terwerttabelle einen Energiegehalt von 5,7 MJ NEL/kg TM und bekommt daher 88 Qualitätspunkte für die Futtergehaltswerte. In der sensorischen Beurteilung bekommt dieses Spitzenfutter zB 19 Punkte und somit einen Qualitätsfaktor von 1,0.

Formel:

88 Punkte (aus den Futtergehaltswerten) x 1,0 (Qualitätsfaktor) = Futterwertzahl ist 88.

Erst die Gesamtpunkte im Futterwert geben umfassend Auskunft über den tatsächlichen Wert dieses Grundfutters; sowohl die Gehaltswerte wie auch die Futterqualität (Geruch, Farbe, Struktur, Verschmutzung, Futterhygiene etc.) fließen in diese Futterwertzahl.

Bisher wurden in einer getrennten Bewertung die Futterpartien dargestellt, ohne einen "griffigen" Futterwert zu erhalten. Mit dieser vorgestellten Grundfutterbewertung ist die Wechselbeziehung zwischen den Futtergehaltswerten und der Futterqualität im Sinne der Futterhygiene, Geruch, Farbe und Struktur punktemäßig erfasst. Mit den Gesamtpunkten des Futterwertes können verschiedene Futterpartien innerhalb des Jahres und über die Jahre sowie zwischen den Betrieben einigermaßen verglichen werden.

15

Anwendung der Tabellen für die Rationsgestaltung

Die optimale Versorgung von Milchkühen erfordert sehr viel Erfahrung bei der Einschätzung der Qualität und der Menge der aufgenommenen Grundfuttermittel. Nur darauf aufbauend kann die bedarfsgerechte Ergänzung mit Kraftund Mineralfutter erfolgen.

Im besten Fall werden Nährstoffanalysen der verwendeten Grundfuttermittel gemacht. Wenn dies nicht möglich ist, so kann unter Verwendung der ÖAG-Futterwerttabelle für den Alpenraum sowie eines geeigneten EDV-

Programms die Optimierung von Milchviehrationen durchgeführt werden.

In der Beratung, aber auch auf vielen Milchviehbetrieben, wird das Milchviehrationsprogramm "Superration" verwendet, welches die ÖAG-Futterwerttabellen, sowie die neue verbesserte Futteraufnahmeschätzformel für Milchkühe von der HBLFA Raumberg-Gumpenstein enthält.

Damit kann relativ einfach und rasch eine Milchviehration überprüft oder neu erstellt werden. Neben den fütterungsrelevanten Daten müssen bei einer Rationsberechnung aber auch die Körperkondition, die Milchleistungsdaten, Kotkonsistenz und Umweltfaktoren beachtet werden.

	il M	the market	The same of	Ro	hnährsto	offe				Protein		- 6/4	Ene	rgie
Grünfutter Almfutter	Anzahl der Proben n	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse OM	Roh- protein XP g/kg	Roh- fett XL TM	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP g/kg	Rumi- nale N- Bilanz N/kg RNB TM	Verdau- lichkeit % der OM dOM %	Umsetz- bare Energie ME MJ/kd	Netto- energie Lak- tation NEL g TM
1. Aufwuchs						EAT?			Til Vell		White Wales			9 8,888
Schossen XF < 210 g Ähren-/Rispenschieben XF 210–240 g Beginn Blüte XF 240–270 g Mitte Blüte XF 270–300 g Ende Blüte XF 300–330 g Überständig XF > 330 g	48 160 185 226 67 15	166 197 208 262 300 249	96 85 88 77 63 64	904 915 912 923 937 936	147 137 140 123 105 95	21 21 20 20 20 19 18	208 237 260 283 314 348	528 519 492 497 500 475	13 14 14 15 15	119 115 111 108 101 93	4,5 3,5 4,6 2,5 0,6 0,4	66 63 61 59 56 53	9,63 9,18 8,62 8,23 7,70 6,99	5,70 5,39 5,01 4,75 4,39 3,91
2. + Folgeaufwüchse														
Schossen XF < 200 g Ähren-/Rispenschieben XF 200–230 g Beginn Blüte XF 230–260 g Mitte bis Ende Blüte XF 260–290 g Überständig XF > 290 g	12 44 53 39 16	167 214 230 241 229	112 100 89 80 72	888 900 911 920 928	164 153 147 124 119	22 23 22 21 19	186 219 245 274 304	515 505 498 502 486	10 11 11 12 14	119 103 101 92 81	7,3 8,0 7,3 5,0 6,1	67 61 58 54 49	9,68 8,85 8,33 7,76 7,02	5,72 5,20 4,75 4,35 3,81

	100		1-224	Ro	hnährst	offe			100	Protein			Ene	rgie
Grünfutter Weide	Anzahl der Proben n	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse	Roh- protein XP g/kg	Roh- fett XL	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM	Umsetz- bare Energie	Netto- energie Lak- tation NEL
Kulturweide		gritg	76		y/kg	TIVI			76	g/ĸg	j TM	%	MJ/k	g IM
Schossen XF < 200 g Ähren-/Rispenschieben XF 200–230 g Beginn Blüte XF 230–260 g	17 36 34	160 169 185	123 106 103	877 894 897	210 170 157	28 25 24	177 221 248	462 478 468	11 14 15	135 133 128	12,0 5,9 4,6	76 74 72	10,35 10,14 9,83	6,24 6,07 5,85
Kurzrasenweide			10-70					OTT.						
Schossen XF < 200 g Ähren-/Rispenschieben XF 200–230 g	42 41	164 174	106 102	894 898	234 211	29 29	184 213	447 446	12 13	142 135	14,8 12,0	80 77	11,21 10,70	6,85 6,46
Mähweide							11							
Schossen XF < 200 g Ähren-/Rispenschieben XF 200–230 g Beginn Blüte XF 230–260 g Mitte bis Ende Blüte XF 260–290 g	27 53 41 20	144 187 196 203	118 112 94 89	882 888 906 911	211 185 150 134	28 25 22 19	178 214 247 278	465 464 486 480	10 13 15 15	136 134 132 121	12,1 8,2 3,0 2.0	76 74 72 69	10,45 10,07 9,92 9,51	6,31 6,03 5,91 5,61
Hutweide	milachi					12000	The state of the s	NAPPENDENCE N					,	,
Schossen XF < 210 g Ähren-/Rispenschieben XF 210–240 g Beginn Blüte XF 240–270 g Mitte bis Ende Blüte XF 270–300 g Überständig XF > 300 g	12 19 11 16 3	201 199 267 248 265	114 96 82 84 85	886 904 918 916 915	162 145 128 110 78	25 24 20 19 21	200 234 251 282 324	499 501 518 505 493	15 15 16 16 22	131 127 116 108 92	4,9 3,0 1,9 0,3 -2,3	71 69 63 60 52	9,98 9,85 9,37 8,89 7,90	5,94 5,84 5,48 5,14 4,41
Nachweide	Andrea		146	C.	BAT .	1	JAKE				215			
Schossen XF < 200 g Ähren-/Rispenschieben XF 200–230 g Beginn Blüte XF 230–260 g Mitte bis Ende Blüte XF 260–290 g	109 94 47 14	162 164 193 242	116 106 101 83	884 894 899 917	202 193 163 120	26 24 22 18	184 214 241 285	472 462 473 494	13 13 14 15	136 133 119 95	10,5 9,5 7,0 3,9	75 73 72 70	10,31 10,14 9,88 9,60	6,21 6,07 5,89 5,68

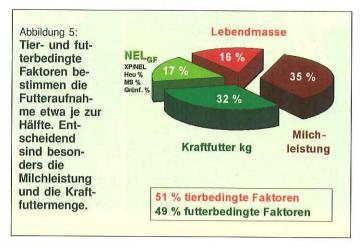
			Men	genelem	ente	1 1 1 1 1 1			Spurene	ement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfer
Qp Punkte	n	Ca	P	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn TM	Cu
Jane	176	MALE I	Tien.	1-30	The l	7		The same		- 100	3/2
86	29	13,5	2,5	5,3	18,1	0,27	25	492	86	70	8,7
76	40	12,0	2,4	4,7	17,7	0,26	32	457	123	67	8,2
64	164	10,3	2,3	4,0	17,3	0,25	111	416	166	65	7,6
55	156	8,5	2,2	3,2	16,8	0,24	56	373	212	62	7,0
44	44	6,4	2,1	2,4	16,2	0,23	22	324	265	59	6,4
28	14	4,2	2,0	1,5	15,6	0,22	6	270	323	56	5,6
812		118		The sales			Also I	Take I		has	1065
87	4	14,4	3,6	4,4	13,5	0,19	4	1140	346	172	9,6
70	29	11,6	3,3	3,7	13,0	0,17	27	985	396	177	9,2
55	38	9,5	3,0	3,1	12,6	0,16	38	863	436	180	8,9
42	28	7,1	2,7	2,5	12,2	0,14	28	728	479	184	8,6
25	15	4,6	2,4	1,8	11,7	0,13	15	587	525	188	8,3

			Men	genelem	ente				Spurene	lement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	Р	Mg g/kg TM	K	Na	n	Fe	Mn mg/kg	Zn TM	Cu
12.0		120b	SMIT	- 44-1	yin)	-8	THE S	J.		49	N.
104	17	11,6	3,9	3,3	25,6	0,26	17	1179	111	51	11,5
99	36	10,2	3,4	3,1	24,2	0,20	36	943	109	46	9,4
91	34	9,4	3,1	2,9	23,3	0,17	34	795	107	43	8,2
	4000		96.								
124	42	8,8	4,4	2,6	27,5	0,42	42	656	77	33	11,5
111	41	7,8	4,2	2,4	27,1	0,44	41	576	72	33	11,1
				adn .	702	See .	Yn I	11	-	19 P	- 46
106	27	11,5	3,8	3,5	25,1	0,26	27	887	118	48	12,3
97	53	10,8	3,4	3,3	25,5	0,16	53	603	114	43	10,0
93	41	9,2	2,9	3,0	22,6	0,14	41	380	114	38	8,4
83	20	7,3	2,6	2,5	22,3	0,10	20	344	85	37	8,0
						Hamilton I	- 9/31				- KE
94	12	12,0	2,6	3,4	20,8	0,16	12	713	181	54	9,0
91	19	10,6	2,3	3,0	19,3	0,13	19	645	172	49	7,8
79	11	9,9	2,1	2,9	18,6	0,11	11	611	167	46	7,2
68	16	8,6	1,8	2,6	17,3	0,08	16	548	158	41	6,1
44	3	6,9	1,4	2,2	15,5	0,04	3	465	146	35	4,6
description.	FIF S	7861			Olygo,	7015	- 84 -	187	TELE V	30	
103	109	11,6	3,9	3,9	23,3	0,27	109	867	236	48	11,8
98	94	10,5	3,4	3,7	21,5	0,23	94	734	268	47	11,6
92	47	9,5	3,1	3,5	19,8	0,19	47	617	296	47	11,5
86	14	7,8	2,4	3,1	17,1	0,13	14	423	342	46	11,2

Die "Superration" mit den neuen ÖAG-Futterwerttabellen und der aktualisierten Schätzformel von Univ. Doz. Dr. Gruber steht ab dem Winter wieder für Interessenten zur Verfügung. Kontaktadresse für den Bezug des Programmes.

Dipl. Ing. Karl Wurm, Landwirtschaftskammer Steiermark, Tel.: 0316/80501402, E-Mail: karl.wurm@lk-stmk.at

Futteraufnahme-Schätzformel für Milchkühe

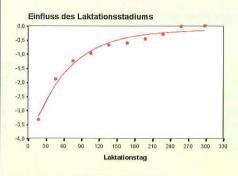

Für eine fundierte Rationsberechnung ist die Kenntnis bzw. genaue Abschätzung der Futteraufnahme eine unbedingte Voraussetzung. Denn nur unter dieser Bedingung kann die zutreffende Grundfuttermenge und der erforderliche Kraftfutteranteil tatsächlich richtig zu Grunde gelegt werden. Unter Praxisbedingungen ist es sehr schwierig (und in vielen Fällen sogar unmöglich), die Futteraufnahme der einzelnen Kühe im Stall festzustellen. Daher ist der Landwirt - und auch entsprechende Rationsprogramme - auf Schätzformeln angewiesen, welche die Futteraufnahme der Kühe in Abhängigkeit von tier- und futterbedingten Faktoren möglichst genau darstellen können.

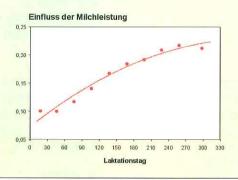
Im Institut für Nutztierforschung der HBLFA Raumberg-Gumpenstein werden seit über 20 Jähren Fütterungsversuche mit Milchkühen durchgeführt, bei denen die Futter- und Nährstoffaufnahme sowie Milchleistung und Lebendmasse für jedes Einzeltier täglich genau erhoben werden. Diese umfangreichen Daten wurden genützt, um mit statistischen Methoden die Faktoren herauszuarbeiten, welche die Höhe der Futteraufnahme bestimmen. Von den tierbedingten Einflussfaktoren sind dies vor allem die Milchleistung und in zweiter Linie die Lebendmasse. Auch die Laktationszahl und ganz besonders das Laktationsstadium spielen eine große Rolle. Das Futteraufnahmevermögen ist zu Laktationsbeginn stark vermindert (Abb. 6), daher ist höchste Grundfutterqualität und ein ausreichender, jedoch pansenverträglicher Kraftfutteranteil entscheidend, um den Nährstoffbedarf in dieser Hochleistungsphase abzudecken. Von den futterbedingten Faktoren spielen die Kraftfuttermenge und die Verdaulichkeit des Grundfutters die entscheidende Rolle (Abb. 5). Ganz wichtig für die Futteraufnahme ist auch die Hygienische Qualität des Grundfutters (Gärverlauf, Schimmelpilze usw.). Für alle diese Einflussfaktoren wurden sogenannte Re-

Sandwirt sonderbeilage

gressionskoeffizienten abgeleitet, mit denen berechnet werden kann, wie hoch die Futteraufnahme ist, wenn zB die Milchleistung 30 kg beträgt, die Kuh eine Lebendmasse von 670 kg hat und 5 kg Kraftfutter frisst usw. Die Berechnungsfaktoren für Milchleistung und Kraftfutter sind ebenfalls in Abb. 6 dargestellt. Daraus ist zu erkennen, dass diese Faktoren nicht konstant sind, sondern sich während der Laktation ändern. Dies ist vor allem dadurch zu erklären, dass sich die Energiebilanz im Laktationsverlauf von negativ zu positiv entwickelt.

Die Gumpensteiner Futteraufnahmeschätzformel ist dadurch nicht unbedingt einfach in der Anwendung, doch – wie auch unabhängige Bewertungen zeigen – tatsächlich relativ genau in der Vorhersage der Futteraufnahme. Sie ist vor allem für die Anwendung in EDV-unterstützten Ra-


				Ro	hnährst	offe				Protein		TOTAL	Ene	rgie
Grünfutter Leguminosen Mais und Sudangras	Anzahl der Proben n	Tro- cken masse TM g/kg	Roh- asche	Orga- nische Masse	Roh- protein XP	Roh- fett XL	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP %	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM %	Umsetz- bare Energie	Netto- energie Lak- tation NEL
1. Aufwuchs	Courses Occurs	9/119	411	7	gritg	TIME TO SERVICE THE PARTY OF TH			/0	g/kg	TM	70	MJ/k	g iwi
Rotklee Grasgemenge Luzerne Grasgemenge Luzerne	106 25 17	133 204 204	111 100 103	889 903 897	177 204 241	27 24 25	255 271 237	430 404 394	25 29 33	141 139 144	5,8 10,4 15,5	76 71 71	10,51 9,94 10,00	6,28 5,88 5,94
2. + Folgeaufwüchse			402			- 175	17.4	15,4	RING -	-Cpt	- 404	ALA.	e in the	WA :
Rotklee Grasgemenge Luzerne Grasgemenge Luzerne	314 65 54	133 207 210	139 113 116	861 888 884	167 206 224	26 26 25	243 271 260	424 385 375	24 30 32	126 135 136	6,6 11,3 13,9	69 69 69	9,28 9,54 9,44	5,42 5,61 5,56
Sonstige Futtermittel	- Control		H/A	TART	THE I	5758		l-tena "	Softer.	14	1 6 6 1	TE I	These I	2/8
Mais-Ganzpflanze Mais-Restpflanze Mais-Kolben Sudangras	49 150 150 13	209 202 451 211	47 69 18 94	953 931 982 906	71 56 80 124	26 14 32 21	264 351 100 303	591 510 770 458	25 14 28 19	122 95 148 118	-8,1 -6,2 -10,9 1,1	68 58 82 64	10,13 7,89 12,50 8,99	6,03 4,49 7,80 5,24


THE PARTY WITH THE PARTY WAS A	THE CONTRACTOR			Ro	hnährst	offe	TEST V			Protein			Ene	ergie
Grünfutter Dauerwiese Südtirol	Anzahl der Proben	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett XL	Roh- faser	N-freie Extrakt- stoffe	UDP % des Roh- proteins UDP	nutz- bares Roh- protein nXP	Rumi- nale N- Bilanz N/kg RNB	Verdau- lichkeit % der OM dOM	Umsetz- bare Energie	energie
		g/kg	Patience	. 98000	g/kg	TM	U 100.000.		%	g/kg	ommobile a service	%	ACC TO SECURITY	g TM
1. Aufwuchs	A. May The		50	THE .										
Schossen XF < 210 g	174	(-	107	893	217	26	184	466	12	148	11,0	78	10,88	6,57
Ähren-/Rispenschieben XF 210-240 g	129	::	104	896	174	26	227	469	13	140	5,4	76	10,52	6,31
Beginn Blüte XF 240–270 g	157		99	901	144	26	255	476	14	129	2,4	71	9,87	5,85
Mitte Blüte XF 270-300 g	141		93	907	125	25	283	473	15	121	0,7	67	9,32	5,45
Ende Blüte XF 300-330 g	76	-	85	915	113	25	312	464	15	112	0,2	63	8,67	4,98
Überständig XF > 330 g	13	2.—2.	79	921	94	26	338	464	16	103	-1,5	59	8.10	4,57

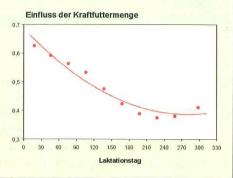

	A COLUMN				Rohnäl	rstoffe	- 4		Pro	tein	Juli	Ene	rgie	
Grünfutter Dauerwiese Südtirol	Anzahl der Proben	Tro- cken masse	Roh- asche	Orga- nische Masse	Roh- protein	Roh- fett	Roh- faser	N-freie Extrakt- stoffe	nutz- bares Roh- protein APD-N	Absorbier- bares Protein im Darm APD	Verdau- lichkeit % der OM dOM	Netto- energei Mast	Netto- energie Lak- tation NEL	Anzahl der Proben
		g/kg			g/kg	3000	, ,,,	%	1/45 ET 150	TM	%	100000000000000000000000000000000000000	g TM	
1. Aufwuchs	http://													1 100
Schossen XF < 210 g	174		107	893	217	26	184	466	144	114	78	6,66	6,42	174
Ähren-/Rispenschieben XF 210-240 g	129	15-70	104	896	174	26	227	469	115	104	76	6.25	6.09	129
Beginn Blüte XF 240–270 g	157	_	99	901	144	26	255	476	95	95	71	5,69	5.65	157
Mitte Blüte XF 270-300 g	141	-	93	907	125	25	283	473	83	88	67	5,23	5,29	141
Ende Blüte XF 300-330 g	76	-	85	915	113	25	312	464	75	82	63	4,72	4.90	76
Überständig XF > 330 g	13	_	79	921	94	26	338	464	61	75	59	4,32	4.57	13

Abbildung 6: Die Futteraufnahme ist zu Laktationsbeginn stark herabgesetzt!

Der Einfluss der Milchleistung und des Kraftfutters auf die Futteraufnahme ändert sich während der Laktation, weil die Kuh zu Laktationsbeginn stark mobilisiert und zu Laktationsende Nährstoffe wieder ansetzt.

			Men	genelem	nente	Philade	TACK!		Spurene	lemente	9
Quali- täts- ounkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfe
Qp Punkte	n	Ca	Р	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn TM	Cu
		-		office out	Augusta	-carby,	1,374				
105	26	10,0	3,5	2,7	26,3	0,29	8	66	32	7,6	354
92	8	8,4	4,0	2,8	31,8	0,20	-	-	-	_	
94	1	13,4	4,7	1,9	37,5	0,10	-	3000	-		() ()
						S mile	r Valor	A. L.			-
77	73	10,2	4,0	3,5	21,5	0,60	25	104	34	11,0	612
83	38	12,6	3,9	3,1	32,3	0,20	-	-		_	_
81	22	13,1	3,8	2,3	30,3	0,20	_	_	-	-	-
97	-	_	-		·	_	- 1	_	_	_	2-2
47	_	-	24-0	-	1. 1.	-	-	-	_	-	-
155	-	-	-	-	0	-	-	-	-	_	1
71	1	3,9	2,5	1,9	22,8	0,18	-	_	_	-	-

tionsprogrammen gedacht (wie zB in
"Superration"). In der Zwischenzeit ist
die Datenbasis zur Ableitung der For-
mel durch umfangreiche Versuchser-
gebnisse von 10 Forschungs- und Uni-
versitätsinstituten Deutschlands und
der Schweiz wesentlich erweitert wor-
den (70.000 Datensätze!) und dadurch
der Anwendungsbereich auch für die-
se Länder gegeben. Diese Formel wird
daher auch von der Deutschen Land-
wirtschaftsgesellschaft (DLG) und der
Gesellschaft für Ernährungsphysiologie
(GfE) zur Anwendung empfohlen. Wei-
tere Informationen finden sich auf der
Homepage der HBLFA Raumberg-
Gumpenstein (http://www.raumberg-
gumpenstein.com) sowie der DLG
(http://www.dlg.org).

			Men	genelem	ente		1 1 1		Spurene	lement	е
Quali- täts- punkte	Anzahl der Proben	Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfei
Qp Punkte	n	Ca	Р	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn I TM	Cu
115	174	8,6	4,5	3,1	35,0	0,23	174	197	51	40	9,3
106	129	8,0	4,0	2,9	32,9	0,18	129	160	49	36	8,0
91	157	7,6	3,7	2,7	31,5	0,15	157	137	48	34	7,1
78	141	7,2	3,4	2,5	30,1	0,12	141	113	48	32	6,2
						and the second	122720	92020	10272201	1000	Constitution of the Consti
63	76	6,9	3,0	2,4	28,7	0,09	76	89	47	30	5,3

Fazit für die Praxis

W Let	Men	genelem	ente				Spurenel	ement	е
Kal- zium	Phos- phor	Magne- sium	Kalium	Natrium	Anzahl der Proben	Eisen	Mangan	Zink	Kupfer
Ca	Р	Mg g/kg TM	К	Na	n	Fe	Mn mg/kg	Zn	Cu
		g/kg HVI					mg/kg	1 171	
		g/kg Tivi					mg/kg	TIVI	, IA
8,6	4,5	3,1	35,0	0,23	174	197	51	40	9,3
8,6 8,0	4,5 4,0	JAY"	35,0 32,9	0,23 0,18	174 129	197 160	1		9,3 8,0
100000000000000000000000000000000000000	A. 81.54	3,1		Control of the Contro	20 E C C C C C C C C C C C C C C C C C C	10000000	51	40	VICTOR STORY
8,0	4,0	3,1 2,9	32,9	0,18	129	160	51 49	40 36	8,0
8,0 7,6	4,0 3,7	3,1 2,9 2,7	32,9 31,5	0,18 0,15	129 157	160 137	51 49 48	40 36 34	8,0 7,1

Es können nach diesem Bewertungssystem auch Kategorien für die Anwendung des Grundfutters getroffen werden. Spitzenqualitäten weisen eine Gesamtpunkteanzahl von über 95 Punkten auf und sind für hochlaktierende Tiere, Futterqualitäten von 70 bis 95 Punkte für laktierende Tiere und 50 bis 70 Punkte für trockenstehende Tiere und Mutterkühe, während Futterqualitäten unter 50 Punkten für das Jungvieh schwerpunktmäßig angeboten werden. Ernteprodukte unter 20 Punkten sind besser als Einstreu vorzulegen.

Dieses Bewertungssystem ist für die Praxis ein Fortschritt. Es sollte damit gelingen, die wissenschaftlich erarbeiteten Ergebnisse in die breite Praxis zu übertragen.

Der Bauer ist ein hervorragender Beobachter und ein guter Bewerter. Mit seinem Fachwissen kann er die Futterwertzahlen für sein Grundfutter künftig für das Tier und die entstehende Leistung nutzen.

Sensorische Futterbewertung

	Formblatt 1: Silagebewertung nach Sinnenprüfung, ÖAG-Schlüssel
	1. GERUCH Punkte
	☐ frei von Buttersäuregeruch, angenehm säuerlich, aromatisch, fruchtartig, auch deutlich brotartig 14☐ schwacher oder nur in Spuren vorhandener Buttersäuregeruch (Handrückenprobe) oder stark sauer, stechend, wenig aromatisch 10
	mäßiger Buttersäuregeruch oder deutlicher,
	häufig stechender Röstgeruch oder muffig
	 starker Buttersäuregeruch oder Ammoniakgeruch oder fader, nur sehr schwacher Säuregeruch
8.	Rottegeruch, kompostähnlich
[2. GEFÜGE Gefüge der Blätter, Knospen und Stängel erhalten
į,	 3. FARBE dem Ausgangsmaterial entsprechende Gärfutterfarbe, bei Gärfutter aus angewelktem Gras, Kleegras, usw. auch leichte Bräunung
	Die unter 1., 2. und 3. erreichten Punkte werden oddiert
	Punkte: Güteklasse:
	20 bis 16 1 sehr gut bis gut 15 bis 10 2 befriedigend

3 mäßig

4 verdorben

Formblatt 2: Heubewertung nach Sinnenprüfung, ÖAG-Schlüssel

1. GERUCH Punk □ außerordentlich guter, aromatischer Heugeruch □ guter, aromatischer Heugeruch □ fad bis geruchlos □ schwach muffig, brandig □ stark muffig (schimmelig) oder faulig	5 3 1 0					
2. FARBE □ einwandfrei, wenig verfärbt □ verfärbt, ausgeblichen □ stark ausgeblichen □ gebräunt bis schwärzlich oder schwach schimmelig	5 3 1					
3. GEFÜGE						
blattreich (Klee-, Kräuter- und Grasblätter erhalten, ebenso Knospen und Blütenstände) weich und zart im Griff						
blattärmer, wenig harte Stängel, etwas hart im Griff	5					
sehr blattarm, viele harte Stängel, rau und steif im Griff	2					
fast blattlos, viele verholzte Stängel, grob und überständig	0					
	U					
4. VERUNREINIGUNG □ keine (keine Staubentwicklung)	3 1 0					
Die unter 1., 2., 3. und 4. erreichten Punkte werden addiert						
Punkte: Güteklasse:						
20 bis 16 1 sehr gut bis gut	 2					
15 bis 10 2 befriedigend 9 bis 5 3 mäßig						
4 bis –3 4 verdorben						

9 bis 5

4 bis -3

Fachgruppe:

Futterbau und Futterkonservierung

Vorsitzender:

Dr. Andreas Koutny, LK Tirol

Geschäftsführer:

Univ. Doz. Dr. Karl Buchgraber HBLFA Raumberg-Gumpenstein, 8952 Irdning E-Mail: karl.buchgraber@raumberg-gumpenstein.at Tel.: 03682/22451-310

