Effect of 100 g lemongrass as feed supplement on methane concentration in the respiratory air of beef cattle

A public private partnership project of

Dr. Thomas Guggenberger

Dr. Georg Terler

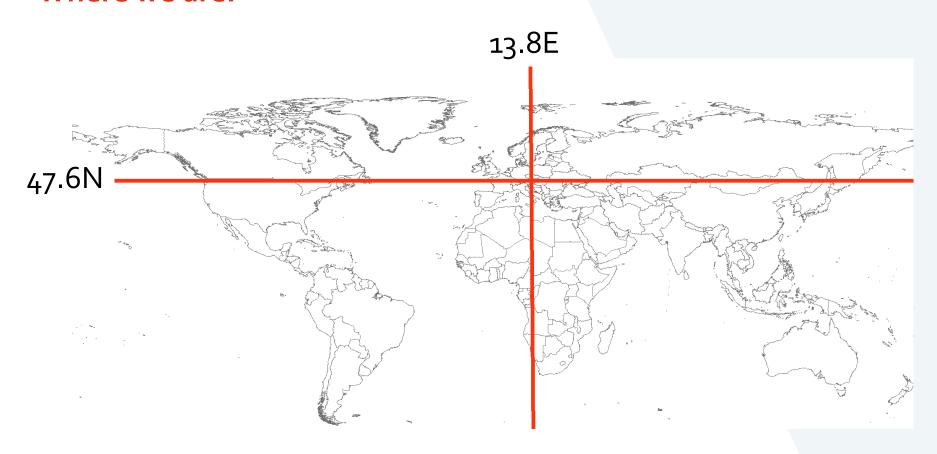
Daniel Eingang

DI. Stefanie Gappmaier

Family farm:

Christian Schrammel

Mag. Norbert Marcher
Stefanie Kohl



Who we are!

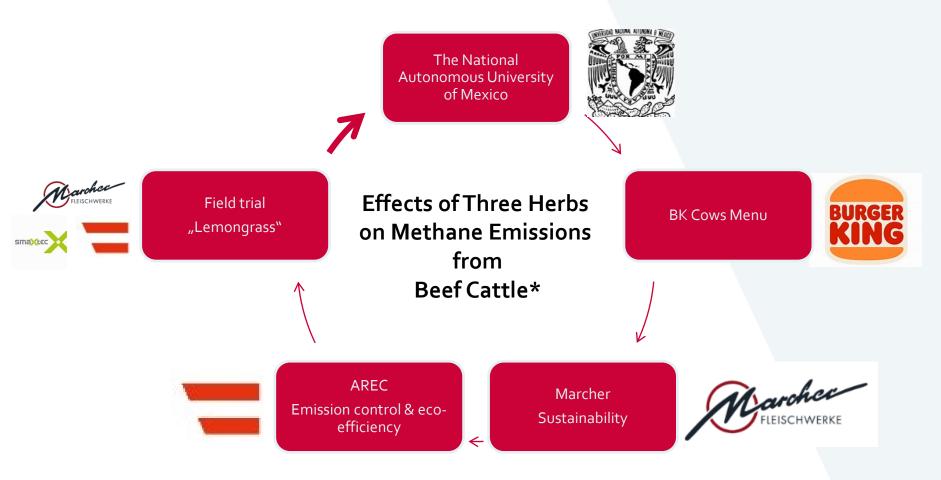
- Largest Teaching and Research Unit for Agriculture in Austria
- Part of Ministry of Agriculture, Regions and Tourism
- 330 qualified employees
- 450 pupils in the education sectors Agrarian Marketing, Agrarian Management; Environmental und Resources Management
- About 100 actual research projects
- Locations for research all over Austria

Where we are!

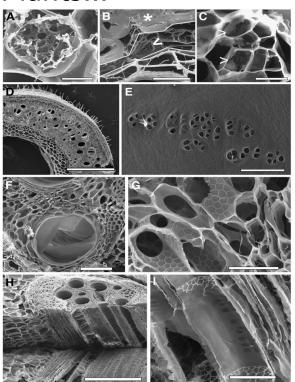
Where we are!

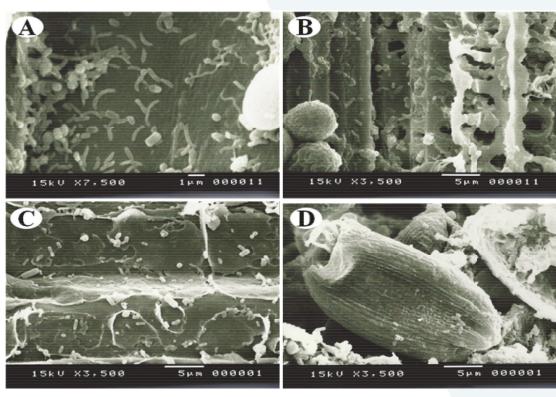
1,34 Mio. ha Cropland 2,8 Mio. Pigs

1,26 Mio. ha Grasland 1,9 Mio. Cattle 0,5 Mio Sheep & Goat



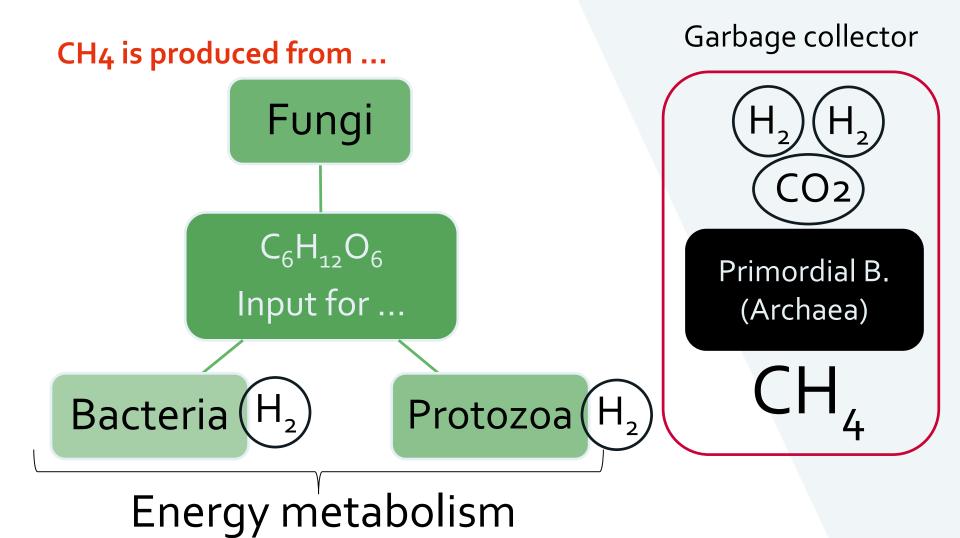
Where we are!


Relationship chain


The enteric fermentation...

Plants...

MULLENDORE, D., C. WINDT, H. AS und M. KNOBLAUCH, 2010: Sieve Tube Geometry in Relation to Phloem Flow. The Plant cell 22, 579-593.


... will be disassembled in rumen

JESUS, R.B.D., W.P. OMORI, E.G.D.M. LEMOS und J.A.M.D. SOUZA, 2015: Bacterial diversity in bovine rumen by metagenomic 16S rDNA sequencing and scanning electron microscopy.

Acta Scientiarum. Animal Sciences 37, 251-257.

CH4 can be decreased ...

indirect

Feeding/Fodder

- (Hemi)Cellulose
- (+) Starch
- (+) Oil
- (+) Saponins, Tannins
- (+) Feed acids
- (+) Salts

() is in contrast to to natural feeding

Host (cattle)

- Selection for low CH4 emissions
- [Reduction of the total flux through performance increase and/or shrinkage]

[] is in conflict with with the cultural landscape

direct

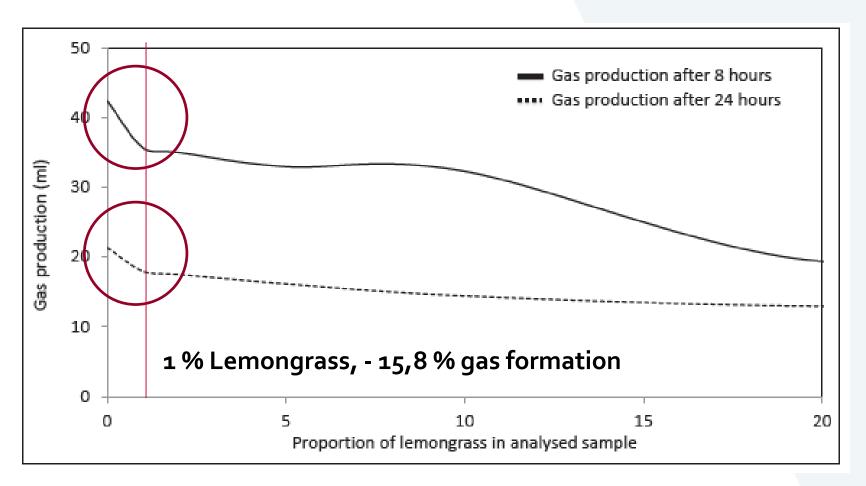
Rumen flora

- Hydrogen flux
- Vaccination of cultures

Nach BRADE, W. und O. DISTL, 2015: Das ruminale Mikrobiom des Rindes - Teil 2: Archaeen — Substratspezialisten im Pansenmikrobiom. Berichte über Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft 93.

Condensed Tannins → Lemongrass

Feed	Weender nutrients and fiber components											Ene	rgy	Condensed
	FM	XP	XL	XF	XA	XX	ОМ	NDF	ADF	ADL	NFC	ME	NEL	Tannins
	g/kg DM										MJ/kg DM		g/kg DM	
Lemongrass	912	75	30	328	75	492	925	654	347	52	166	8.59	4.96	>60

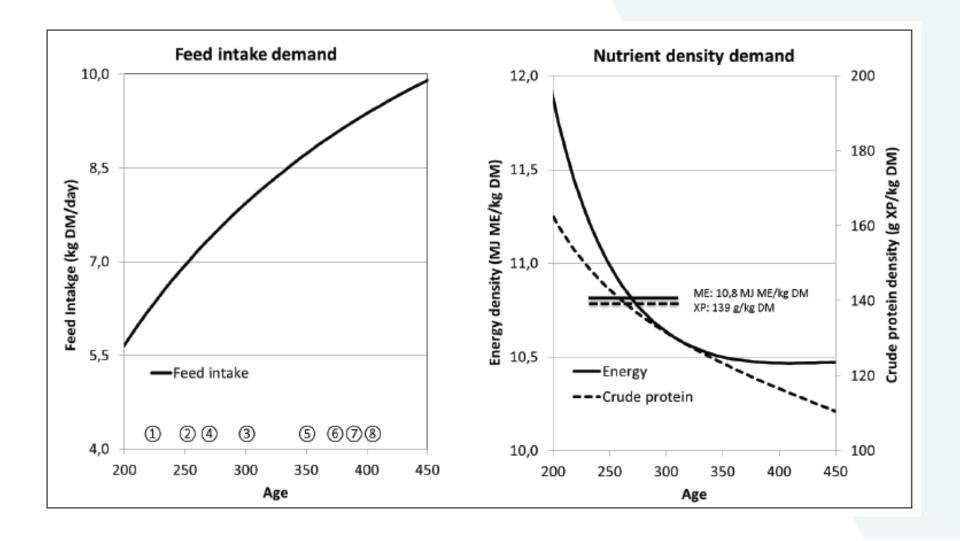

First step: laboratory test with gas-emission-potential

Effect in laboratory tests

Second step: Methane measurements in the field trial

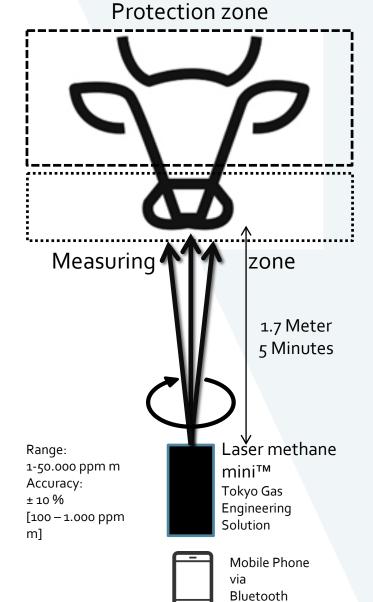
Family farm Schrammel in Austria lowland

Field trial Feeding 1.2 to 1.7 % lemongrass (1 % Tannin)

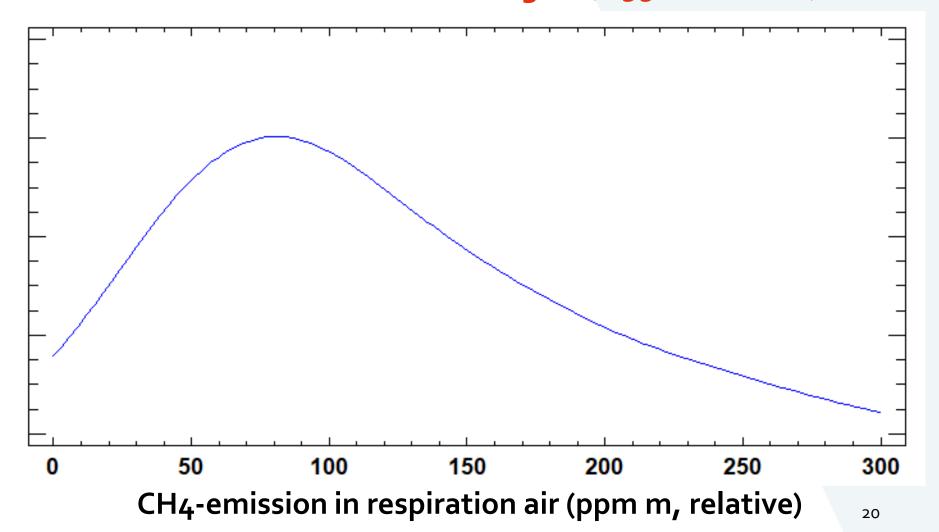

Trial setup

	Feeding 100 g of lemongrass per animal per day										
	1. Rep	etition	2. Repetition								
		Mesureme	nt period								
	1	2	3	4 21.11-11.12							
Box	21.09-09.10	10.10-30.10	31.10-20.11								
1	with	without	with	without							
2	without	with	without	with							
3	with	without	with	without							
4	without	with	without	with							
(5)	with	without	with	without							
6	without	with	without	with							
7	with	without	with	without							
8	without	with	without	with							
Order	(1)→(8)	①→⑧	®→1	®→1							

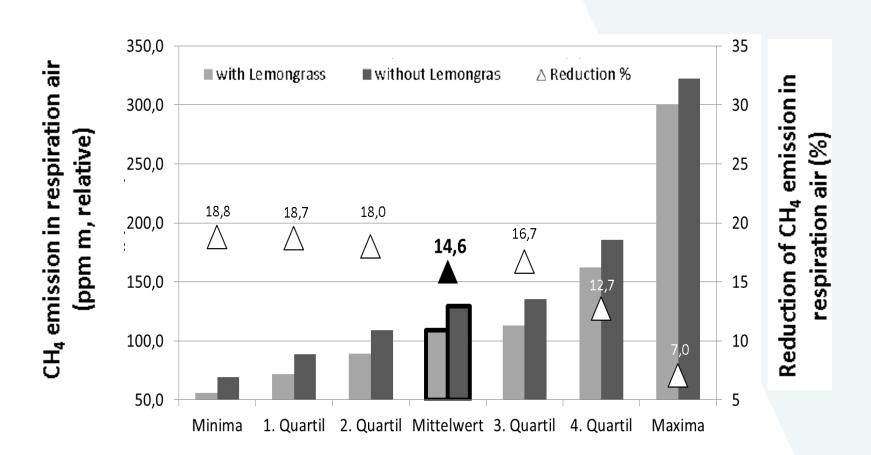
Feed intake and nutrients



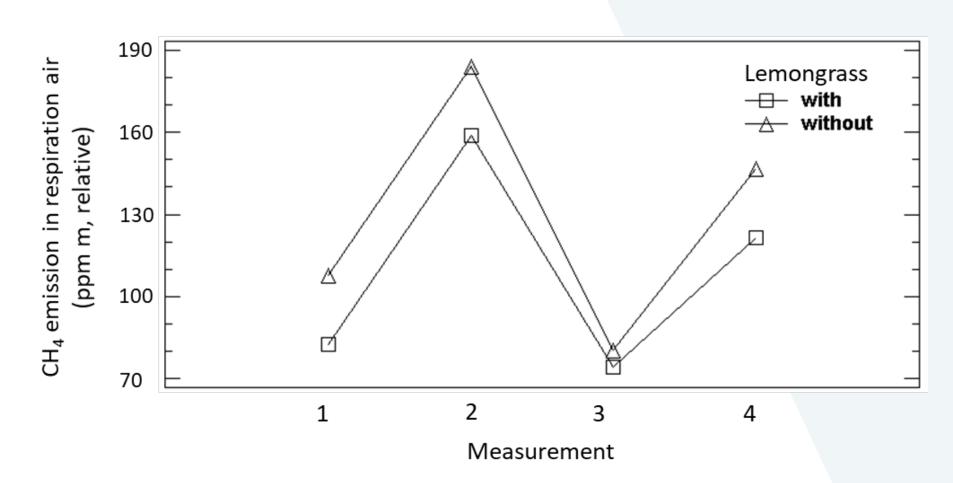
CH4-Measurement



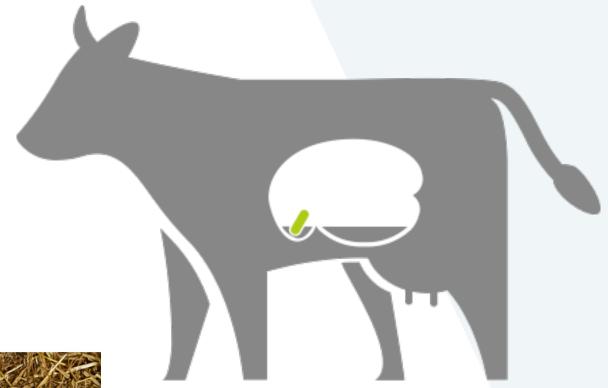
Distribution in the measurement signal (~ 99.000 Points)


Statistical analysis of CH4-concentration in breath

Parameter		Lemong	ırass (Z _i)	М	easuring	period (M	P _J)	MAE		R ²		
		with	without	1	2	3	4		Z _i	MP,	Z _i x MP _i	
Methane cor	ncentratio	n in the bre	eath (CH₄)									
Minima	ppm m	56.2	69.1	42.3	92.0	36.6	79.6	21.9	0.005	0.000	0.503	43.7
1. Quartile	ppm m	72.0	88.6	58.1	116.5	49.7	96.9	25.6	0.003	0.000	0.511	43.3
2. Quartile	ppm m	89.4	109.0	76.1	143.9	62.8	114.1	29.1	0.002	0.000	0.575	43.7
3. Quartile	ppm m	113.0	135.6	99.5	180.1	80.1	137.5	33,3	0.003	0.000	0.678	44.3
4. Quartile	ppm m	162.2	185.8	146.6	245.8	115.5	188.0	42.1	0.013	0.000	0.831	43.7
Maxima	ppm m	299.8	322.5	276.5	400.3	223.4	344.6	6.9	0.116	0.000	0.653	37.0
Mean	ppm m	109.1	129.7	95.1	171.6	77.0	134.1	32.0	0.004	0.000	0.691	44.2

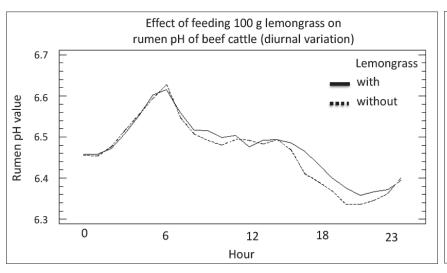

Methane measurements in the field trial (Ø -14,6 %)

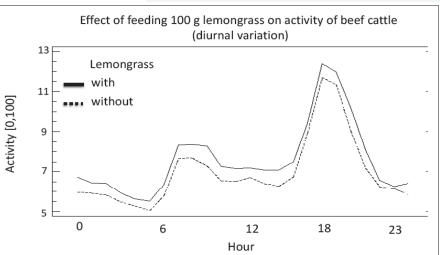
Methane measurements in the field trial (-7,8 bis -23,4%)



The smaXtec-Sensor

- pH-Value
- Temperature °C
- Drinking activity n
- Ruman activity [0,100]





Impact of Lemongrass on rumen pH and activity

Statistical analysis of rumen parameter (smaXtec)

Parameter		Lemongrass (Z _i)		Measuring period (MP _j)				Hour (Sk)	MAE	p-value			R ²	
		with	without	1	2	3	4	0-23]	Z _j	MP _j	S _k	$Z_{jj} \times S_k$	
Analyses in the Rumen (smaXtec-Sensor)														
рН		6.47	6.46	-	6.45	6.47	6.49	Figure 15	0.028	0.124	0.000	0.000	1.000	86.4
Temperature	°C	38.93	38.91	-	38.90	38.96	38.90	Figure 16	0.047	0.247	0.000	0.000	0.006	80.1
Drink	n	10.8	9.9	-	-	-	-	Figure 18	2.39	0.225	-	0.000	0.760	74.9
Aktivity	[0,100]	7.7	7.1	-	7.7	8.0	7.5	Figure 17	0.76	0.002	0.009	0.000	1.000	78.7

Feeding lemongrass the effects

- VÁZQUEZ-CARILLO et al. 2020: Reduction in CH4 load between 16,4 and 26.0%.
- GUGGENBERGER et al. 2021:
 - Field trial:
 - 47 fattening bulls (300-600 kg)
 - 4 Periods / 2 Repetition (with / without 100 g Lemongras per head/day)
 - Reduction in CH4 load between 7,8 and 23,4% (Ø 14,6 %)
 - Rumen sensor: No significant impact in rumen parameter
 - Laboratory test: Reduction of 15,8% in gas formation.
- The results of both studies matches each other!

Next step

- Organise the lemongrass chain
- Testing Esparsette (Onobrychis viciifolia) which grows in Austria
- Investment in a microbial laboratory
- Discussing the CH₄ problem from a broader perspective

It is only our contribution that we become part of the solution!